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Equazione del calore.

Consideriamo |'equazione del calore

%:%"FG, 0<x<1,t>0
U(07 t) = dO(t)7 U(17t) = dl(t)a t> 0 (1)
u(x,0) =f(x),0<x<1

Sia m > 0 intero e sia hy =1/med x; = jh, con j =0,1,...,m.
Si pud mostrare che per j =1,2,...,m—1e & € (xj_1,Xj+1)
@(X' t) _ U(Xj+1,t)—2U(Xj,t)—|—U(XJ‘_1,t) h2 O *u (€ )
ox2y h2 120x4
(2)
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Equazione del calore.

Tralasciando il termine finale e posto u;j(t) := u(x;, t) otteniamo
quindi per j =1,..., m— 1 il sistema di equazioni differenziali

/ uj1(t) — 2u(t) + uja(t)

() = z +Glgt) ()
X

Risolto (3), si avra una approssimazione della soluzione
dell’'equazione del calore per x; = jh, e t > 0. |l procedimento
appena descritto € noto in letteratura come metodo delle linee.
Nel risolvere il sistema dobbiamo far attenzione alle condizioni sul
bordo

up(t) = do(t), um(t) = di(t)

e ricordare che la condizione iniziale del sistema di equazioni
differenziali &

ui(0) =f(x5), j=1,...,m—1.
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Equazione del calore.

I sistema differenziale (3) puo essere riscritto matricialmente.

Posto
u(t) == [us(t), ..., um_1(t)]"
up(t) == [F(x1), ..., F(xm-1)]"
1 1 T -
g(t) = [Fdo(t),...,ﬁdl(t)] +[G(x1,1),0,...,0, G(Xm—1,t)]
-2 1 0 0 ... 0
Ll 21 0 .0
A=] 0 1 -2 1 ... 0 (4)

o 0 0 o0 1 =2
otteniamo che (3) & equivalente al sistema di equazioni differenziali

(lineari)
u'(t) = Au(t) + g(t), u(0) = uo(t) (5)
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Equazione del calore.

Tra i metodi pit comuni nel risolvere il problema differenziale (di
Cauchy)

u'(t) = F(t,u(t))
{ u(0) = ug (6)

citiamo il metodo di Eulero esplicito (posto up+1 = u(tp+1))

Upi1 = U, + hF(t,,up) (7)
up assegnato
e quello di Eulero implicito
Upt1 = Up + hF(tn—i-h un—i—l) (8)
up assegnato
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Equazione del calore.

Nel nostro caso
F(t,v(t)) := Av(t) + g(t)

e quindi il metodo di Eulero esplicito genera la successione

Vnt1 = Vp + he(Av, + g(t5)) (9)
Vo assegnato

mentre Eulero implicito determina

Vnt1 = Vp + he(Avpyr + g(the1)) (10)
v assegnato

o equivalentemente

(I - htA)Vn—i-l =Vp+ htg(tn—i-l)
Vo assegnato

(11)
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Equazione del calore.

Osserviamo che a differenza del metodo esplicito, poiche

{ (I - ht/\)"n—i-l =V, + htg(tn-i-l) (12)
Vo assegnato

ad ogni iterazione si richiede la soluzione di un'equazione (che nel
nostro caso & lineare). Usando i primi due teoremi di Gerschgorin,
si pud mostrare che la matrice (/ — h:A\) & definita positiva (e
quindi non singolare).

A partire da Eulero esplicito ed Eulero implicito si definiscono i
cosidetti §—metodi in cui

Vo1 = (1—=0)(vy+ he(Av, + g(tn)))
+0 (v + he(AVay1 + g(ths1))) (13)

con vg assegnato. Per § = 0 si ottiene il metodo di Eulero esplicito
mentre per § = 1 si ottiene il metodo di Eulero implicito.
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Esperimento numerico.

Studiamo numericamente |'equazione del calore

2
u—944G6,0<x <1, t>0

U(O? t) = dO(t)v U(]., t) = dl(t)v t>0 (14)
u(x,0) =f(x),0<x<1
per

G(x,t) = (—0.1 + 72) (exp(—0.1 - t) sin(7 x))
do(t) =0, di(t) =0 (15)
f(x) = sin(7 x)

avente quale soluzione

u(x, t) = exp(—0.1- t) sin(m x).
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Esperimento numerico.

0.7 s




Esperimento numerico.

function gt=g(t,x,delta,d0,dl,G)

% CALCOLA

% g(t)=(1/hx"2)*(d0(t) ,0,...,0,d1(t))+[G(x1,t) ,...,G(x-
(m-1).¢)].

gt=feval (G,x,t);

gt(1l)=gt(1l)+(1/delta”"2)xfeval(do,t);

gt(length(gt))=gt(length(gt))+(1/delta”2)xfeval(dl, t);
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Esperimento numerico.

function [V_hist,x_mid,t_mid,hx,ht]=cnheat(theta,tfin,m
,£,d0,d1,G,time_step_factor)

% INPUT .

% theta : PARAMETRO DEL THETA METODO (TRA 0 ED 1,
POSSIBILMENTE 0,1 INCLUSI).

% tfin : ISTANTE FINALE.

% m : DETERMINA IL PASSO SPAZIALE CON PASSO h_x
=1/m.

% f ©ou(x,0)=f(x)

% d0, d1 : u(0,t)=d0(t), u(l,t)=dl(t).

% G : (D_t)u=(D"2_x)u+G.

% time_step_factor: IL PASSO TEMPORALE E’
time_step_factor*(hx"2) /2.

% OUTPUT .

% V_hist : SOLUZIONE ISTANTE PER ISTANTE. RIGHE
INIZIALlI —> BASSO t.

% x_mid : PUNTI INTERNI NELLA VARIABILE x.
% t_mid : PUNTI INTERNI NELLA VARIABILE t.
% hx : PASSO SPAZIALE.

% ht : PASSO TEMPORALE.
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Esperimento numerico.

hx=1/m; % DELTA=hx

matorder=m—1;

ht=time_step_factor x(hx"2)/2; % STEP TEMPORALE.

x=(0:hx:1) ;

x_mid=x(2:length(x) —1,:); % PUNTI INTERNI.

uO=feval (f,x_mid); % VETTORE SOLUZIONE AL
TEMPO "0".

t=(0:ht:tfin) ’; % TEMPI DA ANALIZZARE.

t_mid=t (2:length(t), 1); % TEMPI t > 0.

% COSTRUZIONE MATRICE LAMBDA.

submat=[zeros (1,matorder); eye(matorder —1) (zeros(1,
matorder —1)) '];

supmat=submat ';

lambda_matrix=(1/hx"2)*(diag(—2%ones(m—1,1))+submat+
supmat ) ;
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Esperimento numerico.

if theta < 1
gt_prev=g(0,x_mid , hx,d0,d1,G);

end

V_o0ld=u0;
V_hist=[V_old '];
err_hist =[];
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E imento numerico.

for index=2:length(t)
% CALCOLO u’( t_curr)=LAMBDAxu(t_curr)+g(t_curr),

t_curr=t(index);
gt_curr=g(t_curr,x_mid,hx,d0,d1,G);
switch theta

case 1

A=eye(size(lambda_matrix ))—ht*lambda_matrix;
b=V_old+htxgt_curr; V_new=A\b;
case 0

V_new=V_old+ht*(lambda_matrix*V_old+gt_prev);
gt_prev=gt_curr;
otherwise

A=eye(size(lambda_matrix))—(ht*theta) *..
lambda_matrix;

b=V_old+(ht*(l—theta))*lambda_matrix*V_old+...

(ht*(l—theta))*gt_prev+(htxtheta)*gt_curr;
V_new:A\b; gt_prev=gt_curr,;
end
V_hist=[V_hist; V_new'];

V_old=V_new;
end
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Esperimento numerico.

1. Il parametro m determina il passo spaziale hy = 1/m;

2. se theta=0 allora si utilizza il metodo di Eulero esplicito,
mentre se theta=1 Eulero implicito;

3. la variabile tfin determina l'istante finale;

4. il parametro timestepfactor determina il passo temporale a
partire da quello spaziale; se hymax = h2/2 per hy = 1/m il
passo usato da Eulero esplicito & timestepfactor*htmax;

5. in seguito la demo valuta uno dei metodi per m = 2k con
k =2,3,4, calcolando le ratio eyp /en, dove si & posto

e, = max|vi(tgin) — txe )|

in cui v;(t) := v(")(x;, t5,,) & la soluzione ottenuta dal
metodo scegliendo il parametro temporale uguale a hy = 1/m;

6. il parametro mvect all'interno dello switch iniziale, determina
gli m da analizzare.
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Esperimento numerico.

% demoexample: 1 o 2. theta O0:EE.; 0.5: CN. 1:EI.
demoexample =2; theta=1; mvect=[4 8 16 32 64];
time_step_factor_vect—ones(size(mvect));

switch demoexample

case 1

tfin=10; % TEMPO FINALE .

G=inline (' (—0.1+pi "2)x(exp((—0.1)xt).xsin(pi*xx))’ ,...
xL ),

dO:inline('zeros(size(t))','t’);

dl=inline( 'exp((—0.1)xt).xsin(pi)','t");

f:inline('sin(pl*x)','x');

solution=inline( 'exp((—0.1)*t).xsin(pixx)", 'x","t");

case 2

tfin=0.1; % TEMPO FINALE .

G=inline( ' zeros (size(x ))xt)

dO0=inline( 'zeros (size(t)
dl=inline( 'zeros (size(t)
f=inline('sin(pi*x) , x’
solution=inline( 'exp((—p
end

)y
)
)i

"2)xt) .ksin(pixx)’,'x',t");
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Esperimento numerico.

err_hist_prev_m=][];
fprintf(’'\n \t [THETA]:%3.3f [TFIN]:%3.3f ' ,theta,tfin);
for mindex=1:length (mvect)
err_hist =[]; m=mvect(mindex); % m IN UNA LISTA.
time_step_factor—time_step_factor_vect(mindex);
[V_hist,x_mid,t_mid, hx,ht]=cnheat(theta,tfin,m,f,d0,d1l
,G,time_step_factor);
[X, Y]=meshgrid(x_mid,t_mid); % VALUTAZIONE ERRORI.
U=feval(solution ,X,Y); % SOL. ESATTA NELLA GRIGLIA .
% ERRORE COMPIUTO PER "m" FISSATO.
err=norm(U(size(U,1) ,:)—V_hist(size(V_hist,1) ,:),inf);
err_hist=[err_hist; err];
fprintf(’'\n \t [m]: %3.0f [ERROR]: %2.2e [hx]: %2.2e |
ht]: %2.2e’, m, err,hx,ht);
if length(err_hist_prev_m) > 0
fprintf (' [RATIO]: %2.2f", err_hist_prev_m(size(
err_hist_prev_m,l))/err );
end
err_hist_prev_m—err_hist;
end
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Esperimento numerico: Eulero esplicito.

Per motivi di stabilita tipici di Eulero esplicito, il passo temporale
h; deve essere inferiore o uguale a h2/2. Vediamo su vari esempi
cosa succede numericamente. Dopo aver settato in demoheat il
parametro theta=0 scegliamo per esempio timestepfactor=1.5.
Quindi dalla shell di Matlab/Octave digitiamo quanto segue

>> demoheatcn
[THETA]: 0.000 [TFIN]: 5.000 [TIME STEP FACTOR]: 1.50e

-+000

[m]: 4 [ERROR]: 1.40e+004 [hx]: 2.50e—001 [ht]: 4.69e
—002

[m]: 8 [ERROR]: 7.32e+100 [hx]: 1.25e—001 [ht]: 1.17e

—002 [RATIO]: 0.00
[m]: 16 [ERROR]: NaN [hx]: 6.25e—002 [ht]: 2.93e—003 |
RATIO]: NaN

>>
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Esperimento numerico: Eulero esplicito.

Evidentemente bisogna scegliere un parametro timestepfactor
pit piccolo. Proviamo ad esempio timestepfactor=1.1.

>> demoheatcn
[THETA]:0.000 [TFIN]:5.000 [TIME STEP FACTOR]:1.10e+000

[m]: 4 [ERROR]:3.25e—002 [hx]:2.50e—001 [ht]:3.44e—002

[m]: 8 [ERROR]:2.89e+4011 [hx]:1.25e—001 [ht]:8.59e—003
[RATIO]:0.00

[m]: 16 [ERROR]:3.77e+149 [hx]:6.25e—002 [ht]:2.15e—003
[RATIO]:0.00

>>
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Esperimento numerico: Eulero esplicito.

Il metodo non fornisce evidentemente risultati apprezzabili.
Scegliamo ora timestepfactor=1.0: il metodo di Eulero esplicito
finalmente converge.

>> demoheatcn
[THETA]: 0.000 [TFIN]: 5.000 [TIME STEP FACTOR]: 1.00e

+000

[m]: 4 [ERROR]: 3.25e—002 [hx]: 2.50e—001 [ht]: 3.13e
—002

[m]: 8 [ERROR]: 7.93e—003 [hx]: 1.25e—001 [ht]: 7.81e

—003 [RATIO]: 4.10

[m]: 16 [ERROR]: 1.97e¢—003 [hx]: 6.25e—002 [ht]: 1.95e
—003 [RATIO]: 4.02

>>

In definitiva affincheé il metodo di Eulero esplicito converga, il passo
temporale dev'essere scelto dell’ordine di h2/2, che in molti casi
risulta essere troppo piccolo e rende il metodo non competitivo dal
punto di vista computazionale.
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Esperimento numerico: Eulero implicito.

Vediamo in questa sezione il comportamento di Eulero implicito.

Osserviamo che a differenza di Eulero esplicito richiede la soluzione

di sistemi lineari tridiagonali, ma cio non & un problema dal punto

di vista computazionale (il costo e di 5m per ogni t;).

Proviamo il comportamento per timestepfactor=1.5, dopo aver

posto theta=1. |l metodo di Eulero implicito, a differenza di

Eulero esplicito, converge. Infatti

>> demoheatcn

[THETA]:1.000 [TFIN]:5.000 [TIME STEP FACTOR]:1.50e-+000

[m]:4 [ERROR]:3.26e—002 [hx]:2.50e—001 [ht]:4.69e—002

[m]:8 [ERROR]:7.95e—003 [hx]:1.25e—001 [ht]:1.17e—002
[RATIO]:4.11

[m]:16 [ERROR]:1.97e—003 [hx]:6.25e—002 [ht]:2.93e—003
[RATIO]:4.03

>>
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Esperimento numerico: Eulero implicito.

Per curiosita proviamo per timestepfactor=10, quindi con un
passo temporale h; relativamente grande, ottenendo

>> demoheatcn
[THETA]:1.000 [TFIN]:5.000 [TIME STEP FACTOR]:1.00e+001

[m]:4 [ERROR]:3.26e—002 [hx]:2.50e—001 [ht]:3.13e—001

[m]:8 [ERROR]:7.96e—003 [hx]:1.25e—001 [ht]:7.81e—002
[RATIO]: 4.10

[m]:16 [ERROR]:1.98e—003 [hx]:6.25e—002 [ht]:1.95e—002
[RATIO]: 4.02

>>
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erimento numerico: Eulero implicito.

Si pud mostrare che in effetti, il metodo & A-stabile, e quindi non
richiede alcun vincolo sullo step temporale. Cio significa che per
ogni valore di hy e h; la propagazione dell'errore avanzando nel
tempo & sotto controllo o come si dice il metodo &
incondizionatamente stabile. Inoltre se tanto la soluzione quanto
do, di, g ed f sono sufficientemente regolari allora con ovvia
notazione

max lu(xi, t) — ui k| = O(hs + h2).

)
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Esercizio.

Eseguire gli stessi test eseguiti per Eulero esplicito col 6-metodo,
per 8 =0.25, 6 = 0.5, § = 0.75. Com’e’ il comportamento del
metodo? Simile ad Eulero esplicito o ad Eulero esplicito?
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