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Equazione di Poisson, caso bivariato.

Consideriamo l’equazione di Poisson{
∆u(x , y) = f (x , y), (x , y) ∈ Ω = (0, 1)× (0, 1)
u(x , y) = g(x , y), (x , y) ∈ ∂Ω

(1)

dove

∆u(x , y) :=
∂2u

∂x2
+
∂2u

∂y2
. (2)
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Equazione di Poisson, caso bivariato.

Definita la griglia di punti G = {(xi , yj)}i ,j=0,...,n+1

xi = ih, yj = jh, h = 1/(n + 1), i , j = 0, . . . , n + 1

risulta evidente che per i = 0 o j = 0, i = n + 1 o j = n + 1
abbiamo un punto del bordo e quindi in virtù delle condizioni di
Dirichlet in (1), il valore della soluzione u∗ è determinato.

Vediamo cosa succede quando il punto della griglia G è interno al
quadrato Ω = (0, 1)× (0, 1), caratterizzati dall’avere
i , j = 1, . . . , n.
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Equazione di Poisson, caso bivariato.

Si mostra facilmente, utilizzando la formula di Taylor bivariata, in
cui vengono tralasciati termini di ordine O(h2), che si può
approssimare ∆u(x , y) con

u(x + h, y) + u(x − h, y) + u(x , y + h) + u(x , y − h)− 4u(x , y)

h2

e quindi essendo, xi = ih, yj = jh, ∆u(xi , yj) con

u(xi+1, yj) + u(xi−1, yj) + u(xi , yj+1) + u(xi , yj−1)− 4u(xi , yj)

h2

(3)
da cui la discretizzazione dell’equazione di Poisson

u(xi+1, yj)+u(xi−1, yj)+u(xi , yj+1)+u(xi , yj−1)−4u(xi , yj) = h2 f (xi , yj),
(4)

per i , j = 1, . . . , n.
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Equazione di Poisson, caso bivariato.

con le condizioni al contorno

u(xi , yj) = g(xi , yj), i = 0, j = 1, . . . , n (5)

u(xi , yj) = g(xi , yj), i = n + 1, j = 1, . . . , n (6)

u(xi , yj) = g(xi , yj), i = 1, . . . , n, j = 0, j = n + 1. (7)

Alvise Sommariva Equazione di Poisson. 5/ 1



Equazione di Poisson, caso bivariato.
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Figura : La molecola della discr. del Laplaciano avente centro (0.5, 0.5) e
h = 0.25. Si ricordi di dividere ogni valore nella molecola per h2.
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Figura : Una griglia avente passo h = 1/3 relativamente al quadrato
[0, 1]× [0, 1].

.
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Equazione di Poisson, caso bivariato.

Purtroppo, la descrizione del sistema lineare non è troppo chiara.
Vediamola scritta matricialmente. Sia B la matrice n × n

B =


−4 1 0 . . . 0
1 −4 1 0 . . .
0 1 −4 1 . . .
. . . . . . . . . . . . . . .
0 . . . 0 1 −4


ed I la matrice identica di ordine n del tipo

I =

 1 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 1

 .
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Equazione di Poisson, caso bivariato.

Allora se b è il vettore ottenuto dai contributi dei termini dovuti a
f e g in (1) e (4), definita la matrice a blocchi

A =


B I 0 . . .
I B I . . .
. . . . . . . . . . . .
. . . 0 I B


si ricava che il sistema da risolvere è Au = b, usando ad esempio il
metodo di Jacobi, Gauss-Seidel, SOR o il gradiente coniugato.
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Equazione di Poisson, caso bivariato.

Per una implementazione della matrice di Poisson A, utilizziamo la
funzione makefish

f u n c t i o n mat = makefish ( siz ) ;
% make a P o i s s o n m a t r i x

leng = siz∗siz ;
dia = z e r o s ( siz , siz ) ;
off = −eye ( siz , siz ) ;

f o r i=1:siz , dia (i , i ) =4; end ;
f o r i=1:siz−1, dia (i , i+1)=−1; dia ( i+1,i )=−1; end ;

mat = z e r o s ( leng , leng ) ;
f o r ib=1:siz ,
mat (1+(ib−1)∗siz : ib∗siz ,1+(ib−1)∗siz : ib∗siz ) = dia ; end ;

f o r ib=1:siz−1,
mat (1+(ib−1)∗siz : ib∗siz ,1+ib∗siz : ( ib+1)∗siz ) = off ;
mat(1+ib∗siz : ( ib+1)∗siz ,1+(ib−1)∗siz : ib∗siz ) = off ; end ;

r e t u r n ;

Alvise Sommariva Equazione di Poisson. 9/ 1



Equazione di Poisson, caso bivariato.

Vediamone un esempio dalla shell di Matlab/Octave:

>> makefish ( 2 )
ans =

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4
>>

Si vede subito dal 4 sulla diagonale che makefish non calcola A
ma −A e dovremo tener conto di questo dettaglio
nell’implementazione.
Osserviamo che non è proprio facile determinare, fissato i , j , quali
siano i punti adiacenti a (xi , yj) che essendo sul bordo hanno valore
della soluzione noto a priori e quindi tali da contribuire attivamente
al termine noto.
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Equazione di Poisson: un esempio bivariato.

Facciamo un esempio sulla risoluzione dell’equazione di Poisson via
metodo alle differenze con 5 punti.

Sia Ω = [0, 1]× [0, 1], h = 1/3 e siano

Pi ,j = (ih, jh), i , j = 0, 1, 2, 3.

E’ chiaro che per

per i = 0 i punti P0,j sono sull’asse x = 0 (cioè l’asse y),

per i = 3 i punti P3,j sono sull’asse x = 1,

per j = 0 i punti Pi ,0 sono sull’asse y = 0 (cioè l’asse x)

per j = 3 i punti Pi ,3 sono sull’asse y = 1.

Date le condizioni al contorno, la soluzione in questi punti è nota
ed è uguale a ui ,j = g(xi , yj).
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Equazione di Poisson: un esempio bivariato.

I rimanenti punti Pi ,j , con i , j = 1, 2 sono interni a Ω ed è

u(xi+1, yj)+u(xi−1, yj)+u(xi , yj+1)+u(xi , yj−1)−4u(xi , yj) = h2 f (xi , yj),
(8)

Analizziamo caso per caso queste equazioni:

Nel caso i = 1, j = 1 si ha

u(x2, y1)+u(x0, y1)+u(x1, y2)+u(x1, y0)−4u(x1, y1) = h2 f (x1, y1),

u(x0, y1) = g(x0, y1), u(x1, y0) = g(x1, y0).

Portando questi due termini a secondo membro otteniamo

u(x2, y1)+u(x1, y2)−4u(x1, y1) = h2 f (x1, y1)−g(x0, y1)−g(x1, y0).
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Equazione di Poisson: un esempio bivariato.

Nel caso i = 2, j = 1 si ha

u(x3, y1)+u(x1, y1)+u(x2, y2)+u(x2, y0)−4u(x2, y1) = h2 f (x2, y1),

u(x3, y1) = g(x3, y1), u(x2, y0) = g(x2, y0)

portando questi due termini a secondo membro otteniamo

u(x1, y1)+u(x2, y2)−4u(x2, y1) = h2 f (x1, y1)−g(x3, y1)−g(x2, y0).

Nel caso i = 1, j = 2 si ha

u(x2, y2)+u(x0, y2)+u(x1, y3)+u(x1, y1)−4u(x1, y2) = h2 f (x1, y2),

ed essendo

u(x0, y2) = g(x0, y2), u(x1, y3) = g(x1, y3)

portando questi due termini a secondo membro otteniamo

u(x2, y2)+u(x1, y1)−4u(x1, y2) = h2 f (x1, y2)−g(x0, y2)−g(x1, y3).
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Equazione di Poisson: un esempio bivariato.

Nel caso i = 2, j = 2 si ha

u(x3, y2)+u(x1, y2)+u(x2, y3)+u(x2, y1)−4u(x2, y2) = h2 f (x2, y2),

ed essendo

u(x3, y2) = g(x3, y2), u(x2, y3) = g(x2, y3)

portando questi due termini a secondo membro otteniamo

u(x1, y2)+u(x2, y1)−4u(x2, y2) = h2 f (x2, y2)−g(x3, y2)−g(x2, y3).
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Equazione di Poisson: un esempio bivariato.

Poniamo ora

b1 := h2 f (x1, y1)− g(x0, y1)− g(x1, y0),

b2 := h2 f (x1, y2)− g(x0, y2)− g(x1, y3),

b3 := h2 f (x1, y1)− g(x3, y1)− g(x2, y0),

b4; = h2 f (x2, y2)− g(x3, y2)− g(x2, y3),

ordiniamo i punti da sinistra a destra, e dal basso verso l’alto
(ordine lessicografico)

P1 = (x1, y1), P2 = (x2, y1), P3 = (x1, y2), P4 = (x2, y2),

e infine poniamo

u1 = u(x1, y1), u2 = u(x2, y1), u3 = u(x1, y2), u4 = u(x2, y2),
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Equazione di Poisson: un esempio bivariato.

ottenendo cos̀ı

u2 + u3 − 4u1 = b1,

u1 + u4 − 4u2 = b2,

u4 + u1 − 4u3 = b3,

u3 + u2 − 4u4 = b4,

da cui posto

A =


−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4


basta risolvere il sistema Au = b per ottenere u(x1, y1), u(x2, y1),
u(x1, y2), u(x2, y2).
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Equazione di Poisson: un esempio bivariato.

Notiamo che

>> makefish ( 2 )
ans =

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4
>>

calcola proprio −A, mentre il termine noto b può essere facilmente
calcolato dopo aver notato che

1 i termini −g(xi , y0) sono presenti nelle componenti bi ;
2 posto n = 1/h, per i = 1, . . . , n − 1, i termini −g(xi , yn) sono

presenti nelle componenti b(n−1)2−(n−1)+i ;
3 per j = 1, . . . , n − 1, i termini −g(x0, yj) sono presenti nelle

componenti bs con s ≡ 1 mod n − 1;
4 per j = 1, . . . , n − 1, i termini −g(xn, yj) sono presenti nelle

componenti bs con s ≡ 0 mod n − 1.
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Equazione di Poisson: una implementazione.

Vediamo ora un’implementazione del metodo sopra descritto, detto
per ovvi motivi a 5 punti (cf. (4)).
Risulta importante ricordare la seguente stima dell’errore
Teorema. Se u è soluzione dell’equazione di Poisson (1) ed è

almeno 4 volte differenziabile con continuità nel quadrato
Ω := [0, 1]× [0, 1] ed uh l’approssimazione ottenuta col metodo
alle differenze con 5 punti, utilizzando una griglia G = {(xi , yj)}
con xi = i h, yj = j h, h = 1/(n + 1) allora

|u(xi , yj)− uh(xi , yj)| ≤ ch2

con

c = (1/24)

(
max

(x ,y)∈Ω

∣∣∣∣∂4u(x , y)

∂x4

∣∣∣∣+ max
(x ,y)∈Ω

∣∣∣∣∂4u(x , y)

∂y4

∣∣∣∣)
Ci si aspetta quindi dai test numerici che effettueremo un errore
dell’ordine di h2.
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Equazione di Poisson: una implementazione.

Salviamo in poisson5pts.m la funzione
f u n c t i o n u=poisson5pts (n , f , g_left , g_right , g_down , g_up )

A=−makefish ( n ) ;
h=1/(n+1) ;
x=(h : h :1−h ) ’ ; y=x ;

% SOLUZIONI IN BASSO .
x_loc=x ;
y_loc=z e r o s ( s i z e ( x_loc ) ) ;
b_down=f e v a l ( g_down , x_loc , y_loc ) ;

% SOLUZIONI IN ALTO.
y_loc=ones ( s i z e ( x_loc ) ) ;
b_up=f e v a l ( g_up , x_loc , y_loc ) ;

% SOLUZIONI A SINISTRA .
y_loc=x_loc ; x_loc=z e r o s ( s i z e ( x_loc ) ) ;
b_left=f e v a l ( g_left , x_loc , y_loc ) ;

% SOLUZIONI A DESTRA
x_loc=ones ( s i z e ( x_loc ) ) ;
b_right=f e v a l ( g_right , x_loc , y_loc ) ;
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Equazione di Poisson: una implementazione.

% COMPOSIZIONE TERMINE NOTO.
b1=b_down ;
% PRIMA RIGA IN BASSO .
b1 ( 1 )=b1 ( 1 )+b_left ( 1 ) ; b1 ( n )=b1 ( n )+b_right ( 1 ) ;
% PRIMA RIGA IN ALTO.
bn=b_up ; bn ( 1 )=bn ( 1 )+b_left ( n ) ; bn ( n )=bn ( n )+b_right ( n ) ;
% RIGHE INTERMEDIE .
bj = [ ] ;
f o r j=2:(n−1)

bjloc=z e r o s (n , 1 ) ;
bjloc ( 1 )=bjloc ( 1 )+b_left ( j ) ;
bjloc ( n )=bjloc ( n )+b_right ( j ) ;
bj=[bj ; bjloc ] ;

end
b=[b1 ; bj ; bn ] ;
% GRIGLIA LESSICOGRAFICA (METODO STANDARD) .
lunghezza_x=l e n g t h ( x ) ; X = [ ] ; Y = [ ] ;
f o r index=1: lunghezza_x

X=[X ; x ] ;
Y=[Y ; y ( index ) ∗ones ( s i z e ( x ) ) ] ;

end
fXY=f e v a l (f , X , Y ) ;
b_f=(h ˆ2) ∗fXY ; b=b_f−b ; u=A\b ;
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Equazione di Poisson: una implementazione.

Salviamo in demopoisson5pts.m la demo

% MODIFIED VERSION : MARCH 13 , 2 0 0 8 .

demo_example=2;

switch demo_example

case 1
f=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_down=inline ( ’ ones ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_up=inline ( ’ ones ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_left=inline ( ’ ones ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_right=inline ( ’ ones ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
solution=inline ( ’ ones ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;

case 2
f=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_down=inline ( ’ exp ( p i ∗x ) ’ , ’ x ’ , ’ y ’ ) ;
g_up=inline ( ’−exp ( p i ∗x ) ’ , ’ x ’ , ’ y ’ ) ;
g_left=inline ( ’ cos ( p i ∗y ) ’ , ’ x ’ , ’ y ’ ) ;
g_right=inline ( ’ ( ( exp ( 1 ) ) ˆ p i ) ∗ cos ( p i ∗y ) ’ , ’ x ’ , ’ y ’ ) ;
solution=inline ( ’ ( exp ( p i ∗x ) ) .∗ cos ( p i ∗y ) ’ , ’ x ’ , ’ y ’ ) ;
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Equazione di Poisson: una implementazione.

Salviamo in demopoisson5pts.m la demo

case 3
f=inline ( ’ (−2∗( p i ˆ2) ) ∗ s i n ( p i ∗x ) .∗ s i n ( p i ∗y ) ’ , ’ x ’ , ’ y ’ ) ;
g_down=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_up=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_left=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_right=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
solution=inline ( ’ ( s i n ( p i ∗x ) ) .∗ s i n ( p i ∗y ) ’ , ’ x ’ , ’ y ’ ) ;

otherwise

f=inline ( ’ ones ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_down=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_up=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_left=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
g_right=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ y ’ ) ;
solution=inline ( ’ ( s i n ( p i ∗x ) ) .∗ s i n ( p i ∗y ) ’ , ’ x ’ , ’ y ’ ) ;

end
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Equazione di Poisson: una implementazione.

f o r index=2:5
n=2ˆindex ; h=1/(n+1) ; x=(h : h :1−h ) ’ ; y=x ;
[ X , Y ]= meshgr id (x , y ) ; X=X ’ ; Y=Y ’ ;

% VETT. SOL , NEI PUNTI DELLA GRIGLIA ORD. IN LESSICOGR . .
u=poisson5pts (n , f , g_left , g_right , g_down , g_up ) ;
% USO RESHAPE COSI ’ LA SOLUZIONE HA LE STESSE DIMENSIONI

DELLE MATRICI X, Y .
Z=( r e s h a p e (u , n , n ) ) ;

i f demo_example <=3
V=f e v a l ( solution , X , Y ) ;
err ( index )=norm ( V ( : )−Z ( : ) , inf ) ;
i f index == 1

f p r i n t f ( ’ \n \ t [ n ] : %4.0 f [ ERR ] : %2.2 e ’ ,n , err (
index ) ) ;

e l s e
f p r i n t f ( ’ \n \ t [ n ] : %4.0 f [ ERR ] : %2.2 e [ RATIO ] :

%2.2 f ’ , . . .
n , err ( index ) , err ( index−1)/err ( index ) ) ;

end
end

end
s u r f (X , Y , Z ) ;
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Equazione di Poisson: descrizione dell’implementazione.

Alcune osservazioni sui codici Matlab/Octave appena esposti.

Posto h = 1
n+1 , allora la matrice B ∈ Rn×n mentre il termine

noto b e il vettore soluzione u apparterranno a Rn2
. dobbiamo

risolvere un sistema lineare Au = b con

A =


B I 0 . . . 0
I B I . . . 0
. . . . . . . . . . . . . . .
. . . 0 I B I


e b un vettore i cui contributi dipendono dai valori che hanno
sul bordo le funzioni f e g che definiscono l’equazione di
Poisson {

−
[
∂2u
∂x2 + ∂2u

∂y2

]
= f (x , y), (x , y) ∈ Ω

u(x , y) = g(x , y), (x , y) ∈ ∂Ω
(9)
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Equazione di Poisson: descrizione dell’implementazione.

Dobbiamo tener conto che makefish non calcola A ma
Ā = −A ed è per questo che scriviamo A=-makefish(n).

(Per i più esperti) La funzione meshgrid crea a partire da
due vettori di numeri reali x , y , le ascisse X e le ordinate Y
dei punti facenti parte della griglia generata da x ed y . In
particolare la matrice di punti (x1, y1) (x2, y1) . . . (xn, y1)

. . . . . . . . . . . .
(x1, yn) (x2, yn) . . . (xn, yn)


viene descritta tramite la griglia di ascisse e ordinate e cioè
come

X =

 x1 x2 . . . xn
. . . . . . . . .
x1 x2 . . . xn


e

Y =

 y1 y1 . . . y1

y2 y2 . . . y2

y3 y3 . . . y3


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Equazione di Poisson: descrizione dell’implementazione.

Cos̀ı ad esempio

>> h=1/3;
>> x=h : h :1−h ;
>> x

x =
0.3333 0 .6667

>> y=x ;
>> [ X , Y ]= meshgr id (x , y )
X =

0.3333 0 .6667
0 .3333 0 .6667

Y =
0.3333 0 .3333
0 .6667 0 .6667

>>

descrivendone le coordinate x , y .
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Equazione di Poisson: esempio 1.

Consideriamo l’equazione di Poisson nel quadrato unitario
Ω = [0, 1]× [0, 1] {

∂2u
∂x2 + ∂2u

∂y2 = 0, (x , y) ∈ Ω

u(x , y) = 1, (x , y) ∈ ∂Ω
(10)

la cui soluzione è u(x , y) = 1.
Non è difficile osservare che

max
(x ,y)∈Ω

∣∣∣∣∂4u(x , y)

∂x4

∣∣∣∣ = 0, max
(x ,y)∈Ω

∣∣∣∣∂4u(x , y)

∂y4

∣∣∣∣ = 0

e quindi ci si aspetta che per qualsiasi h si abbia un errore
dell’ordine della precisione di macchina.
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Equazione di Poisson: esempio 1.

Lanciamo da shell il primo esempio della demo, ottenendo

>> demopoisson5pts

[ n ] : 4 [ ERR ] : 4 . 4 4 e−016 [ RATIO ] : 163181252362740.50
[ n ] : 8 [ ERR ] : 1 . 1 1 e−015 [ RATIO ] : 0 . 4 0
[ n ] : 16 [ ERR ] : 1 . 5 5 e−015 [ RATIO ] : 0 . 7 1
[ n ] : 32 [ ERR ] : 6 . 6 6 e−015 [ RATIO ] : 0 . 2 3

>>

Per ratio si intende il rapporto dell’errore tra due iterate successive.
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Equazione di Poisson: esempio 2.



∂2u
∂x2 + ∂2u

∂y2 = 0, (x , y) ∈ Ω

u(x , 0) = exp(π x), x ∈ [0, 1]
u(x , 1) = −exp(π x), x ∈ [0, 1]
u(0, y) = cos(π y), y ∈ [0, 1]
u(1, y) = exp(π) · cos(π y), y ∈ [0, 1]

(11)

la cui soluzione è u(x , y) = exp(π x) · cos(π y).
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Equazione di Poisson: esempio 2.
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Figura : Soluzione del problema 2.
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Equazione di Poisson: esempio 2.

Si nota subito che per x , y ∈ [0, 1] si ha∣∣∣∣∂4u

∂x4
(x , y)

∣∣∣∣ = π4 |exp(π x) · cos(π y)| ≤ π4 exp(π) ≈ 2254.1

∣∣∣∣∂4u

∂y4
(x , y)

∣∣∣∣ = π4 |exp(π x) · cos(π y)| ≤ π4 exp(π) ≈ 2254.1

da cui
c ≤ (1/24) · 2254.1 · 2 ≈ 187.8428.

Quindi quale maggiorazione dell’errore assoluto in norma infinito,
per n = 3, 7, 15, 31, avremo i valori immagazzinati qui sotto nel
vettore err
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Equazione di Poisson: esempio 2.

>> fo rmat short e

>> c=187.8428; err = [ ] ;
>> f o r n=2:5 , N=2ˆn−1; h=1/(N+1) ; h2=h ˆ 2 ; err=[err ; c∗h2 ] ;

end
>> err

err =
1.1740 e+001
2.9350 e+000
7.3376 e−001
1 .8344 e−001

>>

Lanciando la demo demopoisson5pts, per demoexample=2,
abbiamo
>> demopoisson5pts

[ n ] : 4 [ ERR ] : 9 . 7 5 e−002 [ RATIO ] : 0 . 7 4
[ n ] : 8 [ ERR ] : 3 . 2 0 e−002 [ RATIO ] : 3 . 0 4
[ n ] : 16 [ ERR ] : 9 . 0 5 e−003 [ RATIO ] : 3 . 5 4
[ n ] : 32 [ ERR ] : 2 . 4 5 e−003 [ RATIO ] : 3 . 6 9

>>
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Equazione di Poisson: esempio 2.

1 Come ci si aspettava la maggiorazione è realizzata, ma
purtroppo come stima è abbastanza conservativa.

2 Nella colonna [RATIO] abbiamo indicato il rapporto e2h/eh
dove eh è l’errore assoluto compiuto dal metodo a 5 punti con
passo h (ovvero la quantità esposte nella colonna [ERR] nella
stessa riga di h). Il fatto che la ratio sia 4 non è sorprendente.
Infatti se l’errore decresce come h2 si può supporre che sia
eh ≈ ĉh2 per qualche ĉ indipendente da h e quindi

e2h

eh
≈ ĉ(2h)2

ĉh2
≈ 4.
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Equazione di Poisson: esempio 3.

Consideriamo un la risoluzione dell’equazione di Poisson nel
quadrato unitario Ω = [0, 1]× [0, 1] con un metodo alle differenze.



∂2u
∂x2 + ∂2u

∂y2 = (−2π2) sin(π x) sin(π y), (x , y) ∈ Ω

u(x , 0) = 0, x ∈ [0, 1]
u(x , 1) = 0, x ∈ [0, 1]
u(0, y) = 0, y ∈ [0, 1]
u(1, y) = 0, y ∈ [0, 1]

(12)
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Equazione di Poisson: esempio 3.
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Figura : Soluzione del problema 3.
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Equazione di Poisson: esempio 3.

la cui soluzione è u(x , y) = sin(π x) sin(π y). Ripetendo la stima
basata sulle derivate quarte della soluzione u abbiamo facilmente

c ≤ (1/24) 2π4 ≈ 8.1174

da cui

>> c=8.1174;
>> err = [ ] ; f o r n=2:5 , N=2ˆn ; N=N−1; h=1/(N+1) ; h2=h ˆ 2 ; err=[

err ; c∗h2 ] ; end
>> fo rmat short e

>> err

err =
5.0734 e−001
1 .2683 e−001
3 .1709 e−002
7 .9271 e−003

>>
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Equazione di Poisson: esempio 3.

Lanciando la demo demopoisson5pts, per demoexample=3,
abbiamo

>> demopoisson5pts

[ n ] : 4 [ ERR ] : 3 . 0 4 e−002 [ RATIO ] : 2 . 3 9
[ n ] : 8 [ ERR ] : 9 . 9 1 e−003 [ RATIO ] : 3 . 0 6
[ n ] : 16 [ ERR ] : 2 . 8 3 e−003 [ RATIO ] : 3 . 5 1
[ n ] : 32 [ ERR ] : 7 . 5 4 e−004 [ RATIO ] : 3 . 7 5

>>

Rispetto al caso precedente la stima è più precisa, e la ratio di
circa 4 ci dice che la convergenza è ancora dell’ordine di h2.
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