
AUTOVALORI DI UNA MATRICE ∗

A. SOMMARIVA†

Conoscenze richieste. Matrici, vettori. Operazioni con matrici e vettori. Matrici simmetriche. Conoscenze di
Matlab/Octave.

Conoscenze ottenute. Teoremi di Gershgorin. Metodo delle potenze e loro convergenza. Metodo delle potenze
inverse e loro convergenza. Metodo QR e loro convergenza.

Ore necessarie. 2.5 teoria + 2 laboratorio.

1. Calcolo degli autovalori di una matrice. Il problema del calcolo degli autovalori
[30] di una matrice quadrata A di ordine n consiste nel trovare gli n numeri (possibilmente
complessi) λ tali che

Ax = λx, x 6= 0 (1.1)

Si osservi che a seconda delle esigenze talvolta è richiesto solamente il calcolo di alcuni
autovalori (ad esempio quelli di massimo modulo, per determinare lo spettro della matrice)
mentre in altri casi si vogliono determinare tutti gli n autovalori in C.

Per semplicità , dopo i teoremi di localizzazione di Gershgorin, mostreremo solo due
metodi classici, uno per ognuna di queste classi, quello delle potenze e il metodo QR, riman-
dando per completezza alla monografia di Saad o a manuali di algebra lineare [3], [37].

Una interessante applicazione è l’algoritmo di PageRank [35], utilizzato da Google per
fornire i risultati migliori tra i siti web relativamente a certe parole chiave ed in prima ap-
prossimazione basato sul calcolo di un autovettore relativo all’autovalore 1 (ad esempio via
metodo delle potenze) di una matrice stocastica di dimensioni enormi (cf. [1], [4], [5]).

2. Teoremi di Gershgorin. In questo paragrafo mostriamo tre teoremi di localizzazione
di autovalori dovuti a Gershgorin (cf. [3, p.76], [38]).

TEOREMA 2.1. (Primo teorema di Gershgorin). Gli autovalori di una matrice A di
ordine n sono tutti contenuti nell’unione dei cerchi di Gershgorin

Ki = {z ∈ C : |z − ai,i| ≤
n∑

j=1,j 6=i

|ai,j |}

Vediamo quale esempio la matrice

A =

 15 −2 2
1 10 −3
−2 1 0

 (2.1)
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FIGURA 2.1. Cerchi di Gershgorin della matrice A definita in (3.2)

Il primo teorema di Gershgorin stabilisce che gli autovalori stanno nell’unione dei cerchi di
Gershgorin

K1 = {z ∈ C : |z − 15| ≤ | − 2|+ |2| = 4}
K2 = {z ∈ C : |z − 10| ≤ |1|+ | − 3| = 4}
K3 = {z ∈ C : |z − 0| ≤ | − 2|+ |1| = 3}

TEOREMA 2.2. (Secondo teorema di Gershgorin). Se l’unione M1 di k cerchi di Ger-
shgorin è disgiunta dall’unione M2 dei rimanenti n− k, allora k autovalori appartengono a
M1 e n− k appartengono a M2.
Applicando il secondo teorema di Gershgorin, dal confronto con la figura 2 abbiamo che 1
autovalore sta nel cerchio K3 mentre 2 stanno nell’unione dei cerchi K1, K2.

TEOREMA 2.3. (Terzo teorema di Gershgorin). Se la matrice di ordine n è irriducibile
e un autovalore λ sta sulla frontiera dell’unione dei cerchi di Gershgorin, allora sta sulla
frontiera di ogni cerchio di Gershgorin.

Questo teorema sarà utile in seguito per dimostrare che una matrice, detta di Poisson, è non
singolare. Ricordiamo che una matrice si dice irriducibile se non è riducibile e che una
matrice di ordine n ≥ 2 è riducibile se esiste una matrice di permutazione Π e un intero k,
0 < k < n, tale che

B = ΠAΠT =

(
A1,1 A1,2

0 A2,2

)
in cui A1,1 ∈ Ck×k, A2,2 ∈ C(n−k)×(n−k).

NOTA 2.4. Per verificare se una matrice A = (ai,j) sia irriducibile (cf. [28]), ricordia-
mo che data una qualsiasi matrice, è possibile costruire un grafo avente come nodi gli indici
della matrice. In particolare, il nodo i-esimo è connesso al nodo j-esimo se l’elemento ai,j
è diverso da 0. Il grafo associato si dice fortemente connesso se per ogni coppia (i, j) posso
raggiungere j a partire da i. Una matrice irriducibile se e solo se il grafo di adiacenza ad
esso associato è fortemente connesso. In altre parole, una matrice riducibile se e solo se il
grafo di adiacenza ad esso associato non è fortemente connesso.

Vediamo ora in Matlab quali sono effettivamente gli autovalori. si ha

>> A=[15 −2 2 ; 1 10 −3; −2 1 0]
A =

15 −2 2
1 10 −3
−2 1 0
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FIGURA 2.2. Semyon Aranovich Gershgorin (19011933) e Herman Müntz (1884-1956)

>> e i g (A)
ans =

0 .5121
14 .1026
10 .3854

>>

a conferma di quanto stabilito dai primi due teoremi di Gershgorin.

NOTA 2.5. Ricordiamo che A è una matrice a coefficienti reali, allora A e AT hanno gli
stessi autovalori (cf. [3, p.47]) e quindi applicando i teoremi di Gershgorin alla matrice tra-
sposta possiamo ottenere nuove localizzazioni degli autovalori. Nel caso A sia a coefficienti
complessi, se λ è un autovalore di A allora il suo coniugato λ è autovalore della sua traspo-
sta coniugata A. Da qui si possono fare nuove stime degli autovalori di A. Cosa possiamo
dire relativamente agli autovalori di A se applichiamo i teoremi di Gershgorin ad AT invece
che ad A?

3. Il metodo delle potenze. Il metodo delle potenze è stato suggerito nel 1913 da Muntz
ed è particolarmente indicato per il calcolo dell’autovalore di massimo modulo di una matrice.

Sia A una matrice quadrata di ordine n con n autovettori x1, . . ., xn linearmente indi-
pendenti e autovalori λ1, . . ., λn tali che

|λ1| > |λ2| ≥ . . . ≥ |λn|. (3.1)

A tal proposito ricordiamo (cf. [7], p. 951) i seguenti risultati.

1. Una matrice A è diagonalizzabile se e solo se possiede n autovettori linearmente
indipendenti.

2. Se tutti gli autovalori di A sono distinti la matrice è diagonalizzabile; l’opposto è
ovviamente falso (si pensi alla matrice identica).

3. Una matrice simmetrica (hermitiana) è diagonalizzabile. L’opposto è ovviamente
falso, visto che la matrice

A =

(
15 0
1 10

)
(3.2)
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è diagonalizzabile visto che ha tutti gli autovalori distinti ma non è simmetrica.

Il metodo delle potenze è definito come segue. Sia t0 ∈ Rn definito da

t0 =

n∑
i=1

αi xi, α1 6= 0,

e si generi la successione

y0 = t0 (3.3)
yk = Ayk−1, k = 1, 2, . . . (3.4)

TEOREMA 3.1. SiaA è una matrice quadrata diagonalizzabile avente autovalori λk tali
che

|λ1| > |λ2| ≥ . . . ≥ |λn|.

Siano uk 6= 0 autovettori relativi all’autovalore λk, cioè

Auk = λkuk.

Sia

y0 =
∑
k

αkuk, α1 6= 0.

La successione {ys} definita da ys+1 = Ays converge ad un vettore parallelo a x1 e che il
coefficiente di Rayleigh (relativo al prodotto scalare euclideo)

ρ(ys, A) :=
(ys, Ays)

(ys, ys)
(3.5)

converge a λ1.
DIMOSTRAZIONE. Per la dimostrazione si confronti [15, p.171]. Essendo la matrice A

diagonalizzabile, esistono n autovettori uk (relativi rispettivamente agli autovalori λk) che
sono linearmente indipendenti e quindi formano una base di Rn. Sia

y0 =
∑
k

αkuk, α1 6= 0.

Essendo Auk = λkuk abbiamo

y1 = Ay0 = A(
∑
k

αkuk) =
∑
k

αkAuk =
∑
k

αkλkuk

y2 = Ay1 = A(
∑
k

αkλkuk) =
∑
k

αkλkAuk =
∑
k

αkλ
2
kuk

e più in generale

ys+1 = Ays = A(
∑
k

αkλ
s
kuk) =

∑
k

αkλ
s
kAuk =

∑
k

αkλ
s+1
k uk
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Osserviamo ora che

ys+1

λs+1
1

=
∑
k

αk
λs+1
k

λs+1
1

uk (3.6)

per cui essendo per k > 1 ∣∣∣∣λs+1
k

λs+1
1

∣∣∣∣ < 1,

si ha

lim
s→+∞

(
λk
λ1

)s
= 0

e quindi la direzione di ysλs
1

, che è la stessa di ys, tende a quella dell’autovettore u1. Si osservi
che il coefficiente di Rayleigh ρ(·, A) è continuo in ogni x 6= 0, x ∈ Rn in quanto tanto il
numeratore quanto il denominatore sono funzioni polinomiali (quadratiche) delle componenti
xk di x = (xk)k ∈ Rn, che sono appunto continue. Per continuità , se ys/λs → α1u1 allora,
essendo λ1 6= 0, da

lim
s
ρ(ys, A) := lim

s

(ys, Ays)

(ys, ys)
= lim

s

(ys/λ
s
1, A(ys/λ

s
1))

(ys/λs1, ys/λ
s
1)

=
(α1u1, A(α1u1))

(α1u1, α1u1)
=

(u1, Au1)

(u1u1)
= λ1, (3.7)

ricaviamo che il coefficiente di Rayleigh ρ(ys, A) converge a λ1.

NOTA 3.2. Il metodo converge anche nel caso in cui

λ1 = . . . = λr

per r > 1, tuttavia non è da applicarsi quando l’autovalore di modulo massimo non è unico.

NOTA 3.3. In virtú di alcune possibili problemi di underflow e underflow si preferisce
normalizzare passo passo il vettore yk definito in (3.3). Conseguentemente l’algoritmo del
metodo delle potenze risulta

uk = Atk−1 (3.8)

tk =
uk
βk
, βk = ‖uk‖2 (3.9)

lk = ρ(tk, A) (3.10)

dove ρ(tk, A) è il coefficiente di Rayleigh definito in (3.5).

4. Il metodo delle potenze inverse. Una variante particolarmente interessante del me-
todo delle potenze è stata scoperta da Wielandt nel 1944 [31] ed e’ particolarmente utile nel
caso in cui A sia una matrice quadrata con n autovettori linearmente indipendenti,

|λ1| ≥ |λ2| ≥ . . . > |λn| > 0. (4.1)

e si desideri calcolare il piú piccolo autovalore in modulo, cioè λn, applicando il metodo delle
potenze ad A−1. Si ottiene cosı́ la successione {tk} definita da

Auk = tk−1 (4.2)

tk =
uk
βk
, βk = ‖uk‖2 (4.3)
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e convergente ad un vettore parallelo a xn. La successione di coefficienti di Rayleigh

ρ(tk, A
−1) :=

(tk, A
−1tk)

(tk, tk)
=

(tk, uk+1)

(tk, tk)
→ 1/λn. (4.4)

da cui è immediato calcolare λn.
Vediamo in dettaglio questo punto. Se {ξi} sono gli autovalori di A−1 con

|ξ1| > |ξ2| ≥ |ξ3| ≥ . . . ≥ |ξn|

allora il metodo delle potenze inverse calcola un’approssimazione di ξ1 e di un suo autover-
sore x. Si osserva subito che se A−1x = ξix (con ξi 6= 0) allora moltiplicando ambo membri
per ξi−1A si ottiene leggendo da destra a sinistra Ax = ξ−1i x cioè ξ−1i è un autovalore di A
e x è non solo autovettore di A−1 relativo all’autovalore ξi, ma pure autovettore di A relativo
all’autovalore ξ−1i . Conseguentemente se ξ1 è l’autovalore di massimo modulo di A−1 e λn
è l’autovalore di minimo modulo di A si ha λn = ξ−1i e che

A−1x = ξ1x⇒ Ax = ξ−11 x = λnx

Notiamo che il metodo delle potenze inverse, calcola ξ1 = λ−1n e il relativo autovettore x. Per
ottenere λn viene naturale calcolare ξ−11 , ma usualmente essendo x autovettore di A relativo
a λn si preferisce per questioni numeriche calcolare λn via coefficente di Rayleigh

ρ(x,A) :=
(x,Ax)

(x, x)
.

In generale, fissato µ ∈ C è possibile calcolare, se esiste unico, l’autovalore λ più vicino
a µ considerando il seguente pseudocodice [14, p.181]:

(A− µI) zk = qk−1 (4.5)
qk = zk/‖zk‖2 (4.6)
σk = (qk)HAqk (4.7)

Ricordiamo che se λ è autovalore di A allora

Ax = λx⇒ (A− µI)x = λx− µx = (λ− µ)x

e quindi λ − µ è autovalore di A − µI . Il metodo delle potenze inverse applicato a A − µI
calcola il minimo autovalore σ = λ − µ in modulo di A − µI cioè il σ che rende minimo il
valore di |σ| = |λi − µ|, dove λi sono gli autovalori di A. Quindi essendo λi = σi − µ si
ottiene pure il λi più vicino a µ.

Per versioni piú sofisticate di questa tecnica detta di shift (o in norma infinito invece che
in norma 2) si confronti [3, p.379].

Problema. Si può applicare il metodo delle potenze inverse con shift µ nel caso µ sia proprio
un autovalore di A?

5. Il metodo QR. Il metodo QR, considerato tra i 10 algoritmi più rilevanti del ventesi-
mo secolo [9], cerca di calcolare tutti gli autovalori di una matrice A.

SiaA una matrice quadrata di ordine n. Utilizzando il metodo di Householder è possibile
fattorizzare la matrice A come prodotto di due matrici Q ed R con Q unitaria (cioè QT ∗Q =
Q ∗QT = I) ed R triangolare superiore.
Citiamo alcune cose:
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FIGURA 5.1. Helmut Wielandt (1910-2001) e Vera N. Kublanovskaya (1920)

1. La matrice A ha quale sola particolarità di essere quadrata. Nel caso generale però
la sua fattorizzazione QR in generale non è unica bensı̀ determinata a meno di una
matrice di fase (cf. [3, p.149]) .

2. Come osservato in [2] p. 614, tale fattorizzazione non è unica (per una opportuna
Q unitaria, i segni delle componenti sulla diagonale della matrice R possono essere
scelti arbitrariamente). Nel caso sia non singolare, allora tale fattorizzazione è unica
qualora si chieda che i coefficienti diagonali di R siano positivi.

3. La routine Matlab qr effettua tale fattorizzazione. Si consiglia di consultare l’help
di Matlab, per consultare le particolarità di tale routine.

4. Se la matrice H è simile a K (cioè esiste una matrice non singolare S tale che
H = S−1KS) allora H e K hanno gli stessi autovalori. Si può vedere facilmente
che la relazione di similitudine è transitiva, cioè se H1 è simile ad H2 e H2 è simile
ad H3 allora H1 è simile ad H3.

Il metodo QR venne pubblicato indipendemente nel 1961 da Francis e da Kublanovskaya e
successivamente implementato in EISPACK. Ci limiteremo a considerare versioni di base del
metodo.

Sia

A0 = A = Q0R0

e si ponga

A1 := R0Q0.

Poichè

Q0A1Q
T
0 = Q0A1Q

T
0 = Q0R0Q0Q

T
0 = A0

la matrice A1 è simile ad A0 (si ponga S = Q−10 = QT0 ) e quindi ha gli stessi autovalori. Sia
quindi in generale

Ak = QkRk

Ak+1 = RkQk.
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Per le stesse motivazioni Ak+1 è simile ad Ak, e per transitività ad A0. Quindi Ak+1 ha gli
stessi autovalori di A0.

Per la convergenza del metodo esistono vari risultati (cf. [7, p.393], [10, p.352], [15, p.180],
[13, p.21, Thm. 5.3]). Ricordiamo principalmente [14, p.169]

TEOREMA 5.1. Se la matrice A ∈ Rn×n è con autovalori tutti distinti in modulo, con

|λ1| > . . . > |λn| (5.1)

allora l’algoritmo QR converge ad una matrice A∞ = (a∞i,j) triangolare superiore, cioè

lim
k
Ak =



a∞1,1 a∞1,2 . . . . . . a∞1,n
0 a∞2,2 a∞2,3 . . . a∞2,n
0 0 a∞3,3 . . . a∞3,n
0 0 . . . . . . . . .
...

...
...

...
...

0 0 0 a∞n−1,n−1 a∞n−1,n
0 0 0 0 a∞n,n


(5.2)

con λk = a∞k,k.

Inoltre,
1. Se la condizione (5.1) non è verificata si può dimostrare che la successione {Ak}

tende a una forma triangolare a blocchi.
2. se Ak = (a

(k)
i,j ), e λi−1 6= 0

|a(k)i,i−1| = O
(
|λi|
|λi−1|

)k
, i = 2, . . . , n, k →∞. (5.3)

3. se la matrice è simmetrica, allora

A∞ = diag(λ1, . . . , λ1).

4. se A è una matrice Hessenberg superiore allora l’algoritmo QR converge ad una
matrice A∞ triangolare a blocchi, simile ad A e con gli autovalori di ogni blocco
diagonale tutti uguali in modulo.

5.1. Implementazione di base di QR. Nelle implementazioni si calcola con un metodo
scoperto da Householder (ma esiste un metodo alternativo dovuto a Givens) una matrice di
Hessenberg T

T =


a1,1 a1,2 a1,3 . . . a1,n
a2,1 a2,2 a2,3 . . . a2,n

0 a3,2 a3,3 . . . a3,n
0 0 a4,3 . . . a4,n
. . . . . . . . . . . . . . .
0 0 0 an,n−1 an,n


simile ad A ed in seguito si applica il metodo QR relativamente alla matrice T . Se A è
simmetrica la matrice T risulta tridiagonale simmetrica.
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FIGURA 5.2. James Wallace Givens (1910-1993), Karl Hessenberg (1904-1959) e Alston Scott Householder
(1904-1993)

Si può mostrare che se A è una matrice di Hessenberg superiore, allora A = QR con Q
di Hessenberg superiore. Inoltre, se A è tridiagonale allora A = QR con Q di Hessenberg e
R triangolare superiore con ri,j = 0 qualora j − i ≥ 2.

In entrambi i casi le iterazioni mantengono la struttura, cioè se A0 = T è di Hessenberg,
allora Ak è di Hessenberg, se A0 = T è tridiagonale allora Ak è tridiagonale.

Il numero di moltiplicazioni necessarie all’algoritmo di Givens per calcolare tale matrice
T a partire da A è approssimativamente 10n3/3 mentre per quanto riguarda l’algoritmo di
Householder è 5n3/3 [16, p.252]. Il metodo QR applicato ad una matrice A in forma di
Hessenberg superiore ha ad ogni passo un costo di 2n2 operazioni moltiplicative.

Per versioni piú sofisticate come il metodo QR con shift, si veda [7], p. 394.

5.2. Facoltativo: Metodo QR con shift. la velocità di convergenza dipende dal rap-
porto ρ in (5.3). Se é vicino a 1 la convergenza può essere lenta o perfino non sussistere
(si vedano gli esempi della sezione precedente). Per risolvere questi problemi si utilizza una
tecnica detta dello shift. Sia µ un numero (anche complesso!) che approssima meglio degli
altri un autovalore e si consideri la successione {Ak} generata da{

Ak − µ I = Qk Rk
Ak+1 = RkQk + µ In

(5.4)

dove al solito In é la matrice identica di ordine n, e A0 := A.
Osserviamo che essendo Qk matrici unitarie cioé QHK QK = QK Q

H
K = In si ha

QK Ak+1Q
H
K = QK (RkQk + µ In)QHK = Qk RK + µ In = Ak

per cui si evince che Ak+1 ed Ak sono simili. Conseguentemente Ak é simile ad A0 =
A−µ In e i suoi autovalori sono {λi−µ}i=1,...,n da cui si ottengono facilmente {λi}i=1,...,n.
Esistono diverse varianti di questa tecnica.

5.2.1. Facoltativo. Variante 1. In una prima variante di QR, (cf. [3], p. 363), detta
(ak)n,n la componente (n, n) della matrice Ak, si pone

µk = (ak)n,n , k = 1, 2, . . . (5.5)

e si considera il metodo  Ak − µk I = Qk Rk
Ak+1 = RkQk + µk In
A0 = A

(5.6)
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Nel caso di matrici hermitiane (cioé A = AH ) la convergenza a zero di (ak)n,n−1 é del
terzo ordine. Una volta che |(ak)n,n−1| < ε, dove ε é una tolleranza prefissata, si procede
riapplicando lo stesso metodo alla sottomatrice Â composta dalle prime n−1 righe e colonne
di Ak. Poiché |(ak)n,n−1| ≈ 0, e gli autovalori di una matrice diagonale a blocchi sono
l’unione degli autovalori di ogni blocco, gli autovalori di A sono l’unione di quelli di Â con
(ak)n,n.

5.2.2. Facoltativo. Variante 2 (di Wilkinson). Nel caso in cui |λn−1| = |λn| si
procede come in precedenza scegliendo µk l’autovalore della sottomatrice(

an−1,n−1 an,n
an,n−1 an,n

)
(5.7)

che é piú vicino ad (ak)n,n. Si noti che in questo caso, anche se la matrice A ha coefficienti
reali, l’utilizzazione dello shift può portare ad una matrice ad elementi complessi, con un
aumento del costo computazionale.

6. Facoltativo: Metodo QR: alcune considerazioni. Sia A una matrice quadrata di
ordine n e siano da calcolare tutti i suoi autovalori {λi}. In precedenza abbiamo visto che é
possibile trasformare per similitudine la matrice A in una matrice di Hessenberg T

T =


a1,1 a2,1 a3,1 . . . an,1
a1,2 a2,2 a3,2 . . . an,2

0 a2,3 a3,3 . . . an,3
0 0 a3,4 . . . an,4
. . . . . . . . . . . . . . .
0 0 0 an,n−1 an,n


Essendo T simile ad A, gli autovalori di T sono gli stessi di A. Si é osservato che una

versione di base del metodo QR può incontrare problemi nel convergere qualora esistano 2
autovalori distinti di uguale metodo.
Questo é ad esempio il caso della matrice

3 17 −37 18 40
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


che ha due valori complessi coniugati

λ ≈ 1.27437503036000± 1.03039271164378 i.

Affrontiamo il caso della matrice di Hessenberg di ordine 3 (cf. [7], p. 393)

A =

 0 0 2
1 0 1
0 1 1


Si vede facilmente che alla 25-sima iterazione del metodo QR (in una sua versione di base)
corrisponde la matrice

A25 =

 2.000 1.069 0.926
0.000 −0.500 0.866

0 −0.866 −0.500


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(abbiamo scritto per semplicità 3 cifre decimali delle componenti di A25). Risulta chiaro
che quindi il metodo QR non fornisce gli autovalori di A, in quanto non tende a una matrice
triangolare superiore. Il problema come in precedenza é dovuto alla presenza di 2 autovalori
complessi coniugati λ ≈ −0.5± 0.8660 i.

7. Esperimenti numerici in Matlab.

7.1. Il metodo delle potenze. Partiamo con una versione semplice power basic del
metodo delle potenze

f u n c t i o n [ lambda1 , x1 , n i t e r , e r r ]= p o w e r b a s i c (A, z0 , t o l l , nmax )

% INPUT :
% A : MATRICE DI CUI VOGLIAMO CALCOLARE L ’AUTOVALORE DI MASSIMO MODULO.
% z0 : VETTORE INIZIALE (NON NULLO ) .
% t o l l : TOLLERANZA.
% nmax : NUMERO MASSIMO DI ITERAZIONI .
%
% OUTPUT:
% lambda1 : VETTORE DELLE APPROSSIMAZIONI DELL’AUTOVALORE DI MASSIMO MODULO.
% x1 : AUTOVETTORE RELATIVO ALL’AUTOVALORE DI MASSIMO MODULO.
% n i t e r : NUMERO DI ITERAZIONI .
% e r r : VETTORE DEI RESIDUI PESATI RELATIVI A ” lambda1 ” .
%
% TRATTO DA QUARTERONI−SALERI , ”MATEMATICA NUMERICA” , p . 1 8 4 .
%

q=z0 / norm ( z0 ) ; q2=q ; e r r = [ ] ; lambda1 = [ ] ;
r e s = t o l l +1 ; n i t e r =0 ; z=A∗q ;
w h i l e ( r e s >= t o l l & n i t e r <= nmax )

q=z / norm ( z ) ; z=A∗q ; lam=q ’∗ z ; x1=q ;
z2=q2 ’∗A; q2=z2 / norm ( z2 ) ; q2=q2 ’ ; y1=q2 ; c o s t h e t a = abs ( y1 ’∗ x1 ) ;
n i t e r = n i t e r +1 ; r e s =norm ( z−lam∗q ) / c o s t h e t a ;
e r r =[ e r r ; r e s ] ; lambda1 =[ lambda1 ; lam ] ;

end

Qualche nota

1. il vettore iniziale z0 e’ normalizzato ed in err, lambda1 vengono memorizzati
rispettivamente i valori dell’errore compiuto e dell’autovalore di massimo modulo
λmax;

2. l’assegnazione res=toll+1; forza l’algoritmo ad entrare nel ciclo while, men-
tre z=A*q; è una quantità da utilizzarsi per il calcolo dell’autovalore λmax;

3. nel ciclo while, q è un’approssimazione di un autoversore relativo a λmax, mentre
lam di λmax;

4. il ciclo si interrompe se un numero massimo di iterazioni niter è raggiunto oppure

||Aqk − λk||2
| cos(θλk

)|
< tol

dove θλk
è l’angolo formato tra (un’approssimazione del)l’autovalore destro x1 e

sinistro y1 associati a lam (cf. [14, p.180])
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7.2. Esempio 1. Testiamo il codice relativamente al calcolo dell’autovalore di massimo
modulo di

A =

 −15.5 7.5 1.5
−51 25 3
−25.5 7.5 11.5


=

 1 2 3
2 5 6
7 9 3

 ·
 10 0 0

0 10 0
0 0 1

 ·
 1 2 3

2 5 6
7 9 3

−1 (7.1)

La matrice A è diagonalizzabile e ha autovalori 10, 10, 1. Si può vedere che una base di
autovettori relativa agli autovalori 10, 10, 1 è composta da (1, 2, 7), (2, 5, 9), (3, 6, 3). Quale
vettore iniziale del metodo delle potenze consideriamo

z0 = (1, 1, 1) = (7/6) · (1, 2, 7)− 1 · (2, 5, 9) + (11/18) · (3, 6, 3)

e quindi il metodo delle potenze applicato ad A, e avente quale punto iniziale z0 può essere
utilizzato per il calcolo dell’autovalore di massimo modulo di A, poichè α1 = 7/6 6= 0.
Dalla shell di Matlab/Octave:

>> S=[1 2 3 ; 2 5 6 ; 7 9 3 ] ;
>> D= d i a g ( [ 1 0 10 1 ] ) ;
>> A=S∗D∗ i n v ( S )
A =
−15.5000 7 .5000 1 .5000
−51.0000 25 .0000 3 .0000
−25.5000 7 .5000 11 .5000

>> z0 =[1 1 1 ] ’ ;
>> t o l l =10ˆ (−8) ;
>> nmax =10;
>> f o r m a t s h o r t e ;
>> [ lambda1 , x1 , n i t e r , e r r ]= p o w e r b a s i c (A, z0 , t o l l , nmax )
lambda1 =

1 .1587 e +001
1 .0138 e +001
1 .0014 e +001
1 .0001 e +001
1 .0000 e +001
1 .0000 e +001
1 .0000 e +001
1 .0000 e +001
1 .0000 e +001
1 .0000 e +001

x1 =
−2.8583e−001
−9.1466e−001
−2.8583e−001

n i t e r =
10

e r r =
2 .2466 e +000
2 .1028 e−001
2 .0934 e−002
2 .0925 e−003
2 .0924 e−004
2 .0924 e−005
2 .0924 e−006
2 .0924 e−007
2 .0924 e−008
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2 .0924 e−009
>>

La convergenza è abbastanza veloce come si vede dalla quantità err, che consiste in un
particolare residuo pesato.

Una questione sorge spontanea. Cosa sarebbe successo se avessimo utilizzato l’algoritmo
senza normalizzazione come ad esempio power method definito da

f u n c t i o n [ lambda , v ]= power method (A, x0 , max i t )

v=x0 ;

f o r i n d e x =1: max i t
v o l d =v ;
v=A∗ v o l d ;
lambda =( v o ld ’∗ v ) / ( v o ld ’∗ v o l d ) ;

end

Proviamo il test, facendo iterare il metodo prima 5, poi 100 volte e alla fine 1000 volte (si
noti il settaggio della variabile maxit relativa al numero di iterazioni da compiere):

>> x0 =[1 1 1 ] ’
x0 =

1
1
1

>> A=[−15.5 7 . 5 1 . 5 ; −51 25 3 ; −25.5 7 . 5 1 1 . 5 ]
A =
−15.5000 7 .5000 1 .5000
−51.0000 25 .0000 3 .0000
−25.5000 7 .5000 11 .5000

>> [ lambda , v ]= power method (A, x0 , 5 )
lambda =

10 .0014
v =

1 . 0 e +005 ∗
−0.8333
−2.6666
−0.8333

>> [ lambda , v ]= power method (A, x0 , 1 0 0 )
lambda =

10 .0000
v =

1 . 0 e +100 ∗
−0.8333
−2.6667
−0.8333

>> [ lambda , v ]= power method (A, x0 , 1 0 0 0 )
lambda =

NaN
v =

NaN
NaN
NaN

>>

La ragione è semplice. Per k relativamente piccolo si ha A · tk ≈ 10 · tk e quindi per s ≥ k

ts ≈ As−k · tk ≈ 10 ·As−k−1 · tk ≈ · · · ≈ 10s−k · tk
da cui

‖ts‖2 ≈ 10s−k · ‖tk‖2
13



spiegando quindi perchè si possano avere problemi di overflow applicando l’algoritmo di
base.

7.3. Esempio 2. Proviamo un test diverso, questa volta con la matrice (diagonalizzabile)

A =

(
1 2
0 −1

)
,

avente autovalori λ1 = 1 e λ2 = −1 e autovettori linearmente indipendenti (1, 0), (−1, 1).
Quale vettore iniziale poniamo

x0 = (1, 3) = 4 · (1, 0) + 3 · (−1, 1)

e quindi il metodo delle potenze applicato ad A, partendo da x0 può essere sicuramente ap-
plicato. D’altra parte dubitiamo converga in quanto |λ1| = |λ2| = 1 pur essendo λ1 6= λ2.
Dalla shell di Matlab/Octave:

>> A=[1 2 ; 0 −1]
A =

1 2
0 −1

>> [ lambda1 , x1 , n i t e r , e r r ]= p o w e r b a s i c (A , [ 1 ; 3 ] , 1 0 ˆ ( −8 ) , 1 5 )
lambda1 =
−3.4483e−002
−2.0000e−001
−3.4483e−002
−2.0000e−001
−3.4483e−002
. . .
−3.4483e−002
−2.0000e−001
−3.4483e−002
−2.0000e−001

x1 =
3 .1623 e−001
9 .4868 e−001

n i t e r =
16

e r r =
4 .4567 e−001
2 .4000 e +000
4 .4567 e−001
2 .4000 e +000
4 .4567 e−001
. . .
4 .4567 e−001
2 .4000 e +000
4 .4567 e−001
2 .4000 e +000

>>

Dal residuo pesato è chiaro che il metodo non converge, e come anticipato il motivo è la
presenza di autovalori distinti aventi modulo massimo.

7.4. Esempio 3. Per terminare, vediamo il caso della matrice diagonalizzabile (avendo
autovalori distinti)

A =

(
1 2
0 10

)
,
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in cui il metodo funziona rapidamente, in quanto esiste un solo autovalore di modulo
massimo, uguale a 10.

>> A=[1 2 ; 0 10]
A =

1 2
0 10

>> [ lambda1 , x1 , n i t e r , e r r ]= p o w e r b a s i c (A , [ 1 ; 3 ] , 1 0 ˆ ( −8 ) , 1 5 )
lambda1 =

9 .9779 e +000
9 .9979 e +000
9 .9998 e +000
1 .0000 e +001
1 .0000 e +001
1 .0000 e +001
1 .0000 e +001
1 .0000 e +001

x1 =
2 .1693 e−001
9 .7619 e−001

n i t e r =
8

e r r =
9 .6726 e−002
9 .7529 e−003
9 .7610 e−004
9 .7618 e−005
9 .7619 e−006
9 .7619 e−007
9 .7619 e−008
9 .7619 e−009

Si osservi che il metodo termina in quanto l’errore pesato err è minore della tolleranza
toll = 10−8.

7.5. Il metodo delle potenze inverse. Una versione di base invpower del metodo
delle potenze inverse [14, p.184] è

f u n c t i o n [ lambda , x , n i t e r , e r r ]= invpower (A, z0 , mu , t o l l , nmax )

% DATO UN VALORE mu , SI CALCOLA L ’AUTOVALORE ” lambda mu ” PIU ’ VICINO A mu .

% INPUT :
% A : MATRICE DI CUI VOGLIAMO CALCOLARE L ’AUTOVALORE ” lambda mu ” .
% z0 : VETTORE INIZIALE (NON NULLO ) .
% mu : VALORE DI CUI VOGLIAMO CALCOLARE L ’AUTOVALORE PIU ’ VICINO .
% t o l l : TOLLERANZA.
% nmax : NUMERO MASSIMO DI ITERAZIONI .
%
% OUTPUT:
% lambda : VETTORE DELLE APPROSSIMAZIONI DELL’AUTOVALORE DI MINIMO MODULO.
% x : AUTOVETTORE RELATIVO ALL’AUTOVALORE DI MINIMO MODULO.
% n i t e r : NUMERO DI ITERAZIONI .
% e r r : VETTORE DEI RESIDUI PESATI RELATIVI A ” lambda ” .
%
% TRATTO DA QUARTERONI−SALERI , ”MATEMATICA NUMERICA” , p . 1 8 4 .
%

n=max ( s i z e (A ) ) ; M=A−mu∗ eye ( n ) ; [ L , U, P ]= l u (M) ;
q=z0 / norm ( z0 ) ; q2=q ’ ; e r r = [ ] ; lambda = [ ] ;
r e s = t o l l +1 ; n i t e r =0 ;
w h i l e ( r e s >= t o l l & n i t e r <= nmax )
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n i t e r = n i t e r +1 ; b=P∗q ; y=L\b ; z=U\y ;
q=z / norm ( z ) ; z=A∗q ; lam=q ’∗ z ;
b=q2 ’ ; y=U’\ b ; w=L’\ y ;
q2 =(P ’∗w) ’ ; q2=q2 / norm ( q2 ) ; c o s t h e t a = abs ( q2∗q ) ;
i f ( c o s t h e t a > 5e−2)

r e s =norm ( z−lam∗q ) / c o s t h e t a ; e r r =[ e r r ; r e s ] ; lambda =[ lambda ; lam ] ;
e l s e

d i s p (’\n \t [ATTENZIONE]: AUTOVALORE MULTIPLO’ ) ; b r e a k ;
end
x=q ;

end

Forniamo ora alcune spiegazioni del codice in invpower.

1. Per risolvere il sistema lineare in 4.5, si effettua una fattorizzazione PM = LU
della matrice M = A− µI;

2. All’interno del ciclo while, nella prima riga si calcola zk, mentre nella successiva un
suo versore qk, e σk è immagazzinato in lam;

3. Similmente al metodo diretto si effettua il prodotto scalare di un’autovalore sinistro
con uno destro.

7.6. Esempio 1. Applichiamo il metodo delle potenze inverse per il calcolo dell’auto-
valore più piccolo in modulo della matrice

A =

 −15.5 7.5 1.5
−51 25 3
−25.5 7.5 11.5


=

 1 2 3
2 5 6
7 9 3

 ·
 10 0 0

0 10 0
0 0 1

 ·
 1 2 3

2 5 6
7 9 3

−1 (7.2)

Come visto la matriceA è quindi diagonalizzabile, ha autovalori 10, 10, 1 e relativi autovettori
è (1, 2, 7), (2, 5, 9), (3, 6, 3) formanti una base di R3. Quale vettore iniziale del metodo delle
potenze consideriamo

z0 = (1, 1, 1) = (7/6) · (1, 2, 7)− 1 · (2, 5, 9) + (11/18) · (3, 6, 3)

e quindi il metodo delle potenze inverse applicato ad A, e avente quale punto iniziale z0 può
essere utilizzato per il calcolo dell’autovalore di minimo modulo di A.

>> z0 = [ 1 ; 1 ; 1 ] ; mu=0; t o l l =10ˆ (−8) ; nmax =10;
>> A=[−15.5 7 . 5 1 . 5 ; −51 25 3 ; −25.5 7 . 5 1 1 . 5 ]
A =
−15.50000000000000 7.50000000000000 1.50000000000000
−51.00000000000000 25.00000000000000 3.00000000000000
−25.50000000000000 7.50000000000000 11.50000000000000

>> [ lambda , x , n i t e r , e r r ]= invpower (A, z0 , mu , t o l l , nmax )
lambda =

0.39016115351993
0.94237563941268
0.99426922936854
0.99942723776656
0.99994272692315
0.99999427272378
0.99999942727270
0.99999994272728
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FIGURA 7.1. Grafico che illustra la convergenza lineare del metodo delle potenze inverse nell’esempio 1.

0.99999999427273
x =

0.40824829053809
0.81649658085350
0.40824829053809

n i t e r =
9

e r r =
0.81535216507377
0.08358101289062
0.00838126258396
0.00083836078891
0.00008383842712
0.00000838386620
0.00000083838685
0.00000008383868
0.00000000838387

>>

La convergenza è lineare (come si intuisce dalle approssimazioni contenute nel vettore lambda).
Per vederlo, dalla shell di Matlab/Octave calcoliamo l’errore assoluto/relativo relativo

all’autovalore 1:

>> s=1−lambda
s =

0.60983884648007
0.05762436058732
0.00573077063146
0.00057276223344
0.00005727307685
0.00000572727622
0.00000057272730
0.00000005727272
0.00000000572727

>> s e m i lo g y ( 1 : l e n g t h ( s ) , s )

generando il grafico in scala semi-logaritmica in figura che evidentemente sottolinea la con-
vergenza lineare.

7.7. Il metodo QR. Una versione di base del metodo QR è la seguente. Si salvi il
files houshess.m che implementa la trasformazione per similitudine di A in una matrice di
Hessenberg
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f u n c t i o n [H,Q]= h o u s h e s s (A)

% REDUCTION OF A MATRIX TO A SIMILAR HESSENBERG ONE.
% SEE QUARTERONI, SACCO, SALERI P . 1 9 2 .

n=max ( s i z e (A ) ) ; Q=eye ( n ) ; H=A;

f o r k = 1 : ( n−2)
[ v , b e t a ]= vhouse (H( k +1: n , k ) ) ; I =eye ( k ) ; N= z e r o s ( k , n−k ) ;
m= l e n g t h ( v ) ; R=eye (m)− b e t a ∗v∗v ’ ; H( k +1: n , k : n )=R∗H( k +1: n , k : n ) ;
H( 1 : n , k +1: n )=H( 1 : n , k +1: n )∗R ; P=[ I ,N; N’ ,R ] ; Q=Q∗P ;

end

ove vhouse.m è definito da

f u n c t i o n [ v , b e t a ]= vhouse ( x )

% BUILDING HOUSEHOLDER VECTOR.
% SEE QUARTERONI, SACCO, SALERI P . 1 9 7 .

n= l e n g t h ( x ) ; x=x / norm ( x ) ; s=x ( 2 : n ) ’∗ x ( 2 : n ) ; v = [ 1 ; x ( 2 : n ) ] ;
i f ( s ==0)

b e t a =0;
e l s e

mu= s q r t ( x ( 1 ) ˆ 2 + s ) ;
i f ( x ( 1 ) <= 0)

v ( 1 ) = x(1)−mu ;
e l s e

v(1)=− s / ( x ( 1 ) +mu ) ;
end
b e t a =2∗v ( 1 ) ˆ 2 / ( s+v ( 1 ) ˆ 2 ) ;
v=v / v ( 1 ) ;

end

quindi QRbasicmethod.m che calcola la matrice triangolare T relativa a QR:

f u n c t i o n [ T , h i s t ]= QRbasicmethod ( T i n p u t , max i t )

% QR METHOD FOR A SYMMETRIC TRIDIAGONAL MATRIX ” T i n p u t ” .

T= T i n p u t ;
h i s t = s o r t ( d i a g ( T ) ) ;

f o r i n d e x =1: max i t
[Q, R]= qr ( T ) ;
T=R∗Q; % NEW SIMILAR MATRIX .
h i s t =[ h i s t s o r t ( d i a g ( T ) ) ] ; % IT STORES THE DIAGONAL ELEMENTS

% OF THE ” i n d e x ” ITERATION .
end

8. Esercizio. Data la matrice di Hilbert di ordine 5, ottenibile in Matlab col comando
hilb(5) si calcolino col metodo delle potenze i suoi minimi e massimi autovalori in mo-
dulo. Da questi si calcoli il condizionamento della matrice in norma 2 e lo si confronti con
cond(hilb(5),2). Eseguire lo stesso esercizio utilizzando il metodo QR.

9. Esercizi facoltativi.

9.1. Facoltativo. Sugli autovalori della matrice di Poisson. In questa sezione deside-
riamo calcolare gli autovalori della matrice (simmetrica e a banda) di Poisson
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A =


B −I 0 . . . 0
−I B −I . . . 0
0 −I B . . . . . .
0 . . . . . . . . . −I
0 0 . . . −I B


con

B =


4 −1 0 . . . 0
−1 4 −1 . . . 0
0 −1 4 . . . . . .
0 . . . . . . . . . −1
0 0 . . . −1 4

 .

che si ottiene dal comando makefish. Più precisamente in demoQR.m scriviamo il seguen-
te codice per il calcolo degli autovalori della matrice di Poisson makefish(2), mostrando
come la matrice di partenza A viene trasformata in una matrice di Hessenberg H da cui si
calcola la matrice T triangolare superiore prodotta dalle iterazioni di QR:

f o r m a t s h o r t

max i t =100;
s i z =2;

A = m a k e f i s h ( s i z ) ;
e i g s = e i g (A ) ;

[H,Q]= h o u s h e s s (A ) ;

[ T , h i s t ]= QRbasicmethod (H, max i t ) ;

A
H
T
e i g (A)

Otteniamo come risultato

>> demoQR
A =

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4

H =

4 .0000 1 .4142 0 .0000 −0.0000
1 .4142 4 .0000 1 .4142 −0.0000
−0.0000 1 .4142 4 .0000 −0.0000

0 −0.0000 −0.0000 4 .0000

T =

6 .0000 0 .0000 −0.0000 −0.0000
0 .0000 4 .0000 0 .0000 −0.0000
−0.0000 −0.0000 4 .0000 0 .0000
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0 −0.0000 0 .0000 2 .0000

ans =

2 .0000
4 .0000
4 .0000
6 .0000

>>

In cui si vede che gli autovalori, come affermato dalla teoria, sono le componenti diagonali
della matrice T .

Vogliamo ora applicare il metodo delle potenze e delle potenze inverse per il calcolo di
alcuni autovalori di una matrice di Poisson (ottenuta come makefish(5)) i cui blocchi
sono matrici 5× 5.
Salviamo nel file demoautovalori1.m il seguente codice Matlab/Octave:

s i z =5;
A = m a k e f i s h ( s i z ) ;
e i g s = e i g (A ) ;
a b s e i g s = abs ( e i g s ) ;
m i n e i g =min ( abs ( e i g s ) ) ;
max eig =max ( abs ( e i g s ) ) ;
mu=0;

x0= ones ( s i z e (A, 1 ) , 1 ) ; nmax =50; t o l l =10ˆ(−11) ;

% METODO DELLE POTENZE .
[ lambda1 , x1 , n i t e r , h i s t d p ]= powerm (A, x0 , t o l l , nmax ) ;
lambdamax=lambda1 ( l e n g t h ( lambda1 ) ) ;
f p r i n t f (’\n \t [MAGGIOR AUTOVALORE (IN MODULO)]’ ) ;
f p r i n t f (’\n \t [CALCOLATO]: %5.15f [ESATTO]: %5.15f’ , lambdamax , max eig ) ;
r e s =norm (A∗x1−lambdamax∗x1 ) ;
f p r i n t f (’\n \t [ABS.ERR.]: %2.2e [RES]: %2.2e’ ,
abs ( lambdamax−max eig ) , r e s ) ;

% METODO DELLE POTENZE INVERSE .
[ lambda , x , n i t e r , h i s t i p ]= invpower (A, x0 , mu , t o l l , nmax ) ;
lambdamin=lambda ( l e n g t h ( lambda ) ) ;
f p r i n t f (’\n \n \t [MINOR AUTOVALORE (IN MODULO) ]’ ) ;
f p r i n t f (’\n \t [CALCOLATO]: %5.15f [ESATTO]: %5.15f’ , lambdamin , m i n e i g ) ;
r e s =norm (A∗x−lambdamin∗x ) ;
f p r i n t f (’\n \t [ABS.ERR.]: %2.2e [RES]: %2.2e’ ,
abs ( lambdamin−m i n e i g ) , r e s ) ;

% METODO DELLE POTENZE INVERSE PER ”MU” NON NULLO.
mu= 5 . 9 ;
[ minval , min index ]= min ( abs ( e i g s−mu ) ) ;
minmu eig= e i g s ( min index ) ;
[ lambdamu , x , n i t e r , h i s t i p m u ]= invpower (A, x0 , mu , t o l l , nmax ) ;
lambdamumin=lambdamu ( l e n g t h ( lambdamu ) ) ;
f p r i n t f (’\n \n \t [MINOR AUTOVALORE (IN MODULO) ]’ ) ;
f p r i n t f (’\n \t [CALCOLATO]: %5.15f [ESATTO]:
%5.15f’ , lambdamumin , minmu eig ) ;
r e s =norm (A∗x−lambdamumin∗x ) ;
f p r i n t f (’\n \t [MU]: %5.5f [ABS.ERR.]: %2.2e [RES]:
%2.2e’ ,mu , abs ( lambdamumin−minmu eig ) , r e s ) ;

% METODO DELLE POTENZE INVERSE PER ”MU” NON NULLO.
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FIGURA 9.1. Grafico che illustra il residuo per iterazione del metodo delle potenze diretto e nelle versioni di
Wielandt.

mu2 = 2 . 8 ;
[ minval , min index ]= min ( abs ( e i g s−mu2 ) ) ;
minmu2 eig= e i g s ( min index ) ;
[ lambdamu2 , x , n i t e r , h i s t i p m u 2 ]= invpower (A, x0 , mu2 , t o l l , nmax ) ;
lambdamu2min=lambdamu2 ( l e n g t h ( lambdamu2 ) ) ;
f p r i n t f (’\n \n \t [MINOR AUTOVALORE (IN MODULO) ]’ ) ;
f p r i n t f (’\n \t [CALCOLATO]: %5.15f [ESATTO]:
%5.15f’ , lambdamu2min , minmu2 eig ) ;
r e s =norm (A∗x−lambdamu2min∗x ) ;
f p r i n t f (’\n \t [MU]: %5.5f [ABS.ERR.]: %2.2e [RES]:
%2.2e’ ,mu2 , abs ( lambdamu2min−minmu2 eig ) , r e s ) ;

ho ld o f f ;
s e m i lo g y ( 1 : l e n g t h ( h i s t d p ) , h i s t d p ,’k-*’ ) ; ho ld on ;
s e m i lo g y ( 1 : l e n g t h ( h i s t i p ) , h i s t i p ,’b-o’ ) ; ho ld on ;
s e m i lo g y ( 1 : l e n g t h ( h i s t i p m u ) , h i s t i p m u ,’m-d’ ) ; ho ld on ;
s e m i lo g y ( 1 : l e n g t h ( h i s t i p m u 2 ) , h i s t i p m u 2 ,’r-v’ ) ;

% l e g e n d ( ’ DIR ’ , ’ INV ’ , ’MU1’ , ’MU2’ ) ;

La demo effettua quanto segue.

1. Definita la matrice A, i suoi autovalori vengono calcolati con eig, cosı̀ da poter
vedere il comportamento dei vari metodi.

2. Successivamente testiamo il metodo delle potenze per il calcolo dell’autovalore di
massimo modulo.

3. In seguito calcoliamo l’autovalore di minimo modulo e quelli più vicini a µ = 5.9 e
µ = 2.8.

4. Alla fine plottiamo in scala semilogaritmica, iterazione per iterazione, il residuo
(pesato).

5. La parte relativa a

% l e g e n d ( ’ DIR ’ , ’ INV ’ , ’MU1’ , ’MU2’ ) ;

è commentata, in quanto il comando legend non è implementato nelle vecchie
versioni di Octave. Per usare la legenda, basta togliere il commento.

Lanciato il programma demoautovalori1, otteniamo
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>> d e m o a u t o v a l o r i 1

[MAGGIOR AUTOVALORE ( IN MODULO) ]
[CALCOLATO ] : 7 .464101615040614 [ESATTO ] : 7 .464101615137755
[ABS . ERR . ] : 9 . 7 1 e−011 [RES ] : 1 . 3 0 e−005

[MINOR AUTOVALORE ( IN MODULO) ]
[CALCOLATO ] : 0 .535898384862246 [ESATTO ] : 0 .535898384862247
[ABS . ERR . ] : 1 . 6 7 e−015 [RES ] : 3 . 4 6 e−012

[MINOR AUTOVALORE ( IN MODULO) ]
[CALCOLATO ] : 5 .732050807568878 [ESATTO ] : 6 .000000000000000
[MU] : 5 .90000 [ABS . ERR . ] : 2 . 6 8 e−001 [RES ] : 1 . 9 6 e−012

[MINOR AUTOVALORE ( IN MODULO) ]
[CALCOLATO ] : 2 .999999999999130 [ESATTO ] : 3 .000000000000000
[MU] : 2 .80000 [ABS . ERR . ] : 8 . 7 1 e−013 [RES ] : 7 . 9 8 e−007

>>

Come errore assoluto abbiamo calcolato ea := |λ−λc| dove λ è l’autovalore esatto mentre λc
è quello calcolato. Quindi abbiamo calcolato la norma 2 del residuo r2 := ‖Axc−λcxc‖ dove
xc e l’autovettore calcolato dal metodo delle potenze (diretto o inverso) relativo all’autovalore
λ ≈ λc.

Osserviamo che può esserci molta differenza tra ea e r2. Nel metodo delle potenze dirette,
e nel calcolo dell’autovalore più vicino a µ = 2.8 si ha infatti ea � r2, mentre nel calco-
lo dell’autovalore più vicino a µ = 5.9 accade il contrario. In quest’ultimo caso il metodo
prima si avvicina all’autovalore 6 e poi diverge verso l’altro autovalore che vale approssima-
tivamente 5.732050807568876e+ 00. Quindi il residuo è giusto sia piccolo, ma non si ha la
convergenza verso l’autovalore sperato.

9.2. Facoltativo. Calcolo degli zeri di un polinomio, via autovalori della matrice
compagna. Si può dimostrare (cf. [32]) che gli zeri del polinomio monico di grado n

p(t) = c0 + c1t+ · · ·+ cn−1t
n−1 + tn

sono gli autovalori della matrice compagna (o equivalentemente della sua trasposta visto che
eig(A) = eig(AT ))

C =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

... . . .
...

...
0 0 . . . 1 −cn−1

 .

Sfruttando il comando eig, e osservando che

>> A=[1 2 ; 3 4 ]

A =

1 2
3 4

>> B=[5 6 ; 7 8 ]

B =
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5 6
7 8

>> C=[A B]

C =

1 2 5 6
3 4 7 8

>> D=[A; B]

D =

1 2
3 4
5 6
7 8

>>

scrivere un codice Matlab che risolva un’equazione algebrica calcolando gli autovalori della
matrice compagna associata. Effettuare quindi un test su un polinomio di cui si conoscono gli
zeri e valutare la bontà del proprio codice. Di seguito si calcolino gli zeri di modulo massimo
e minimo usando il metodo delle potenze e la sua variante inversa.

9.3. Facoltativo: altri esempi ed esercizi. Di seguito citiamo alcuni esercizi ed esempi.

1. Lanciare il codice demoQR relativamente alla matrice definita da makefish(3)
(e non come scritto nel file, alla matrice ottenuta con il comando makefish(2)).
A tal proposito modificare la variabile siz.

2. Calcolare con il metodo QR gli autovalori della matrice di Hilbert di ordine 5 (ri-
cordare il comando eig(hilb(5))) e confrontarli con quelli prodotti dal meto-
do QR. Applicare il metodo delle potenze per il calcolo dell’autovalore di modulo
massimo e il metodo di Wielandt per quelle di modulo minimo.

3. Applicare il metodo QR per il calcolo degli autovalori di

A =

 0 0 2
1 0 1
0 1 1


E’ a blocchi la matrice generata dal metodo QR? E se cosı́ non fosse come ovviare al
problema? (cf. [7], p. 393). Suggerimento: ricordarsi come calcolare gli autovalori
di una matrice di ordine 2 via equazioni di secondo grado.

4. Applicare il metodo QR per il calcolo degli autovalori di

A =


3 17 −37 18 40
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


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E’ la matrice generata dal metodo QR a blocchi? E se cosı́ non fosse come ovviare
al problema? (cf. [14], p. 195).

5. Applicare il metodo delle potenze per il calcolo dell’autovalore di massimo modulo
di

A(α) =


α 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1


Confrontare i risultati ottenuti con quelli di eig(A) per α = 30,−30 plottando il
grafico dell’errore tra l’approssimazione della soluzione fornita iterazione per ite-
razione dal metodo delle potenze con quella di max(abs(eig(A))) (cf. [15],
p.133).

6. Si dica se è possibile applicare (sperimentarlo!) il metodo delle potenze per il calcolo
dell’autovalore di massimo modulo di

A =


1/3 2/3 2 3
1 0 −1 2
0 0 −5/3 −2/3
0 0 1 0


Dare una spiegazione di tale fenomeno (cf. [15], p. 141, esercizio 6.5).

10. Online. Sul calcolo degli autovalori di una matrice è possibile trovare online e
gratuitamente del software per Matlab.

1. Dal sito

h t t p : / / mox . p o l i m i . i t / ˜ f a u s a l / ma t l ab . h tml

si possono scaricare i files eigpower.m e invshift.m che implementano i
metodi delle potenze. e qrbasis.m una versione di base del metodo QR.

2. Vario software di algebra lineare è presente al sito

h t t p : / / www. math . sc . edu / ˜ meade / math706 /MATLAB−f i l e s / i n d e x . h tml

in particolare le versioni con shift di QR citate poco sopra.

3. Estremamente interessante la homepage di Y. Saad

h t t p : / / www−u s e r s . c s . umn . edu / ˜ s aad / books . h tml

in cui si trovano gratuitamente manuali sul calcolo di autovalori e risoluzione di
sistemi lineari.
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