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Metodi iterativi e diretti

Supponiamo che siano A ∈ Rn×n (matrice non singolare), b ∈ Rn

(vettore colonna) e di dover risolvere il problema Ax = b avente
sol. unica x∗.

A tal proposito si può utilizzare la fatt. LU con pivoting. Il costo
computazionale è in generale di O(n3/3) operazioni moltiplicative.
Questo diventa proibitivo se n è particolarmente elevato.

L’idea dei metodi iterativi è quello di ottenere una successione
di vettori x (k) → x∗ cosicchè per k̄ � n sia x (k̄) ≈ x∗.

In generale, la soluzione non è ottenuta esattamente come nei
metodi diretti in un numero finito di operazioni (in aritmetica
esatta), ma quale limite, accontentandosi di poche iterazioni
ognuna dal costo quadratico. Quindi il costo totale sarà di ordine
O(k̄ · n2).
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Metodi iterativi stazionari

Supponiamo che la matrice non singolare A ∈ Rn×n sia tale che

A = M − N, con M non singolare.

Allora Mx − Nx = Ax = b e quindi Mx = Nx + b. Moltiplicando
ambo i membri per M−1 e posto φ(x) = M−1Nx + b abbiamo
x = M−1Nx + M−1b = φ(x). Viene quindi naturale utilizzare la
succ. del metodo di punto fisso

x (k+1) = φ(x (k)) = M−1Nx (k) + M−1b.

La matrice P = M−1N si dice di iterazione e non dipende, come
pure b dall’indice di iterazione k. Per questo motivo tali metodi si
chiamano iterativi stazionari.
Quale utile notazione, sia inoltre A = D − E − F con D la matrice
diagonale estratta da A, E , F rispettivamente triangolari inferiore e
superiore.
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Esempio A, E, F

>> A=[1 2 3 4 ; 5 6 7 2 ; 8 9 1 2 ; 3 4 5 1 ]
A =

1 2 3 4
5 6 7 2
8 9 1 2
3 4 5 1

>> E=−( t r i l ( A )−d i a g ( d i a g ( A ) ) )
E =

0 0 0 0
−5 0 0 0
−8 −9 0 0
−3 −4 −5 0

>> F=−( t r i u ( A )−d i a g ( d i a g ( A ) ) )
F =

0 −2 −3 −4
0 0 −7 −2
0 0 0 −2
0 0 0 0

>> % A=d i a g ( d i a g (A) )−E−F .
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Metodo di Jacobi

Nel caso del metodo di Jacobi si ha

M = D, N = E + F (1)

e quindi

P = M−1N = D−1(E + F ) = D−1(D − D + E + F )

= D−1(D − A) = I − D−1A (2)
Si osservi che se D è non singolare allora il metodo di Jacobi,
almeno in questa versione di base, non può essere utilizzato visto
che in (5) non ha senso la scrittura D−1.
Qualora sia aii 6= 0 per ogni i = 1, . . . , n, il metodo di Jacobi può
essere descritto come metodo delle sostituzioni simultanee

x
(k+1)
i = (bi −

i−1∑
j=1

aij x
(k)
j −

n∑
j=i+1

aij x
(k)
j )/aii , i = 1, . . . , n. (3)
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Metodo di Gauss-Seidel

Il metodo di Gauss-Seidel è definito quale metodo staz. in cui

M = D − E ,N = F (4)

e quindi
P = M−1N = (D − E )−1F (5)

Similmente al metodo di Jacobi, possiamo riscrivere più
semplicemente anche Gauss-Seidel come

x
(k+1)
i =

bi −
i−1∑
j=1

aij x
(k+1)
j −

n∑
j=i+1

aij x
(k)
j

 /aii . (6)

Da (6) si capisce perchè tale metodo è noto anche come metodo
delle sostituzioni successive.
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SOR

La versione di Gauss-Seidel con la scelta del parametro ω è nota in
letteratura come successive over relaxation (SOR)

x (k+1) =

(
D

ω
− E

)−1(( 1

ω
− 1

)
D + F

)
x (k) +

(
D

ω
− E

)−1

b.

(7)

dove D, E , F sono al solito tre matrici tali cha A = D − E − F
con D la matrice diagonale estratta da A, E , F rispettivamente
triangolari inferiore e superiore.
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SOR

Il metodo SOR eriva dallo descrivere esplicitamente una iter. di
Gauss-Seidel

x
(k+1)
i =

1

aii

bi −
i−1∑
j=1

aij x
(k+1)
j −

n∑
j=i+1

aij x
(k)
j


e sostituirla con la combinazione convessa

x
(k+1)
i = ωx

(k+1)
i + (1− ω)x (k).

cioè

x
(k+1)
i =

ω

aii

bi −
i−1∑
j=1

aij x
(k+1)
j −

n∑
j=i+1

aij x
(k)
j

+ (1− ω)x (k).

Gauss-Seidel è SOR per ω = 1.
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SOR

Notiamo che le iterazioni di SOR verificano l’uguaglianza

x (k+1) = M−1Nxk + M−1b

con

M =
D

ω
− E , N =

(
1

ω
− 1

)
D + F

ed è

M − N =

(
D

ω
− E

)
−
((

1

ω
− 1

)
D + F

)
= −E + D − F = A,

per cui SOR è un metodo iterativo stazionario.
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I metodi di Richardson stazionari

Definizione

Fissato α, un metodo di Richardson stazionario, con matrice di
precondizionamento P, verifica

P(x (k+1) − x (k)) = αr (k). (8)

dove
r (k) = b − Ax (k) (9)

è il residuo alla k-sima iterazione.
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I metodi di Richardson non stazionari

Definizione

Fissati αk dipendenti dalla iterazione k, un metodo di Richardson
non stazionario, con matrice di precondizionamento P, verifica

P(x (k+1) − x (k)) = αk r (k). (10)

Si osservi che se αk = α per ogni k , allora il metodo di Richardson
non stazionario diventa stazionario.
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I metodi di Richardson

I metodi di Jacobi e di Gauss-Seidel, SOR, sono metodi iterativi
del tipo

Mx (k+1) = Nx (k) + b, (11)

per opportune scelte delle matrici M (che dev’essere invertibile), N
tali che

A = M − N. (12)

Essendo r (k) = b − Ax (k),

M(x (k+1) − x (k)) = Nx (k) + b −Mx (k) = b − Ax (k) = r (k). (13)
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I metodi di Richardson

Ne consegue che i metodi di Jacobi e di Gauss-Seidel, SOR,
verificano

M(x (k+1) − x (k)) = r (k) (14)

In altri termini sono dei metodi di Richardson sono metodi di
Richardson stazionari, con α = 1 e matrice di precondizionamento
P = M.

Per quanto riguarda i metodi di Richardson precondizionati e non
stazionari, un classico esempio è il metodo del gradiente classico
che vedremo in seguito.
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Norma di matrici

Sia ρ(A) il massimo degli autovalori in modulo della matrice A (il
cosidetto raggio spettrale).

Sia ‖ · ‖ : Rn → R+ una norma vettoriale. Definiamo norma
naturale (in alcuni testi norma indotta) di una matrice A ∈ Rn×n

la quantità

‖A‖ := sup
x∈Rn,x 6=0

‖Ax‖
‖x‖

.

Si nota subito che questa definizione coincide con quella di norma
di un operatore lineare e continuo in spazi normati.
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Norma di matrici

Vediamo alcuni esempi (cf. [4, p.24]). Sia x un arbitrario elemento
di Rn, A ∈ Rn×n.

I Si definisce ‖x‖1 :=
∑n

k=1 |xk | e si dimostra che la norma
naturale corrispondente è (cf. [4, p.26])

‖A‖1 = max
j

n∑
i=1

|ai ,j |.

I Si definisce ‖x‖∞ := maxk |xk | e si dimostra che la norma
naturale corrispondente è (cf. [4, p.26])

‖A‖∞ = max
i

n∑
j=1

|ai ,j |.

I Si definisce ‖x‖2 :=
(∑n

k=1 |xk |2
)1/2

e si dimostra che la
norma naturale corrispondente è (cf. [4, p.27])

‖A‖2 = ρ1/2(AT A).

Per quanto riguarda un esempio chiarificatore in Matlab/Octave
>> A=[1 5 ; 7 1 3 ]
A =

1 5
7 13

>> norm (A , 1 )
ans =

18
>> norm (A , inf )
ans =

20
>> norm (A , 2 )
ans =

15.5563
>> e i g ( A∗A ’ )
ans =

2
242

>> s q r t ( 2 4 2 )
ans =

15.5563
>> raggio_spettrale_A=max ( abs ( e i g ( A ) ) )
raggio_spettrale_A =

15.4261
>>
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Norma di matrici

Si dimostra che (cf. [4, p.28])

Teorema

Per ogni norma naturale ‖ · ‖ e ogni matrice quadrata A si ha
ρ(A) ≤ ‖A‖. Inoltre per ogni matrice A di ordine n e per ogni
ε > 0 esiste una norma naturale ‖ · ‖ tale che

ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.

e inoltre (cf. [4, p.29], [3, p.232])

Teorema

Fissata una norma naturale ‖ · ‖, i seguenti asserti sono equivalenti

1. Am → 0;

2. ‖Am‖ → 0;

3. ρ(A) < 1.
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Sul raggio spettrale

Ricordiamo che il raggio spettrale

ρ(A) = max
k

(|λk |)

(con {λk}k=1,...,n autovalori della matrice A ∈ Rn×n) non è una
norma.
Infatti la matrice (

0 1
0 0

)
ha raggio spettrale nullo, ma non è la matrice nulla. Osserviamo
che dagli esempi il raggio spettrale di una matrice A non coincide
in generale con la norma 1, 2, ∞, ma che a volte ρ(A) = ‖A‖2

come nel caso di una matrice diagonale A (essendo gli autovalori di
una matrice diagonale, proprio i suoi elementi diagonali).
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Teorema di Hensel

Teorema

Se P è diagonalizzabile allora un metodo iterativo stazionario
consistente x (k+1) = Px (k) + c converge per ogni vettore iniziale
x0 se e solo se ρ(P) < 1.

Dimostrazione.

Consideriamo un metodo iterativo stazionario x (k+1) = Px (k) + c
in cui scelto x (0) si abbia

x∗ − x (0) =
n∑

s=1

csus

dove {uk}k è una base di autovettori di P avente autovalori {λk}k .
Questo accade se e solo se A è diagonalizzabile, cioè simile a una
matrice diagonale (cf. [3, p.57]).
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Teorema di Hensel

Dimostrazione.

Supponiamo |λs | < 1 per s = 1, . . . , n. Se il metodo è consistente,
cioè x∗ = Px∗ + c abbiamo x (k) − x∗ = P(x (k−1) − x∗) =
Pk (x0 − x∗) =

∑n
s=1 csPk us =

∑n
s=1 csλ

k
s us e quindi se |λk

s | < 1
per ogni s = 1, . . . , n e k = 1, 2, . . ., abbiamo

‖x (k) − x∗‖ = ‖
n∑

s=1

csλ
k
s us‖ ≤

n∑
s=1

|cs ||λk
s |‖us‖ → 0

mentre se per qualche k si ha |λk | ≥ 1 e ck 6= 0 allora ‖x (k) − x∗‖
non converge a 0 al crescere di k. Infatti, se λl ≥ 1 è l’autovalore
di massimo modulo, abbiamo che la componente clλ

l
s relativa

all’autovettore us non tende a 0 e quindi x (k) − x∗ non tende a 0.
Di conseguenza non è vero che il metodo è convergente per
qualsiasi scelta del vettore x (0).
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Teorema di Hensel

Dimostriamo ora una sua generalizzazione, scoperta da Hensel nel
1926.

Teorema

[Hensel] Un metodo iterativo stazionario consistente
x (k+1) = Px (k) + c converge per ogni vettore iniziale x0 se e solo
se ρ(P) < 1.

Si noti che il teorema riguarda la convergenza per ogni vettore
iniziale x0 ed è quindi di convergenza globale. Inoltre non si
richiede che la matrice P sia diagonalizzabile.
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Teorema di Hensel

Dimostrazione.

La dimostrazione è tratta da [3, p.236].
⇐ Se ρ(P) < 1, allora x = Px + c ha una e una sola sol. x∗.
Infatti,

x = Px + c ⇔ (I − P)x = c

e la matrice I − P ha autovalori 1− λk con k = 1, . . . , n tali che

0 < |1− |λk |C|R ≤ |1− λk |C,

poichè |λk |C ≤ ρ(P) < 1 e quindi

det(I − P) =
n∏

k=1

(1− λk ) 6= 0,

per cui la matrice I − P è invertibile e il sistema (I − P)x = c ha
una e una sola soluzione x∗.
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Teorema di Hensel

Dimostrazione.

Sia e(k) = x (k) − x∗. Come stabilito dal Teorema 0.1, sia inoltre
una norma naturale ‖ · ‖ tale che

ρ(P) ≤ ‖P‖ = ρ(P) + (1− ρ(P))/2 < 1.

Essendo x (k+1) = Px (k) + c e x = Px + c, sottraendo membro a
membro le equazioni si ottiene

e(k+1) = Pe(k+1) = Pk e(0)

da cui essendo ‖ · ‖ una norma naturale

‖e(k+1)‖ = ‖Pe(k)‖ = ‖Pk e(0)‖ ≤ ‖Pk‖‖e(0)‖. (15)

Poichè il raggio spettrale è minore di 1 dal Teorema 0.2 abbiamo
che ‖Pk‖ → 0 da cui per (15) necessariamente ‖e(k+1)‖ → 0 e
quindi per le proprietà delle norme e(k+1) → 0 cioè x (k) → 0.
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Teorema di Hensel

Dimostrazione.

⇒ Supponiamo che la successione x (k+1) = Px (k) + c converga a
x∗ per qualsiasi x (0) ∈ Rn ma che sia ρ(P) ≥ 1. Sia λmax il
massimo autovalore in modulo di P e scegliamo x (0) tale che
e(0) = x (0) − x∗ sia autovettore di P relativamente all’autovalore
λmax. Essendo Pe(0) = λmaxe(0) e e(k+1) = Pk e(0) abbiamo che

e(k+1) = λk
maxe(0)

da cui, qualsiasi sia la norma ‖ · ‖, per ogni k = 1, 2, . . . si ha

‖e(k+1)‖ = |λk
max|C‖e(0)‖ ≥ ‖e(0)‖

il che comporta che la successione non è convergente (altrimenti
per qualche k sarebbe e(k) < e(0)).
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Velocità di convergenza

L’analisi che faremo in questa sezione non è rigorosamente
matematica, ciò nonostante permette di capire il legame tra il
raggio spettrale della matrice di iterazione P e la riduzione
dell’errore.

Si vede facilmente che se intendiamo calcolare x∗ tale che Ax∗ = b
con un metodo stazionario x (k+1) = Px (k) + c , posto
e(k) = x (k) − x∗ si ha, supposto il metodo stazionario sia
consistente, cioè x∗ = Px∗ + c

e(k) = x (k) − x∗

= (Px (k−1) + c)− (Px∗ + c)

= Pe(k−1) = . . . = Pk‖e(0)‖ (16)

e quindi
‖e(k)‖ ≤ ‖Pk‖‖e(0)‖, (17)
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Velocità di convergenza

Se e(k−1) 6= 0, la quantità ‖e(k)‖/‖e(k−1)‖ esprime la riduzione
dell’errore al k-simo passo e

σk =

(
‖e(k)‖
‖e(k−1)‖

. . .
‖e(1)‖
‖e(0)‖

) 1
k

la riduzione media per passo dell’errore relativo ai primi k passi (cf.
[3, p.239]).
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Velocità di convergenza

Si dimostra che

Teorema

Sia A ∈ Cn×n e ‖ · ‖ una norma naturale. Allora

lim
k
‖Ak‖

1
k = ρ(A)

Quindi per k sufficientemente grande si ha

‖Pk‖1/k ≈ ρ(P).

Sotto queste ipotesi, se ‖e(k+m)‖ ≈ ‖Pm‖‖e(k)‖ abbiamo

‖e(k+m)‖ ≈ ‖Pm‖|‖e(k)‖ ≈ ρm(P)‖e(k)‖ (18)
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Velocità di convergenza

per cui affinchè

‖e(k+m)‖/‖e(k)‖ ≈ ρm(P) ≈ ε

applicando il logaritmo naturale ad ambo i membri, si vede serve
sia,

m log (ρ(P)) ≈ log ε

e quindi

m ≈ log ε

log (ρ(P))
.
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Velocità di convergenza

Se
R(P) = − log(ρ(P))

è la cosidetta velocità di convergenza asintotica del metodo
iterativo relativo a P, si può cos̀ı stimare che il numero di iterazioni
m necessarie per ridurre l’errore di un fattore ε relativamente alla
k-sima iterazione, cioè affinchè

‖e(k+m)‖/‖e(k)‖ = ε.

Si vede facilmente che è circa

m ≈
⌈
− log(ε)

R(P)

⌉
.
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Velocità di convergenza

Conseguentemente, da

m ≈
⌈
− log(ε)

R(P)

⌉
e

R(P) = − log(ρ(P))

se P è la matrice d’iterazione di un metodo stazionario
convergente (e consistente), essendo ρ(P) < 1, minore è ρ(P)
necessariamente è maggiore R(P) e si può stimare il numero di
iterazioni per ridurre l’errore di un fattore. ε.

Si desidera quindi cercare metodi con ρ(P) più piccolo possibile.
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Alcuni teoremi di convergenza

Definizione

Una matrice A si dice tridiagonale se Ai ,j = 0 qualora |i − j | > 1.

Esempio: 
1 2 0 0 0
1 5 7 0 0
0 2 0 9 0
0 0 4 4 2
0 0 0 5 3


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Alcuni teoremi di convergenza

Teorema

Per matrici tridiagonali A = (ai ,j ) con componenti diagonali non
nulle, i metodi di Jacobi e Gauss-Seidel sono o entrambi
convergenti o divergenti e il tasso di convergenza del metodo di
Gauss-Seidel è il doppio di quello del metodo di Jacobi.

Il che vuol dire che asintoticamente sono necessarie metà iterazioni
del metodo di Gauss-Seidel per ottenere la stessa precisione del
metodo di Jacobi.
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Alcune definizioni

Definizione

La matrice A è a predominanza diagonale (per righe) se per ogni
i = 1, . . . , n risulta

|ai ,i | ≥
n∑

j=1,j 6=s

|ai ,j |

e per almeno un indice s si abbia

|as,s | >
n∑

j=1,j 6=s

|as,j |.

La matrice A è a predominanza diagonale per colonne se AT a
predominanza diagonale per righe.
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Alcune definizioni

Definizione

Se

|as,s | >
n∑

j=1,j 6=s

|as,j |, s = 1, . . . , n

allora la matrice A si dice a predominanza diagonale (per righe)
in senso stretto.

La matrice A è a predominanza diagonale per colonne in senso
stretto se AT a predominanza diagonale per righe in senso stretto.

Ad esempio la matrice

A =

 4 −4 0
−1 4 −1
0 −4 4


è a predominanza diagonale per righe (non stretta).
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Teoremi di convergenza

Teorema

Sia A una matrice quadrata a predominanza diagonale per righe in
senso stretto. Allora il metodo di Jacobi converge alla soluzione di
Ax = b, qualsiasi sia il punto x (0) iniziale.

Teorema

Sia A è a predominanza diagonale per righe in senso stretto. Allora
il metodo di Gauss-Seidel converge, qualsiasi sia il punto x (0)

iniziale.

Tali teoremi valgono anche se A è a predominanza diagonale per
colonne in senso stretto.
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Alcune definizioni

La matrice A è simmetrica se A = AT . Una matrice A è definita
positiva se ha tutti gli autovalori positivi. Ad esempio la matrice

A =

 4 −1 0
−1 4 −1
0 −1 4


è simmetrica e definita positiva:

>> A=[4 −1 0 ; −1 4 −1; 0 −1 4 ] ;
>> e i g ( A ) % AUTOVALORI DI A .
ans =

2.5858
4 .0000
5 .4142

>>
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Alcuni teoremi di convergenza

Ricordiamo che equivalentemente una matrice A è definita positiva
se

xT Ax > 0, per ogni x 6= 0.

Teorema

Sia A simmetrica con elementi diagonali positivi. Allora il metodo
di Gauss-Seidel converge se e solo se 0 < w < 2 e A è definita
positiva.

Più in generale,

Teorema

Sia A simmetrica con elementi diagonali positivi. Allora il metodo
SOR converge se e solo se 0 < w < 2 e A è definita positiva.

Per una dimostrazione si veda [6, p.215].
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Test di arresto

Consideriamo il sistema lineare Ax = b avente un’unica soluzione
x∗ e supponiamo di risolverlo numericamente con un metodo
iterativo stazionario del tipo

x (k+1) = Px (k) + c ,

che sia consistente cioè

x∗ = Px∗ + c .

Desideriamo introdurre un test di arresto che interrompa le
iterazioni, qualora una certa quantità relativa al sistema lineare
Ax = b e alle iterazioni eseguite, sia al di sotto di una tolleranza
ε > 0 fissata dall’utente.
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Test di arresto: criterio dello step

Posto ∆(k) := x (k+1) − x (k) e e(k) = x∗ − x (k), essendo

e(k) = x∗ − x (k) = (Px∗ + c)− (Px (k) + c)

= P(x∗ − x (k)) = Pe(k−1) (19)

abbiamo

‖e(k)‖2 = ‖x∗ − x (k)‖2 = ‖(x∗ − x (k+1)) + (x (k+1) − x (k))‖2

= ‖e(k+1) + ∆(k)‖2 = ‖Pe(k) + ∆(k)‖2

≤ ‖P‖2 · ‖e(k)‖2 + ‖∆(k)‖2 (20)

Alvise Sommariva Metodi iterativi per la soluzione di sistemi lineari 38/ 78



Test di arresto: criterio dello step

Fissata dall’utente una tolleranza tol, si desidera interrompere il
processo iterativo quando ‖x∗ − x (k)‖ ≤ tol.

Non disponendo di x∗, il criterio dello step, consiste
nell’interrompere il metodo iterativo alla k + 1-sima iterazione
qualora ‖x (k+1) − x (k)‖ ≤ tol.

Di seguito desideriamo vedere quando tale criterio risulti
attendibile cioè

|x (k+1) − x (k)| ≈ |x∗ − x (k)|

Se P è simmetrica, allora esistono una matrice ortogonale U, cioè
tale che UT = U−1, e una matrice diagonale a coefficienti reali Λ
per cui

P = UΛUT

ed essendo P e Λ simili hanno gli stessi autovalori {λk}k .
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Test di arresto: criterio dello step

Di conseguenza, se P è simmetrica

‖P‖2 =
√
ρ(PPT ) =

√
ρ(UΛUT (UΛUT )T )

=
√
ρ(UΛ2UT ) (21)

Essendo UΛ2UT simile a Λ2, UΛ2UT e Λ2 hanno gli stessi
autovalori uguali a {λ2

k}k e di conseguenza lo stesso raggio
spettrale, da cui

ρ(UΛ2UT ) = ρ(Λ2)

e quindi ricaviamo

‖P‖2 =
√
ρ(Λ2) =

√
max

k
|λ2

k |

=
√

(max
k
|λk |2) =

√
(max

k
|λk |)2

= max
k
|λk | = ρ(P) (22)
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Test di arresto: criterio dello step

Quindi da (20)

‖e(k)‖2 ≤ ‖P‖2 · ‖e(k)‖2 + ‖∆(k)‖2

= ρ(P) · ‖e(k)‖2 + ‖∆(k)‖2 (23)

e se ρ(P) < 1, cioè il metodo iterativo stazionario converge per
qualsiasi scelta del vettore iniziale, portando ρ(P) · ‖e(k)‖2 a primo
membro e dividendo per 1− ρ(P) deduciamo

‖x (k+1) − x (k)‖2 = ‖e(k)‖2 =
‖∆(k)‖2

1− ρ(P)
=
‖x∗ − x (k)‖2

1− ρ(P)

da cui se P è simmetrica allora il criterio dello step è affidabile se
ρ(P) è piccolo.
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Test di arresto: criterio del residuo

Si definisce residuo alla k-sima iterazione la quantità

r (k) := b − Ax (k)

ed essendo b = Ax∗ abbiamo

b − Ax (k) = Ax∗ − Ax (k) = A(x∗ − x (k)) = Ae(k)

da cui
r (k) = Ae(k).

Interromperemo il processo iterativo quando

r (k) ≤ tol
,

desiderando pure

‖x (k) − x∗‖
‖x∗‖

≤ tol
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Test di arresto: criterio del residuo

Osserviamo che

I essendo A invertibile e r (k) = Ae(k) ricaviamo e(k) = A−1r (k)

da cui
‖e(k)‖ = ‖A−1r (k)‖ ≤ ‖A−1‖‖r (k)‖;

I poichè b = Ax∗ abbiamo ‖b‖ ≤ ‖A‖‖x∗‖ e quindi

1

‖x∗‖
≤ ‖A‖
‖b‖

.
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Test di arresto: criterio del residuo

Di conseguenza, denotato con κ(A) = ‖A‖‖A−1‖ il numero di
condizionamento (necessariamente maggiore o uguale a 1), se
x∗ 6= 0 abbiamo

‖e(k)‖
‖x∗‖

≤ ‖A‖
‖b‖
‖e(k)‖ ≤ ‖A‖

‖b‖
· ‖A−1‖‖r (k)‖ ≤ κ(A)

‖r (k)‖
‖b‖

Quindi

‖x (k) − x∗‖
‖x∗‖

=
‖e(k)‖
‖x∗‖

≤ κ(A)
‖r (k)‖
‖b‖

≤ tol.

Il criterio d’arresto ‖r
(k)‖
‖b‖ ≤ tol è quindi molto conservativo quando

κ(A)� 1.
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I metodi di discesa

Sia A una matrice simmetrica definita positiva.

Si osserva che se x∗ è l’unica soluzione di Ax = b allora è pure il
minimo del funzionale dell’energia

φ(x) =
1

2
xT Ax − bT x , x ∈ Rn

in quanto
grad(φ(x)) = Ax − b = 0⇔ Ax = b.

Quindi invece di calcolare la soluzione del sistema lineare,
intendiamo calcolare il minimo del funzionale φ.
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I metodi di discesa

Un generico metodo di discesa consiste nel generare una
successione

x (k+1) = x (k) + αk p(k)

dove p(k) è una direzione fissata secondo qualche criterio. Lo
scopo ovviamente è che

φ(x (k+1)) < φ(x (k)),

e che il punto x∗, in cui si ha il minimo di φ, venga calcolato
rapidamente.
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I metodi di discesa

Il metodo del gradiente classico consiste nello scegliere αk e p(k)

cos̀ı da ottenere la massima riduzione del funzionale dell’energia a
partire dal punto x (k).

Differenziando

φ(x) =
1

2
xT Ax − bT x , x ∈ Rn

si vede che tale scelta coincide con lo scegliere

p(k) = r (k)

αk =
‖r (k)‖2

2

(r (k))T Ar (k)
. (24)

Con qualche facile conto si vede che è un metodo di Richardson
non stazionario con P = I e parametro αk definito da (24).
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Il metodo del gradiente coniugato (1952).

Supponiamo di dover risolvere il sistema lineare Ax = b. Con il
termine residuo in x (k) si intende la quantità r (k) = b − Ax (k).
La succ. delle iterazioni del gradiente coniugato è quella propria
dei metodi di discesa,

x (k+1) = x (k) + αk p(k), αk =
(r (k))T r (k)

(p(k))T Ap(k)

dove p(0) = r (0) e

p(k) = r (k) + βk p(k−1), βk =
(r (k))T r (k)

(r (k−1))T r (k−1)
.

Con questa scelta si prova che p(k) e p(k−1) sono A-coniugati.

(p(k))T Ap(k−1) = 0.
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Il metodo del gradiente coniugato: proprietà

Il metodo del gradiente coniugato ha molte proprietà particolari.
Ne citiamo alcune.

Teorema

Se A è una matrice simmetrica e definita positiva di ordine n,
allora il metodo del gradiente coniugato è convergente e fornisce in
aritmetica esatta la soluzione del sistema Ax = b in al massimo n
iterazioni.

Questo teorema tradisce un po’ le attese, sia perchè in generale i
calcoli non sono compiuti in aritmetica esatta, sia perchè in molti
casi della modellistica matematica n risulta essere molto alto.
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Il metodo del gradiente coniugato: proprietà

Definizione

Lo spazio
Kk = span(r (0),Ar (0), . . . ,Ak−1r (0))

per k ≥ 1 si dice spazio di Krylov.

Teorema

Sia
Kk = span(r (0),Ar (0), . . . ,Ak−1r (0))

per k ≥ 1. Allora la k-sima iterata dal metodo del gradiente
coniugato, minimizza il funzionale φ nell’insieme x (0) +Kk .

Per una dimostrazione si veda [7, p.12]. Si osservi che essendo la
k-sima iterazione del gradiente classico pure in x (0) +Kk , il
gradiente classico non minimizza in generale il funzionale φ in
x (0) +Kk .
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Il metodo del gradiente coniugato: proprietà

Si può dimostrare che se A è simmetrica e definita positiva,

‖x‖A =
√

xT Ax

e
ek = x∗ − x (k)

allora

‖ek‖A ≤

(√
K2(A)− 1√
K2(A) + 1

)2k

‖e0‖A.

Questo risultato stabilisce che la convergenza del gradiente
coniugato è lenta qualora si abbiano alti numeri di condizionamento

K2(A) := ‖A‖2‖A−1‖2 =
maxi |λi |
minj |λj |

(ove al solito {λi} sono gli autovalori di A).
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Metodo di Jacobi in Matlab

Un codice gratuito del metodo di Jacobi, è jacobi.m tratto da
Netlib:
f u n c t i o n [ x , e r r o r , iter , f l a g ]=jacobi (A , x , b , max_it , tol )

% i n p u t
% A, REAL m a t r i x
% x , REAL i n i t i a l g u e s s v e c t o r
% b , REAL r i g h t hand s i d e v e c t o r
% max i t , INTEGER maximum number o f i t e r a t i o n s
% t o l , REAL e r r o r t o l e r a n c e
%
% output
% x , REAL s o l u t i o n v e c t o r
% e r r o r , REAL e r r o r norm
% i t e r , INTEGER number o f i t e r a t i o n s p e r f o r m e d
% f l a g , INTEGER : 0 = s o l u t i o n found to t o l e r a n c e
% 1 = no c o n v e r g e n c e g i v e n m a x i t
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Metodo di Jacobi in Matlab

iter = 0 ; % i n i t i a l i z a t i o n
f l a g = 0 ;
bnrm2 = norm ( b ) ;
i f ( bnrm2 == 0 . 0 ) , bnrm2 = 1 . 0 ; end
r = b − A∗x ;
e r r o r = norm ( r ) / bnrm2 ;
i f ( e r r o r < tol ) r e t u r n , end
[ m , n ]= s i z e ( A ) ;
[ M , N ] = split ( A , b , 1 . 0 , 1 ) ; % m a t r i x s p l i t t i n g
f o r iter = 1 : max_it , % b e g i n i t e r a t i o n

x_1 = x ;
x = M \ ( N∗x + b ) ; % update a p p r o x i m a t i o n
e r r o r = norm ( x − x_1 ) / norm ( x ) ; % compute e r r o r
i f ( e r r o r <= tol ) , break , end % check c o n v e r g e n c e

end
i f ( e r r o r > tol ) f l a g = 1 ; end % no c o n v e r g e n c e

Alvise Sommariva Metodi iterativi per la soluzione di sistemi lineari 53/ 78



Metodo di SOR in Matlab

f u n c t i o n [ x , e r r o r , iter , f l a g ] = sor (A , x , b , w , max_it , tol )
% s o r .m s o l v e s t h e l i n e a r system Ax=b u s i n g t h e
% S u c c e s s i v e Over−R e l a x a t i o n Method ( Gauss−S e i d e l method when omega = 1 ) .
% i n p u t
% A, REAL m a t r i x
% x REAL i n i t i a l g u e s s v e c t o r
% b REAL r i g h t hand s i d e v e c t o r
% w REAL r e l a x a t i o n s c a l a r
% m a x i t INTEGER maximum number o f i t e r a t i o n s
% t o l REAL e r r o r t o l e r a n c e
% output
% x REAL s o l u t i o n v e c t o r
% e r r o r REAL e r r o r norm

% i t e r INTEGER number o f i t e r a t i o n s p e r f o r m e d
% f l a g INTEGER : 0 = s o l u t i o n found to t o l e r a n c e
% 1 = no c o n v e r g e n c e g i v e n m a x i t
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Metodo di SOR in Matlab

f l a g = 0 ; % i n i t i a l i z a t i o n
iter = 0 ;
bnrm2 = norm ( b ) ;
i f ( bnrm2 == 0 . 0 ) , bnrm2 = 1 . 0 ; end
r = b − A∗x ;
e r r o r = norm ( r ) / bnrm2 ;
i f ( e r r o r < tol ) r e t u r n , end
[ M , N , b ] = split ( A , b , w , 2 ) ; % m a t r i x s p l i t t i n g
f o r iter = 1 : max_it % b e g i n i t e r a t i o n
x_1 = x ;
x = M \ ( N∗x + b ) ; % update a p p r o x i m a t i o n
e r r o r = norm ( x − x_1 ) / norm ( x ) ; % compute e r r o r
i f ( e r r o r <= tol ) , break , end % check c o n v e r g e n c e

end
b = b / w ; % r e s t o r e r h s

i f ( e r r o r > tol ) f l a g = 1 ; end ; % no c o n v e r g e n c e
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Routine split

La routine split chiamata da jacobi e sor, tratta da Netlib
f u n c t i o n [ M , N , b ] = split ( A , b , w , f l a g )

% s p l i t .m s e t s up t h e m a t r i x s p l i t t i n g f o r t h e s t a t .
% i t e r a t i v e methods : j a c o b i and s o r ( gauss−s e i d e l , w=1)
% i n p u t
% A DOUBLE PRECISION m a t r i x
% b DOUBLE PRECISION r i g h t hand s i d e v e c t o r ( f o r SOR)
% w DOUBLE PRECISION r e l a x a t i o n s c a l a r
% f l a g INTEGER f l a g f o r method : 1 = j a c o b i 2 = s o r .
% output
% M DOUBLE PRECISION m a t r i x
% N DOUBLE PRECISION m a t r i x such t h a t A = M− N
% b DOUBLE PRECISION r h s v e c t o r ( a l t e r e d f o r SOR )
[ m , n ] = s i z e ( A ) ;
i f ( f l a g == 1 ) , % j a c o b i s p l i t t i n g

M = d i a g ( d i a g ( A ) ) ; N = d i a g ( d i a g ( A ) ) − A ;
e l s e i f ( f l a g == 2 ) , % s o r / gauss−s e i d e l s p l i t t i n g

b = w ∗ b ;
M = w ∗ t r i l ( A , −1 ) + d i a g ( d i a g ( A ) ) ;
N = −w ∗ t r i u ( A , 1 ) + ( 1 . 0 − w ) ∗ d i a g ( d i a g ( A ) ) ;

end ;
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Gradiente coniugato in Matlab

Un codice gratuito del Grad. Coniugato, è cg.m tratto da Netlib:

f u n c t i o n [ x , e r r o r , iter , f l a g ]=cg (A , x , b , M , max_it , tol )
f l a g = 0 ; iter = 0 ; bnrm2 = norm ( b ) ;
i f ( bnrm2 == 0 . 0 ) , bnrm2 = 1 . 0 ; end
r = b − A∗x ; e r r o r = norm ( r ) / bnrm2 ;
i f ( e r r o r < tol ) r e t u r n , end
f o r iter = 1 : max_it

z = M \ r ; rho = (r ’∗ z ) ;
i f ( iter > 1 )

b e t a = rho / rho_1 ; p = z + b e t a∗p ;
e l s e

p = z ;
end
q = A∗p ; alpha = rho / (p ’∗ q ) ; x = x + alpha ∗ p ;
r = r − alpha∗q ; e r r o r = norm ( r ) / bnrm2 ;
i f ( e r r o r <= tol ) , break , end
rho_1 = rho ;

end
i f ( e r r o r > tol ) f l a g = 1 ; end
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Esercizio in Matlab: matrice di Poisson

Consideriamo il sistema lineare Ax = b dove A è la matrice
tridiagonale a blocchi (di Poisson)

A =


B −I 0 . . . 0
−I B −I . . . 0
0 −I B . . . . . .
0 . . . . . . . . . −I
0 0 . . . −I B


con

B =


4 −1 0 . . . 0
−1 4 −1 . . . 0
0 −1 4 . . . . . .
0 . . . . . . . . . −1
0 0 . . . −1 4


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Esercizio in Matlab: matrice di Poisson

La matrice A è facilmente disponibile, con il comando gallery di
Matlab. Vediamo un esempio:

>> A=g a l l e r y ( ’ p o i s s o n ’ , 3 ) ; % A s p a r s e .
>> A= f u l l ( A ) ; % A p i e n a .
>> A

A =
4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

>>
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Esercizio in Matlab: matrice di Poisson

Evidentemente A è una matrice di Poisson con B matrice quadrata
di ordine 3, dove

A =


B −I 0 . . . 0
−I B −I . . . 0
0 −I B . . . . . .
0 . . . . . . . . . −I
0 0 . . . −I B


in cui

B =

 4 −1 0
−1 4 −1
0 −1 4


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Esercizio in Matlab: matrice di Poisson

Per ulteriori dettagli sulle origini della matrice di Poisson, si
considerino ad esempio [1, p. 557], [3, p. 283], [4, p. 334].

Le matrici di Poisson sono

I simmetriche;

I tridiagonali a blocchi;

I diagonalmente dominanti;

I non singolari (deriva dal primo e dal secondo teorema di
Gerschgorin [3, p. 76-80], [4, p. 955]);

I definite positive.
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Esercizio in Matlab: matrice di Poisson

Per accertarsene, calcoliamo il minimo autovalore della matrice di
Poisson con B ∈M5, semplicemente digitando sulla shell di
Matlab-Octave
>> A=makefish ( 5 ) ;
>> m=min ( e i g ( A ) )
m =

0.5359
>>

Tale matrice di Poisson non è malcondizionata essendo
>> A=makefish ( 5 ) ;
>> cond ( A )
ans =

13.9282
>>
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Esercizio in Matlab: matrice di Poisson

Poniamo ora
b=ones ( s i z e (A , 1 ) , 1 ) ;

e risolviamo il sistema Ax = b digitando

x_sol=A\b ;

Nota la soluzione esatta confrontiamo i vari metodi risolvendo il
sistema lineare con un numero massimo di iterazioni maxit e una
tolleranza tol come segue

maxit=200; tol=10ˆ(−8) ;
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Esercizio in Matlab: matrice di Poisson

A tal proposito consideriamo l’m-file demo algebra lineare.m,
contenente il codicemaxit=200; tol=10ˆ(−8) ;
siz=5;
A = makefish ( siz ) ; % MATRICE DI POISSON .
b=ones ( s i z e (A , 1 ) , 1 ) ; % TERMINE NOTO.
x_sol=A\b ; % SOLUZIONE ESATTA . METODO LU .
norm_x_sol=norm ( x_sol ) ;
i f norm ( x_sol ) == 0

norm_x_sol=1;
end
x=z e r o s ( s i z e ( b ) ) ; % VALORE INIZIALE .

Alvise Sommariva Metodi iterativi per la soluzione di sistemi lineari 64/ 78



Esercizio in Matlab: matrice di Poisson

% JACOBI .
[ x_j , error_j , iter_j , flag_j ]=jacobi (A , x , b , maxit , tol ) ;
f p r i n t f ( ’\ t \n [ JACOBI ] [ STEP REL . , NORMA 2 ] : % 2 . 2 e [ REL . ERR . ] : % 2 . 2 e ’ , error_j ,

norm ( x_j−x_sol ) /norm_x_sol ) ;
f p r i n t f ( ’\ t \n [ ITER . ] : % 3 . 0 f [ FLAG ] : % 1 . 0 f \n ’ , iter_j , flag_j ) ;

% GAUSS−SEIDEL .
w=1;
[ x_gs , error_gs , iter_gs , flag_gs ]=sor (A , x , b , w , maxit , tol ) ;
f p r i n t f ( ’\ t \n [ GS ] [ STEP REL . , NORMA 2 ] : % 2 . 2 e [ REL . ERR . ] : % 2 . 2 e ’ , error_gs , norm (

x_gs−x_sol ) /norm_x_sol ) ;
f p r i n t f ( ’\ t \n [ ITER . ] : % 3 . 0 f [ FLAG ] : % 1 . 0 f \n ’ , iter_gs , flag_gs ) ;

% SOR .
w_vett = 0 . 8 : 0 . 0 2 5 : 2 ;
f o r index=1: l e n g t h ( w_vett )

w=w_vett ( index ) ;
[ x_sor , error_sor ( index ) , iter_sor ( index ) , flag_sor ( index ) ] = sor (A , x , b , w , maxit

, tol ) ;
relerr ( index )=norm ( x_sor−x_sol ) /norm_x_sol ;

end
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Esercizio in Matlab: matrice di Poisson

[ min_iter_sor , min_index ]=min ( iter_sor ) ;
f p r i n t f ( ’\ t \n [ SOR OTT . ] [ STEP REL . ,NORMA 2 ] : % 2 . 2 e [ REL . ERR . ] : % 2 . 2 e ’ , error_sor (

min_index ) , relerr ( min_index ) ) ;
f p r i n t f ( ’\ t \n [ ITER . ] : % 3 . 0 f [ FLAG ] : % 1 . 0 f [w] : % 2 . 3 f \n ’ , min_iter_sor , flag_sor (

min_index ) , w_vett ( min_index ) ) ;
p l o t ( w_vett , iter_sor , ’ r−’ ) ;

% GRADIENTE CONIUGATO .
M=eye ( s i z e ( A ) ) ;
[ x_gc , error_gc , iter_gc , flag_gc ]=cg (A , x , b , M , maxit , tol ) ;
f p r i n t f ( ’\ t \n [ GC ] [ STEP REL . , NORMA 2 ] : % 2 . 2 e [ REL . ERR . ] : % 2 . 2 e ’ , error_gc , norm (

x_gc−x_sol ) /norm_x_sol ) ;
f p r i n t f ( ’\ t \n [ ITER . ] : % 3 . 0 f [ FLAG ] : % 1 . 0 f \n ’ , iter_gc , flag_gc ) ;
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Esercizio in Matlab: matrice di Poisson

Lanciamo la demo nella shell di Matlab-Octave e otteniamo
>> demo_algebra_lineare

[ JACOBI ] [ STEP REL . , NORMA 2 ] : 8 . 7 3 e−009 [ REL . ERR . ] : 5 . 6 5 e−008
[ ITER . ] : 116 [ FLAG ] : 0

[ GAU . SEI . ] [ STEP REL . , NORMA 2 ] : 9 . 2 2 e−009 [ REL . ERR . ] : 2 . 7 6 e−008
[ ITER . ] : 61 [ FLAG ] : 0

[ SOR OTT . ] [ STEP REL . , NORMA 2 ] : 2 . 3 1 e−009 [ REL . ERR . ] : 1 . 1 0 e−009
[ ITER . ] : 21 [ FLAG ] : 0 [ w ] : 1 . 3 5 0

[ GC ] [ STEP REL . , NORMA 2 ] : 4 . 4 1 e−017 [ REL . ERR . ] : 2 . 2 1 e−016
[ ITER . ] : 5 [ FLAG ] : 0

>>
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Esercizio in Matlab: matrice di Poisson

Una breve analisi ci dice che

I Come previsto dalla teoria, il metodo di Gauss-Seidel converge
in approssimativamente metà iterazioni di Jacobi;

I Il metodo SOR ha quale costante quasi ottimale w = 1.350;
I Il metodo del gradiente coniugato converge in meno iterazioni

rispetto agli altri metodi (solo 5 iterazioni, ma si osservi il test
d’arresto differente). Essendo la matrice di Poisson di ordine
25, in effetti ciò accade in meno di 25 iterazioni come
previsto. Vediamo cosa succede dopo 25 iterazioni:
>> A=g a l l e r y ( ’ p o i s s o n ’ , 5 ) ;
>> A= f u l l ( A ) ; b=ones ( s i z e (A , 1 ) , 1 ) ;
>> maxit=25;tol=0;
>> x=z e r o s ( s i z e ( b ) ) ; M=eye ( s i z e ( A ) ) ;
>> [ x_gc , error_gc , iter_gc , flag_gc ]=cg (A , x , b , M , maxit , tol ) ;
>> error_gc

error_gc =
8.3759 e−39

Il residuo relativo, seppur non nullo è molto piccolo.
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Esercizio in Matlab: matrice di Poisson

Un punto delicato riguarda la scelta del parametro ω ottimale
(cioè minimizzante il raggio spettrale di SOR). Sia questo valore
uguale a ω∗. Nel nostro codice abbiamo calcolato per forza bruta
ω+, tra i numeri reali ω+ ≤ 2 del tipo wj = 0.8 + j · 0.025 quello
per cui venivano compiute meno iterazioni.

E’ possibile calcolare ω∗ matematicamente? Nel caso della matrice
di Poisson la risposta è affermativa. Da [4, Teor.5.10, p.333]

ω∗ =
2

1 +
√

1− ρ2(BJ)

dove ρ(BJ) è il massimo degli autovalori in modulo della matrice
BJ la matrice di iterazione del metodo di Jacobi.

Il raggio spettrale della matrice di iterazione di SOR ott. vale
ω∗ − 1.
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Esercizio in Matlab: matrice di Poisson

Vediamo di calcolare questo valore nel caso della sopracitata
matrice di Poisson. Dalla teoria, con ovvie notazioni,

BJ = I − D−1A

e quindi

>> fo rmat long ;
>> D=d i a g ( d i a g ( A ) ) ;
>> BJ=eye ( s i z e ( A ) )−i n v ( D )∗A ;
>> s=e i g ( BJ ) ;
>> s_abs=abs ( s ) ;
>> rho=max ( s_abs ) ;
>> w=2/(1+ s q r t (1−rho ˆ2) )
w =

1.33333333333333
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Esercizio in Matlab: matrice di Poisson

>> maxit=50; tol=10ˆ(−8) ;
>> b=ones ( s i z e (A , 1 ) , 1 ) ;
>> [ x_sor , error_sor , iter_sor , flag_sor ] = sor (A , x , b , w , maxit , tol ) ;
>> iter_sor

iter_sor =
22

>>
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Esercizio in Matlab: matrice di Poisson

Si rimane un po’ sorpresi dal fatto che per w = 1.350 il numero di
iterazioni fosse inferiore di quello fornito dal valore ottimale teorico
w∗ = 1.333 . . ..

Il fatto è che questo è ottenuto cercando di massimizzare la
velocità asintotica di convergenza. Purtroppo questo minimizza
una stima del numero di iterazioni k minime da compiere e non
quello effettivo.

Abbiamo detto che un punto chiave è la grandezza del raggio
spettrale delle matrici di iterazione e che è desiderabile che questo
numero oltre ad essere strettamente minore di uno sia il più piccolo
possibile. Vediamo i raggi spettrali dei metodi esposti.
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Esercizio in Matlab: matrice di Poisson

Salviamo in raggispettrali.m il seguente programma principale

maxit=50; tol=0;

siz=5;
A = makefish ( siz ) ; % MATRICE DI POISSON .
b=ones ( s i z e (A , 1 ) , 1 ) ; % TERMINE NOTO.

[ M , N ] = split ( A , b , 1 . 0 , 1 ) ; % JACOBI .
P=i n v ( M )∗N ;
rho_J=max ( abs ( e i g ( P ) ) ) ;
f p r i n t f ( ’\n \ t [ RAGGIO SPETTRALE ] [ JACOBI ] : %2.15 f ’ , rho_J ) ;

[ M , N , b ] = split ( A , b , 1 , 2 ) ; % GS .
P=i n v ( M )∗N ;
rho_gs=max ( abs ( e i g ( P ) ) ) ;
f p r i n t f ( ’\n \ t [ RAGGIO SPETTRALE ] [ GAUSS−SEIDEL ] : %2.15 f ’ , rho_gs ) ;

Alvise Sommariva Metodi iterativi per la soluzione di sistemi lineari 73/ 78



Esercizio in Matlab: matrice di Poisson

D=d i a g ( d i a g ( A ) ) ; E=−( t r i l ( A )−D ) ; F=−( t r i u ( A )−D ) ;
w=1.350;
M=D/w−E ; N=(1/w−1)∗D+F ; P=i n v ( M )∗N ;
rho_sor=max ( abs ( e i g ( P ) ) ) ;
f p r i n t f ( ’\n \ t [ RAGGIO SPETTRALE ] [ SOR BEST] : % 2 . 1 5 f ’ , rho_sor ) ;
w=1.33333333333333;
[ M , N , b ] = split ( A , b , w , 2 ) ; % SOR OPT.
M=D/w−E ; N=(1/w−1)∗D+F ; P=i n v ( M )∗N ;
rho_sor_opt=max ( abs ( e i g ( P ) ) ) ;
f p r i n t f ( ’\n \ t [ RAGGIO SPETTRALE ] [ SOR OPT ] : %2.15 f ’ , rho_sor_opt ) ;

Di seguito:

>> raggispettrali

[ RAGGIO SPETTRALE ] [ JACOBI ] : 0 .866025403784438
[ RAGGIO SPETTRALE ] [ GAUSS−SEIDEL ] : 0 .750000000000000
[ RAGGIO SPETTRALE ] [ SOR BEST ] : 0 .350000000000001
[ RAGGIO SPETTRALE ] [ SOR OPT ] : 0 .333333380707781

>>
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Esercizio in Matlab: matrice di Poisson

Il valore del raggio spettrale della matrice di iterazione del metodo
SOR per parametro ottimale, per quanto visto anticipatamente
vale ω∗ − 1, e l’esperimento numerico lo conferma.
Abbiamo poi osservato che in questo caso la velocità di
convergenza del metodo di Gauss-Seidel è il doppio di quella di
Jacobi. Poste BGS , BJ le rispettive matrici di iterazione, e detta R
la velocità di convergenza, osserviamo che da

R(BJ) := − ln (ρ(BJ)) (25)

R(BGS ) := − ln (ρ(BGS )) (26)

R(BGS ) := 2R(BJ) (27)

si ha

− ln (ρ(BGS )) = R(BGS ) = 2R(BJ) = −2 ln (ρ(BJ)) = − ln (ρ(BJ))2

da cui essendo il logaritmo una funzione invertibile

ρ(BGS ) = (ρ(BJ))2.
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Esercizio in Matlab: matrice di Poisson

Il raggio spettrale della matrice di iterazione di Gauss-Seidel
coincide quindi col quadrato di quella di Jacobi ed infatti come è
facile verificare
>> 0.866025403784438ˆ2
ans =

0.75000000000000
>>
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Esercizio in Matlab II

I Si calcoli la matrice di Poisson P20 di ordine 20 aiutandosi con
>> h e l p g a l l e r y

I Sia b il vettore composto di componenti uguali a 1, avente lo
stesso numero di righe di P20. Si risolva col gradiente
coniugato il problema P20x = b, con tolleranza di 10(−12),
partendo da x0 = [0 . . . 0]. Quante iterazioni servono? E
migliore questo risultato di quello ottenuto con Jacobi e
Gauss-Seidel?

Alvise Sommariva Metodi iterativi per la soluzione di sistemi lineari 77/ 78



Bibliografia

K. Atkinson, Introduction to Numerical Analysis, Wiley, 1989.

K. Atkinson e W. Han, Theoretical Numerical Analysis, Springer, 2001.

D. Bini, M. Capovani e O. Menchi, Metodi numerici per l’algebra lineare, Zanichelli, 1988.

V. Comincioli, Analisi Numerica, metodi modelli applicazioni, Mc Graw-Hill, 1990.

S.D. Conte e C. de Boor, Elementary Numerical Analysis, 3rd Edition, Mc Graw-Hill, 1980.

L.A. Hageman e D.M. Young Applied Iterative Methods, Dover, 2004.

C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.

The MathWorks Inc., Numerical Computing with Matlab, http://www.mathworks.com/moler.

Netlib, http://www.netlib.org/templates/matlab/.

A. Quarteroni e F. Saleri, Introduzione al calcolo scientifico, Springer Verlag, 2006.

A. Suli e D. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, 2003.

Wikipedia (Metodo di Gauss-Seidel), http://it.wikipedia.org/wiki/Metodo di Gauss-Seidel.

Wikipedia (Metodo del Gradiente Coniugato), http://it.wikipedia.org/wiki/Metodo del gradiente coniugato.

Wikipedia (Metodo di Jacobi), http://it.wikipedia.org/wiki/Metodo di Jacobi.

Wikipedia (Successive Over Relaxation), http://it.wikipedia.org/wiki/Successive Over Relaxation.

Alvise Sommariva Metodi iterativi per la soluzione di sistemi lineari 78/ 78

http://www.mathworks.com/moler
http://www.netlib.org/templates/matlab/
http://it.wikipedia.org/wiki/Metodo_di_Gauss-Seidel
http://it.wikipedia.org/wiki/Metodo_del_gradiente_coniugato
http://it.wikipedia.org/wiki/Metodo_di_Jacobi
http://it.wikipedia.org/wiki/Successive_Over_Relaxation

