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I metodi di discesa

Una classica famiglia di metodi iterativi è quella dei metodi di
discesa. Sia A una matrice simmetrica definita positiva. Si osserva
che se x∗ è l’unica soluzione di Ax = b allora è pure il minimo del
funzionale

φ(x) =
1

2
xTAx − bT x , x ∈ Rn

Un generico metodo di discesa consiste nel generare una
successione

x (k+1) = x (k) + αkp
(k)

dove p(k) è una direzione fissata secondo qualche criterio. Lo
scopo ovviamente è che

φ(x (k+1)) < φ(x (k)),

e che il punto x∗, in cui si ha il minimo di φ, venga calcolato
rapidamente.
Il gradiente coniugato è un classico esempio di metodo di discesa.
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Il metodo del gradiente coniugato (1952).

Supponiamo di dover risolvere il sistema lineare Ax = b. Con il
termine residuo in x (k) si intende la quantità r (k) = b − Ax (k).
La succ. delle iterazioni del gradiente coniugato è quella propria
dei metodi di discesa,

x (k+1) = x (k) + αkp
(k), αk =

(r (k))T r (k)

(p(k))TAp(k)

dove p(0) = r (0) e

p(k) = r (k) + βkp
(k−1), βk =

(r (k))T r (k)

(r (k−1))T r (k−1)
.

Con questa scelta si prova che p(k) e p(k−1) sono A-coniugati.

(p(k))TAp(k−1) = 0.

Alvise Sommariva Metodi iterativi per la soluzione di sistemi lineari 3/ 7



Il metodo del gradiente coniugato: proprietà

Il metodo del gradiente coniugato ha molte proprietà particolari.
Ne citiamo alcune.

I Se A è una matrice simmetrica e definita positiva di ordine n,
si può dimostrare che il metodo è convergente e fornisce in
aritmetica esatta la soluzione del sistema Ax = b in al
massimo n iterazioni.

Questo teorema tradisce un po’ le attese, sia perchè in generale i
calcoli non sono compiuti in aritmetica esatta, sia perchè in molti
casi della modellistica matematica n risulta essere molto alto.
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Il metodo del gradiente coniugato: proprietà

Si può dimostrare che se A è simmetrica e definita positiva,

‖x‖A =
√
xTAx

e
ek = x∗ − x (k)

allora

‖ek‖A ≤

(√
K2(A)− 1√
K2(A) + 1

)2k

‖e0‖A.

Questo risultato stabilisce che la convergenza del gradiente
coniugato è lenta qualora si abbiano alti numeri di condizionamento

K2(A) := ‖A‖2‖A−1‖2 =
maxi |λi |
minj |λj |

(ove al solito {λi} sono gli autovalori di A).
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Gradiente coniugato in Matlab

Per quanto riguarda il codice del Gradiente Coniugato, un esempio
è il file cg.m tratto da Netlib:

f u n c t i o n [ x , e r r o r , iter , f l a g ]=cg (A , x , b , M , max_it , tol )
f l a g = 0 ; iter = 0 ; bnrm2 = norm ( b ) ;
i f ( bnrm2 == 0.0 ) , bnrm2 = 1 . 0 ; end
r = b − A∗x ; e r r o r = norm ( r ) / bnrm2 ;
i f ( e r r o r < tol ) r e tu rn , end
f o r iter = 1 : max_it

z = M \ r ; rho = (r ’∗ z ) ;
i f ( iter > 1 )

beta = rho / rho_1 ; p = z + beta ∗p ;
e l s e

p = z ;
end
q = A∗p ; alpha = rho / (p ’∗ q ) ; x = x + alpha ∗ p ;
r = r − alpha∗q ; e r r o r = norm ( r ) / bnrm2 ;
i f ( e r r o r <= tol ) , break , end
rho_1 = rho ;

end
i f ( e r r o r > tol ) f l a g = 1 ; end
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Esercizio in Matlab II

I Si calcoli la matrice di Poisson P20 di ordine 20 aiutandosi con

>> he l p g a l l e r y

I Sia b il vettore composto di componenti uguali a 1, avente lo
stesso numero di righe di P20. Si risolva col gradiente
coniugato il problema P20x = b, con tolleranza di 10(−12),
partendo da x0 = [0 . . . 0]. Quante iterazioni servono? E
migliore questo risultato di quello ottenuto con Jacobi e
Gauss-Seidel?
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