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Equazione del calore.

Consideriamo l’equazione del calore







∂u
∂t

= ∂2u
∂x2 + G , 0 < x < 1, t > 0

u(0, t) = d0(t), u(1, t) = d1(t), t ≥ 0
u(x , 0) = f (x), 0 ≤ x ≤ 1

(1)

Sia m > 0 intero e sia hx = 1/m ed xj = jhx con j = 0, 1, . . . ,m.
Si può mostrare che per j = 1, 2, . . . ,m − 1 e ξj ∈ (xj−1, xj+1)

∂2u

∂x2
(xj , t) =

u(xj+1, t) − 2u(xj , t) + u(xj−1, t)

h2
x

−
h2
x

12

∂4u

∂x4
(ξj , t)

(2)
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Equazione del calore.

Tralasciando il termine finale e posto uj(t) := u(xj , t) otteniamo
quindi per j = 1, . . . ,m − 1 il sistema di equazioni differenziali

u′

j(t) =
uj+1(t) − 2uj(t) + uj−1(t)

h2
x

+ G (xj , t) (3)

Risolto (3), si avrà una approssimazione della soluzione
dell’equazione del calore per xj = jhx e t ≥ 0. Il procedimento
appena descritto è noto in letteratura come metodo delle linee.
Nel risolvere il sistema dobbiamo far attenzione alle condizioni sul
bordo

u0(t) = d0(t), um(t) = d1(t)

e ricordare che la condizione iniziale del sistema di equazioni
differenziali è

uj(0) = f (xj), j = 1, . . . ,m − 1.
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Equazione del calore.

Il sistema differenziale (3) può essere riscritto matricialmente.
Posto

u(t) := [u1(t), . . . , um−1(t)]
T

u0(t) := [f (x1), . . . , f (xm−1)]
T

g(t) :=

[

1

h2
x

d0(t), . . . ,
1

h2
x

d1(t)

]T

+[G (x1, t), 0, . . . , 0,G (xm−1, t)]
T

Λ =
1

h2
x













−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 1 −2













(4)

otteniamo che (3) è equivalente al sistema di equazioni differenziali
(lineari)

u′(t) = Λu(t) + g(t), u(0) = u0(t) (5)
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Equazione del calore.

Tra i metodi più comuni nel risolvere il problema differenziale (di
Cauchy)

{

u′(t) = F (t,u(t))
u(0) = u0

(6)

citiamo il metodo di Eulero esplicito (posto un+1 = u(tn+1))

{

un+1 = un + hF (tn,un)
u0 assegnato

(7)

e quello di Eulero implicito

{

un+1 = un + hF (tn+1,un+1)
u0 assegnato

(8)
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Equazione del calore.

Nel nostro caso
F (t, v(t)) := Λv(t) + g(t)

e quindi il metodo di Eulero esplicito genera la successione

{

vn+1 = vn + ht(Λvn + g(tn))
v0 assegnato

(9)

mentre Eulero implicito determina

{

vn+1 = vn + ht(Λvn+1 + g(tn+1))
v0 assegnato

(10)

o equivalentemente

{

(I − htΛ)vn+1 = vn + htg(tn+1)
v0 assegnato

(11)
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Equazione del calore.

Osserviamo che a differenza del metodo esplicito, poichè

{

(I − htΛ)vn+1 = vn + htg(tn+1)
v0 assegnato

(12)

ad ogni iterazione si richiede la soluzione di un’equazione (che nel
nostro caso è lineare). Usando i primi due teoremi di Gerschgorin,
si può mostrare che la matrice (I − htΛ) è definita positiva (e
quindi non singolare).
A partire da Eulero esplicito ed Eulero implicito si definiscono i
cosidetti θ−metodi in cui

vn+1 = (1 − θ) (vn + ht(Λvn + g(tn)))

+θ (vn + ht(Λvn+1 + g(tn+1))) (13)

con v0 assegnato. Per θ = 0 si ottiene il metodo di Eulero esplicito
mentre per θ = 1 si ottiene il metodo di Eulero implicito.
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Esperimento numerico.

Studiamo numericamente l’equazione del calore







∂u
∂t

= ∂2u
∂x2 + G , 0 < x < 1, t > 0

u(0, t) = d0(t), u(1, t) = d1(t), t ≥ 0
u(x , 0) = f (x), 0 ≤ x ≤ 1

(14)

per







G (x , t) = (−0.1 + π2) (exp(−0.1 · t) sin(π x))
d0(t) = 0, d1(t) = 0
f (x) = sin(π x)

(15)

avente quale soluzione

u(x , t) = exp(−0.1 · t) sin(π x).
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Esperimento numerico.
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Figura: Grafico della soluzione dell’equazione del calore (14).
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Esperimento numerico.

f u n c t i o n gt=g (t , x , delta , d0 , d1 , G )
% CALCOLA
% g( t )=(1/hx ˆ2) ∗( d0 ( t ) , 0 , . . . , 0 , d1 ( t ) )+[G( x1 , t ) , . . . , G( x

(m−1) , t ) ] .
gt=f e v a l (G , x , t ) ;
gt (1)=gt (1) +(1/delta ˆ2) ∗ f e v a l ( d0 , t ) ;
gt ( l e n g t h ( gt ) )=gt ( l e n g t h ( gt ) )+(1/delta ˆ2) ∗ f e v a l (d1 , t ) ;
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Esperimento numerico.

f u n c t i o n [ V_hist , x_mid , t_mid , hx , ht ]=cnheat ( theta , tfin , m
, f , d0 , d1 , G , time_step_factor )

% INPUT .
% th e t a : PARAMETRO DEL THETA METODO (TRA 0 ED 1 ,

POSSIBILMENTE 0 ,1 INCLUSI ) .
% t f i n : ISTANTE FINALE .
% m : DETERMINA IL PASSO SPAZIALE CON PASSO h x

=1/m.
% f : u ( x , 0 )=f ( x )
% d0 , d1 : u (0 , t )=d0 ( t ) , u (1 , t )=d1 ( t ) .
% G : ( D t ) u=(Dˆ2 x ) u+G.
% t i m e s t e p f a c t o r : IL PASSO TEMPORALE E ’

t i m e s t e p f a c t o r ∗( hx ˆ2) /2 .
% OUTPUT.
% V h i s t : SOLUZIONE ISTANTE PER ISTANTE . RIGHE

INIZ IAL I −> BASSO t .
% x mid : PUNTI INTERNI NELLA VARIABILE x .
% t mid : PUNTI INTERNI NELLA VARIABILE t .
% hx : PASSO SPAZIALE .
% ht : PASSO TEMPORALE .
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Esperimento numerico.

hx=1/m ; % DELTA=hx
matorder=m−1;

ht=time_step_factor ∗( hx ˆ2) /2 ; % STEP TEMPORALE .

x=(0:hx : 1 ) ’ ;
x_mid=x ( 2 : l e n g t h ( x ) −1 ,:) ; % PUNTI INTERNI .

u0=f e v a l (f , x_mid ) ; % VETTORE SOLUZIONE AL
TEMPO ”0” .

t=(0:ht : tfin ) ’ ; % TEMPI DA ANALIZZARE .
t_mid=t ( 2 : l e n g t h ( t ) , 1 ) ; % TEMPI t > 0 .

% COSTRUZIONE MATRICE LAMBDA.
submat=[ ze r o s (1 , matorder ) ; eye ( matorder −1) ( z e r o s (1 ,

matorder−1) ) ’ ] ;
supmat=submat ’ ;
lambda_matrix=(1/hx ˆ2) ∗( d i ag (−2∗ones (m−1 ,1) )+submat+

supmat ) ;
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Esperimento numerico.

i f theta < 1
gt_prev=g (0 , x_mid , hx , d0 , d1 , G ) ;

end

V_old=u0 ;
V_hist=[V_old ’ ] ;
err_hist =[ ] ;
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Esperimento numerico.

f o r index=2: l e n g t h (t )
% CALCOLO u ’ ( t c u r r )=LAMBDA∗u ( t c u r r )+g ( t c u r r ) ,
t_curr=t ( index ) ;
gt_curr=g ( t_curr , x_mid , hx , d0 , d1 , G ) ;
switch theta

case 1
A=eye ( s i z e ( lambda_matrix ) )−ht∗lambda_matrix ;
b=V_old+ht∗gt_curr ; V_new=A\b ;

case 0
V_new=V_old+ht ∗( lambda_matrix ∗V_old+gt_prev ) ;
gt_prev=gt_curr ;

otherwise

A=eye ( s i z e ( lambda_matrix ) )−(ht∗theta ) ∗ . . .
lambda_matrix ;

b=V_old+(ht∗(1−theta ) )∗lambda_matrix ∗V_old + . . .
( ht∗(1−theta ) ) ∗gt_prev+(ht∗theta ) ∗gt_curr ;

V_new=A\b ; gt_prev=gt_curr ;
end
V_hist=[V_hist ; V_new ’ ] ; V_old=V_new ;

end
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Esperimento numerico.

1. Il parametro m determina il passo spaziale hx = 1/m;

2. se theta=0 allora si utilizza il metodo di Eulero esplicito,
mentre se theta=1 Eulero implicito;

3. la variabile tfin determina l’istante finale;

4. il parametro timestepfactor determina il passo temporale a
partire da quello spaziale; se htmax = h2

x/2 per hx = 1/m il
passo usato da Eulero esplicito è timestepfactor*htmax;

5. in seguito la demo valuta uno dei metodi per m = 2k con
k = 2, 3, 4, calcolando le ratio e2hx

/ehx
dove si è posto

ehx
= max

i
|vi (tfin) − uxi ,tfin

)|

in cui vi (t) := v (hx )(xi , tfin) è la soluzione ottenuta dal
metodo scegliendo il parametro temporale uguale a hx = 1/m;

6. il parametro mvect all’interno dello switch iniziale, determina
gli m da analizzare.
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Esperimento numerico.

% demoexample : 1 o 2 . t h e t a 0 : EE . ; 0 . 5 : CN. 1 : EI .
demoexample =2; theta=1; mvect=[4 8 16 32 6 4 ] ;
time_step_factor_vect=ones ( s i z e ( mvect ) ) ;
switch demoexample

case 1
tfin=10; % TEMPO FINALE .
G=inline ( ’ (−0.1+ p i ˆ2) ∗( exp (( −0.1) ∗ t ) .∗ s i n ( p i ∗x ) ) ’ , . . .

’ x ’ , ’ t ’ ) ;
d0=inline ( ’ z e r o s ( s i z e ( t ) ) ’ , ’ t ’ ) ;
d1=inline ( ’ exp (( −0.1) ∗ t ) .∗ s i n ( p i ) ’ , ’ t ’ ) ;
f=inline ( ’ s i n ( p i ∗x ) ’ , ’ x ’ ) ;
solution=inline ( ’ exp (( −0.1) ∗ t ) .∗ s i n ( p i ∗x ) ’ , ’ x ’ , ’ t ’ ) ;
case 2
tfin=0.1; % TEMPO FINALE .
G=inline ( ’ z e r o s ( s i z e ( x ) ) ’ , ’ x ’ , ’ t ’ ) ;
d0=inline ( ’ z e r o s ( s i z e ( t ) ) ’ , ’ t ’ ) ;
d1=inline ( ’ z e r o s ( s i z e ( t ) ) ’ , ’ t ’ ) ;
f=inline ( ’ s i n ( p i ∗x ) ’ , ’ x ’ ) ;
solution=inline ( ’ exp ((− p i ˆ2) ∗ t ) .∗ s i n ( p i ∗x ) ’ , ’ x ’ , ’ t ’ ) ;

end
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Esperimento numerico.

err_hist_prev_m =[ ] ;
f p r i n t f ( ’ \n \ t [THETA] :%3 .3 f [ TFIN ] :%3 .3 f ’ , theta , tfin ) ;
f o r mindex=1: l e n g t h ( mvect )
err_hist =[ ] ; m=mvect ( mindex ) ; % m IN UNA LISTA .
time_step_factor=time_step_factor_vect ( mindex ) ;
[ V_hist , x_mid , t_mid , hx , ht ]=cnheat ( theta , tfin , m , f , d0 , d1

, G , time_step_factor ) ;
[ X , Y ]= meshgr id ( x_mid , t_mid ) ; % VALUTAZIONE ERRORI .
U=f e v a l ( solution , X , Y ) ; % SOL . ESATTA NELLA GRIGLIA .
% ERRORE COMPIUTO PER ”m” FISSATO .
err=norm(U ( s i z e (U , 1 ) , : )−V_hist ( s i z e ( V_hist , 1 ) , : ) , inf ) ;
err_hist=[err_hist ; err ] ;
f p r i n t f ( ’ \n \ t [m] : %3.0 f [ERROR ] : %2.2 e [ hx ] : %2.2 e [

ht ] : %2.2 e ’ , m , err , hx , ht ) ;
i f l e n g t h ( err_hist_prev_m ) > 0
f p r i n t f ( ’ [ RATIO ] : %2.2 f ’ , err_hist_prev_m ( s i z e (

err_hist_prev_m , 1 ) ) /err ) ;
end
err_hist_prev_m=err_hist ;

end
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Esperimento numerico: Eulero esplicito.

Per motivi di stabilità tipici di Eulero esplicito, il passo temporale
ht deve essere inferiore o uguale a h2

x/2. Vediamo su vari esempi
cosa succede numericamente. Dopo aver settato in demoheat il
parametro theta=0 scegliamo per esempio timestepfactor=1.5.
Quindi dalla shell di Matlab/Octave digitiamo quanto segue

>> demoheatcn

[ THETA ] : 0 .000 [ TFIN ] : 5 .000 [ TIME STEP FACTOR ] : 1 . 50 e
+000

[ m ] : 4 [ ERROR ] : 1 . 40 e+004 [ hx ] : 2 . 50e−001 [ ht ] : 4 . 69e
−002

[ m ] : 8 [ ERROR ] : 7 . 32 e+100 [ hx ] : 1 . 25e−001 [ ht ] : 1 . 17e
−002 [ RATIO ] : 0 . 00

[ m ] : 16 [ ERROR ] : NaN [ hx ] : 6 . 25e−002 [ ht ] : 2 . 93e−003 [
RATIO ] : NaN

>>
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Esperimento numerico: Eulero esplicito.

Evidentemente bisogna scegliere un parametro timestepfactor

più piccolo. Proviamo ad esempio timestepfactor=1.1.

>> demoheatcn

[ THETA ] : 0 . 0 0 0 [ TFIN ] : 5 . 0 0 0 [ TIME STEP FACTOR ] : 1 . 1 0 e+000
[ m ] : 4 [ ERROR ] : 3 . 2 5 e−002 [ hx ] : 2 . 5 0 e−001 [ ht ] : 3 . 4 4 e−002
[ m ] : 8 [ ERROR ] : 2 . 8 9 e+011 [ hx ] : 1 . 2 5 e−001 [ ht ] : 8 . 5 9 e−003

[ RATIO ] : 0 . 0 0
[ m ] : 16 [ ERROR ] : 3 . 7 7 e+149 [ hx ] : 6 . 2 5 e−002 [ ht ] : 2 . 1 5 e−003

[ RATIO ] : 0 . 0 0
>>
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Esperimento numerico: Eulero esplicito.

Il metodo non fornisce evidentemente risultati apprezzabili.
Scegliamo ora timestepfactor=1.0: il metodo di Eulero esplicito
finalmente converge.

>> demoheatcn

[ THETA ] : 0 .000 [ TFIN ] : 5 .000 [ TIME STEP FACTOR ] : 1 . 00 e
+000

[ m ] : 4 [ ERROR ] : 3 . 25e−002 [ hx ] : 2 . 50e−001 [ ht ] : 3 . 13e
−002

[ m ] : 8 [ ERROR ] : 7 . 93e−003 [ hx ] : 1 . 25e−001 [ ht ] : 7 . 81e
−003 [ RATIO ] : 4 . 10

[ m ] : 16 [ ERROR ] : 1 . 97e−003 [ hx ] : 6 . 25e−002 [ ht ] : 1 . 95e
−003 [ RATIO ] : 4 . 02

>>

In definitiva affinchè il metodo di Eulero esplicito converga, il passo
temporale dev’essere scelto dell’ordine di h2

x/2, che in molti casi
risulta essere troppo piccolo e rende il metodo non competitivo dal
punto di vista computazionale.
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Esperimento numerico: Eulero implicito.

Vediamo in questa sezione il comportamento di Eulero implicito.
Osserviamo che a differenza di Eulero esplicito richiede la soluzione
di sistemi lineari tridiagonali, ma ciò non è un problema dal punto
di vista computazionale (il costo è di 5m per ogni ti).
Proviamo il comportamento per timestepfactor=1.5, dopo aver
posto theta=1. Il metodo di Eulero implicito, a differenza di
Eulero esplicito, converge. Infatti

>> demoheatcn

[ THETA ] : 1 . 0 0 0 [ TFIN ] : 5 . 0 0 0 [ TIME STEP FACTOR ] : 1 . 5 0 e+000
[ m ] : 4 [ ERROR ] : 3 . 2 6 e−002 [ hx ] : 2 . 5 0 e−001 [ ht ] : 4 . 6 9 e−002
[ m ] : 8 [ ERROR ] : 7 . 9 5 e−003 [ hx ] : 1 . 2 5 e−001 [ ht ] : 1 . 1 7 e−002

[ RATIO ] : 4 . 1 1
[ m ] : 1 6 [ ERROR ] : 1 . 9 7 e−003 [ hx ] : 6 . 2 5 e−002 [ ht ] : 2 . 9 3 e−003

[ RATIO ] : 4 . 0 3
>>

Alvise Sommariva Equazione del calore. 21/ 24



Esperimento numerico: Eulero implicito.

Per curiosità proviamo per timestepfactor=10, quindi con un
passo temporale ht relativamente grande, ottenendo

>> demoheatcn

[ THETA ] : 1 . 0 0 0 [ TFIN ] : 5 . 0 0 0 [ TIME STEP FACTOR ] : 1 . 0 0 e+001
[ m ] : 4 [ ERROR ] : 3 . 2 6 e−002 [ hx ] : 2 . 5 0 e−001 [ ht ] : 3 . 1 3 e−001
[ m ] : 8 [ ERROR ] : 7 . 9 6 e−003 [ hx ] : 1 . 2 5 e−001 [ ht ] : 7 . 8 1 e−002

[ RATIO ] : 4 . 10
[ m ] : 1 6 [ ERROR ] : 1 . 9 8 e−003 [ hx ] : 6 . 2 5 e−002 [ ht ] : 1 . 9 5 e−002

[ RATIO ] : 4 . 02
>>
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Esperimento numerico: Eulero implicito.

Si può mostrare che in effetti, il metodo è A-stabile, e quindi non
richiede alcun vincolo sullo step temporale. Ciò significa che per
ogni valore di hx e ht la propagazione dell’errore avanzando nel
tempo è sotto controllo o come si dice il metodo è
incondizionatamente stabile. Inoltre se tanto la soluzione quanto
d0, d1, g ed f sono sufficientemente regolari allora con ovvia
notazione

max
i ,k

|u(xi , tk) − ui ,k | = O(ht + h2
x).
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Esercizio.

Eseguire gli stessi test eseguiti per Eulero esplicito col θ-metodo,
per θ = 0.25, θ = 0.5, θ = 0.75. Com’e’ il comportamento del
metodo? Simile ad Eulero esplicito o ad Eulero esplicito?
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