The QR Transformation
A Unitary Analogue to the LR Transformation—Part 1

By J. G. F. Francis*

The LR transformation, due to Rutishauser, has proved to be a powerful method for finding the
eigenvalues of symmetric band matrices. Little attention, however, has been paid to its applica-
tion to the more difficult problem of finding eigenvalues of general unsymmetric matrices. If the
matrices are large two important difficulties are likely to occur. Firstly, triangular decomposition,
which is the basis of the method, is by no means always numerically stable, and secondly, the
amount of computation required by the method is likely to be very great. This paper describes
an algorithm similar to the LR transformation except that the transformations involved in it are
all unitary and can thus be expected to be numerically stable. It is then shown that there are
various advantages in first converting the matrix to almost-triangular form; in particular, the
amount of work involved in the algorithm can then be greatly reduced.

Part 1 of the papert is largely concerned with proof of convergence, and the theoretical aspect.
Part 2, to be published in January, discusses practical computation and gives results of experiments.

1. Introduction

There is a wide-spread belief that the similarity trans-
formation of matrices by unitary transformations should
show particular numerical stability when used in com-
puting their eigenvalues. A sense in which this is true
has recently been proved by Fike (1959). It may well
be that, in practice, if we can replace 2 X 2 unitary
matrices in a calculation by elementary transformations
(including permutations of rows and columns), we
should do so and expect equally good results for much
less work. However, the attraction of unitary trans-
formations and rotations remains, based partly on the
success of their application to finding eigenvalues of
symmetric matrices and partly on their suitability for
mathematical analysis.

Whenever it is possible, a valuable way of regarding
many methods for finding eigenvalues is to consider the
similarity transformation on the matrix implied by the
method. This transformation often causes a concentra-
tion of information about the eigenvalues by a process
involving elimination of elements in the matrix. When
the LR transformation developed by Rutishauser (1958)
is looked at in this way, we see it as a series of similarity
transformations on the matrix, each of which consists
of the pre-multiplication by a matrix which eliminates
the subdiagonal elements, and the post-multiplication
by its inverse.

The transformation matrices used by Rutishauser are
triangular. In this paper it is proved that the trans-
formations can be unitary, and the QR transformation,
as | have (somewhat arbitrarily) named this modification
of Rutishauser’s algorithm, is shown to be particularly
suitable for unsymmetric matrices which are first redced
to almost-triangular form.

* Formerly of the National Research Development Corporation.
t Part 1 was originally received on 29 October 1959 and
re-submitted, with Part 2, on 6 June 1961.
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In the present part of the paper we are concerned with
QR transformation from a theoretical point of view;
in Part 2 I shall outline a practical program and give
experimental results.

Statement of the LR Transformation

Rutishauser (1958, and in other papers) has described
an iterative procedure for finding the eigenvalues of a
wide class of matrices. The method consists of forming
a sequence of matrices A% where A’V = A4 the original
matrix, and A%+ D is derived from 4% by decomposing
it into lower and upper triangular matrices, L*¥> and R,
and forming the product of these in the reversed order.
Thus:

A® — LEORK)
AUk — RK LK),

It can readily be seen that the process consists of a
series of similarity transformations on the original
matrix:

Ak D) — L)1 4R LK)
— LWLk DL I L[ Lk,

Rutishauser shows that if certain conditions are ful-
filled then, as k — o0, so A%) tends to an upper triangular
matrix of which the diagonal elements are the eigen-
values in order of modulus, the first being the largest.

The Unitary-Triangular or QR Transformation

It is well known that the triangular decomposition
A = LR can lead to gross inaccuracies when a pivotal
element r;; of the upper triangular matrix R is small
(which can happen even though the determinant of A4 is
not small). Moreover, automatic fixed-point compu-
tation of the decomposition is difficult to program as
numbers of any magnitude can be generated; also, if a
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pivotal element is actually zero then the process breaks
down. The conditions for convergence given by
Rutishauser (1958, theorem 3) are irrelevant to these
difficulties in the early stages of the LR transformation;
for example, the conditions can be fulfilled and yet the
first element of 4 may be zero, making triangular
decomposition altogether impossible.

Now one way of obtaining the matrix R — L '4 is
by elementary transformations which eliminate the sub-
diagonal elements of 4 in turn. This is reminiscent of
methods for the triangular reduction of a matrix in
inversion or the solution of simultaneous equation:
thus we might ask the question whether a more stable
method of triangulation can be built into a similar
algorithm to the LR transformation. In particular, can
we form R from A by either Gaussian elimination with
interchange of rows (to select the largest pivot), or else
by elimination with unitary transformations? Both
these methods [for the first, see Wilkinson (1959a)]
involve exceptionally little (perhaps minimal) loss of
accuracy, and are easy to program in fixed-point
arithmetic.

Here we shall confine discussion to the method of
unitary transformations. The suggested algorithm is as
follows.

The matrix 4% is decomposed into the product of a
unitary matrix Q¥ and an upper triangular matrix R
This can be done by pre-multiplying 4¥> by a unitary
matrix QW* — (QW) ! chosen so as to reduce A% to
an upper triangle. A% 1 is formed by post-multiplying

R™® by Q. Thus
AWM — 4
AR — QUWRK Ak D — ROQ® ke —1,2,... (1)

The matrix Q¥> may be found explicitly or may only
exist as a product of simple factors.

As in the LR transformation we can also write the
algorithm as a similarity transformation:

A(k 1) — Q(k)*Q(k*—l)* . Q(l)*AQ(l)Q(l) . Q(A). (2)

The unitary-triangular decomposition of any square
matrix exists. The diagonal elements of the triangular
matrix can always be made real and positive, and if
this is so, and the matrix is non-singular, then the
decomposition is unique. We shall prove this in
theorem 1.

We shall prove below that, if certain conditions are
fulfilled, the matrix 4> tends to an upper triangular
matrix as k — oo, the diagonal elements of which are
the eigenvalues of A. We know, a priori, by a theorem
due to Schur, that any matrix can be reduced to a
triangular matrix by a similarity transformation using a
suitable unitary matrix.

2. Notation

Small Greek letters denote scalars. Capital letters
represent matrices generally with complex elements.
Lower-case letters in bold-face type denote column
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vectors or the columns of matrices. They usually have
a suffix giving their position in an array. The elements
of a column or vector appear in light-face type with one
more suffix.

If we write a bar over a square matrix we mean the
rectangular matrix obtained by omitting its first column.
A bar over a vector indicates that we omit its first
element.

The conjugate transpose of the matrix A is written 4*;
by A* we mean (4)*. Row vectors always have an
asterisk.

The modulus of the scalar A is written |A| and its
complex conjugate A. The length of the vector a, (a*a)},
is written ||a||.

The determinant of the matrix A4 is written |A].

The unit matrix, written I (or 1, if we wish to express
its order), has columns e, e,, ..., e,. Normally the
dimensions of a matrix will be implicit in the context.

If a matrix has a suffix or superfix in brackets the
same affix usually appears in brackets with its columns
and elements. Thus, for example,

AW = [a], a,...] = [a®

B,' — [b(,'))_, b(,’)3, . ]

and 0% — [e, €p, .. ).

3. Unitary-Triangular Decomposition; the Fundamental
LR/QR Theorem

Lemma. For any vector b with say m elements (in
general complex) a unitary matrix M exists such that
M#*b = ||b||e,. (This implies M*b = 0, mtbh = [|b||.)

When b is zero, M can be any unitary matrix. We
will consider b 5= 0, in which case the first column of M
is uniquely determined.

We mean by an elementary unitary matrix one that
differs from the unit matrix at most in one principal
2 x 2 submatrix. This submatrix (say of the matrix T)
has the general form:

t;; ti;] _ [e*cost — i sin ¢
tji t;,]  Le¥sinf e cos 0 |
where «, B8, v, d and farerealand « — B — y + 6 =0
(mod 2).
A unitary matrix M*, such that M*b — ||b||e,, can

conveniently be constructed out of a series of elemen-
tary unitary matrices, M* = T,T,_,...T,. 1f b is
multiplied in turn by the T,, then T, makes the first
element b, of b real and non-negative, and the other trans-
formations eliminate in turn the remaining elements
b, (r=23,...,m).

We define T, = I if b, = 0 for all p < r. Otherwise
the elements of T, are given by ) = §,;, except for

00, 17, 17 and 17,

S

1

|

For r=1, V= (T, is a diagonal matrix);
11 1

S

l

1
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f 2.3 r(r) ,(r) (1 |br|2 )i
or r = o m, = = —
s s 11 rr Z |bp[2
p-r
0 = — i) =
' SOl ADE
P r

(Expressed in the general form above, the non-trivial
submatrices of the T, each have o« = 8 =0 and
—m/2 < 0 < =/2 with the exception of T, for which «
is not necessarily zero.)

The first column, m,, of M is unique for since

M*b — [|be,

we have Me, b.

=m, = .
b1l

Later we will refer to the above procedure for forming
M, but for complete generality, M, the rectangular
matrix consisting of all but the first column of M, can
be replaced by MG, where G is any unitary matrix of
order m — 1.

We can now prove:

THEOREM 1. For any matrix A (of order n, say)t there
exists a unitary matrix Q such that A = QR where R 1s
an upper (right) triangular matrix which has real, non-
negative, diagonal elements. Moreover, Q is unique if
A is non-singular.

Proor. By the lemma we can transform A so as to
eliminate the subdiagonal elements column by column
starting on the left, and thus reduce it to a triangle.

We define B, — A and form B; ,— M#B; for
i=1,2,...n— 1 (the bars indicate omission of first
row of M¥ and column of B;). M, is determined for
i=1,2,...,n such that M?}b;, = ||bu)|le; (where
b is the first column of B;).

I, ;0 .
If N, = l: : j|, where M, is of order n — i+ 1,

0 M,
then NN} ,...Njd =R, where r;; = ||b. || and
ri;=0fori>j

Thus, if Q = N|N,...N, we have 4 = QR as in
the theorem.

Now suppose that we have two unitary-triangular de-
compositions 4 = @R, = Q,R,. 1If A is non-singular
then so are R, and R,; we then have R\ R5' = QF0,
and, as QFfQ, is unitary, (R;R;")~'= (R,R;)*,
which shows that R,R5 ! is diagonal, since the left-hand
side is upper-triangular and the right-hand side lower-

triangular. Furthermore, if we consider the diagonal,
FoyiilFayii = FayiilToyii an.d‘ therefore, as the r);; and
ryi; are real and positive, r¢y;; = roy;;.  Hence

RR;!' = Iand so @, = @, and Q is unique.
The above proof effectively gives a method for per-
forming the first half of one step of the algorithm (1);

t Subsequently we will assume that the matrix 4 has order n.
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the step would be completed by post-multiplying the
triangular matrix R by the matrices N, N5, ..., N, in
turn.

We now obtain a similar result to the fundamental
theorem 1 of Rutishauser (1958).

Equation (2) gives QD ... Q% DA® — 4O Q%D
and, as A% = QWRW we have

O .. QWRK — AQW . Q% D
O .. QW-=DRK D — 4O QK 2

and so on.

If we write P®) — QQ2) Q)
and §® — RORK-1 | R
then PXSK — QOO | QWRMRK D R
— AQM) .. Q% DR* D R
— AZQ(I) . Q(/\’ Z)R(/\‘ 2) R R(l)

and by repeated substitution we get PXS®) — 4k,

Since P® is unitary and S® is triangular, and the
unitary-triangular decomposition of a non-singular
matrix is unique (by theorem 1), we obtain:

THEOREM 2. If A is non-singular, the matrix
PR =0Qm . QF, such that A% D —= PR*4PK
can be derived from the unitary-triangular decomposition
of A%, viz. A = PWS®,

The first step in the proof of the convergence of the
method is an analysis of the triangulation of 4%,

4. The Analysis of 4% = P®S®, Convergence

We shall now assume that 4 is non-singular and that
its eigenvalues have distinct moduli.
As in the proof of theorem 1, since P)* triangulates
A%, we can write P® — NONK - N®  where
I, { O . : .
N® = [OI IMW:l and the matrices M® are given
1
by the equations:
M?“*bﬁ,"}n = ||b§§;l||el 3)
B® = M®*B®  and B — Ak
- 1 1

(Note that the superfix (k) gives the stage of the
QR transformation and the suffix / the stage of the
triangulation.)

Now let us assume that at some value of 7

B® — Y®pLX @)

where Y and X, (which is independent of k) are non-
singular matrices of order m =n —i-+ 1 and A; is a
diagonal matrix whose elements are some particular
selection of m eigenvalues of 4. The ordering of the
Aciri» X(ipr and p(8), is as yet undetermined.

Temporarily omitting the suffix / we have

m

B — YWAKX* — E )\’,"y‘,""x;“ (5)
r=1

r

m
and therefore 59 = EI AL 0.
o
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From (3), M®* b» — 0

m [
so that > AKX MR — 0, (6)
r=1
We now use the condition on the eigenvalues of A.
Because of subsequent considerations of convergence
we arrange the A,. x, and y® so that A, is the largest
(in modulus) of the A, for which x;, # 0 (we can cer-
tainly make this choice since X is non-singular).
Thus, from (6), we obtain:
= , & Xir i :
MMEHEPE — — 3 A% I MRy k) )
r=2 X1
Defining ¥, as the (im — 1)-vector containing all but
the first element of x, we have, from (5),

_ m . _ m —
B® — % MyoxF and M®O*B® = 3 A R% ) %

r=1 r=1

which, with (7), gives

. _ m . _ Xy, %
M®*B® — %, A§M<k)*ygk>[x,,~4’xl].
X1

r=2

Thus, since  BX; = M®»*B® we can write

_ oy Ak
BR = YRLAF X (8)
where, for r = 2,3, ..., n:
= X(iytr= i
X(is hr-1 = X(iy X1 |
Xy |
y r ©)
(k) A%k .
Yitnr—1 = M )*J’E.';r [
i 1= Ay J

Hence B®, has the same form as B*. Neither X
nor Y which are square and of order m — 1, can
be singular since, in (8), B{)  and Af ., are non-singular.

This is clearly true because |4| = |B¥),|. II |5 ]]
and |A4| # 0. r=1

At this stage in the analysis we also define A; = Ay

Now, as there are no equal eigenvalues, 4 may be
diagonalized and U*A4V = A, where V and U* = y-1
are the matrices of right and left eigenvectors. We
therefore put B® = 4% — VAU*, and define
Y =Y, =V, X, = U and A; = A, and thus have,
by induction, an analysis of the triangulation of Ak

In this analysis the order Aj, Ay, ..oy Ayl 8y, Uy, - o Uy
and v,,v,, . . ., v, has been determined by the nature of
X, = U. ltis quite easily verified that the order is such

that, for each i, the minor

|
Pupg U Uy
IuZI Upy o o . Upj
Pi:i 1‘
|
[Uj Ui Uiy

is non-zero and A; is the largest in modulus of the
A;,j =i — 1, such that this is so.

The matrix X, is derived from X; thus:

[ 1 M2 M3 - - - 77:11— ﬂ'\‘(i)ll 0...07
1 X21
0 :
Xi ) o : Xi
— 1_ x_'\‘(i)ml
X(iyir i
where n,= — (—L" SO we have pi = “ .\'(,)“‘
X1 re=1

The Convergence of Q%

Let us suppose that we have a set of matrices

L0
NE’\ = 1:0 Mi(k l)}

such that, if P*—D = N(-DNE=D __ NE D then
PG*-Dxgk-1 — §k=D g triangular. Thus, in the
analysis of the decomposition of A¥~!', we know the
matrices Y D,

We shall first prove by induction that, in the analysis
of the decomposition of A, the matrices Y{¥ can be
determined such that Y® — Y D as k — oo.

Let us assume that, for some value of i,

Y® > Yk, (10)

k =
From (4), bﬁ‘h = El /\(i)rx(i)lryg(;r
r=

and so, since Xy %1171 = A%y is the dominant
term in this sum (p¥), == 0 because Y'¥) is non-singular
y 1 i g

@)
we have, as k — o0,
_l_ T ;1 Nz (k)
XA (i)! [XE| iX(h11 Y
1 1

- 1 1 1s -
and similarly ik bV — RuR ety V-
Therefore, using (10) we obtain
1

IR rVE by V- (11)

We now form M® by modifying M- 1.

If ¢l = M¥E-D*b,.  we construct a matrix
z® —=T,T, ,...T, by the procedure used in the
lemma in Section 3 such that Z{el = ||cf)|le;.
Since, from (11),

_1,, k) — L MK - D*pk)
3 €6 g - M
1
A A
i (k- Dxpk—1) _ i k—1)
— | M= Dxp D — 0 165V
] 1

it follows that, for r > 1, the T,—1I (because
(=10 —1land @) = — 1) —=0). For r=1 the
(1 (1 Etk;l —i
is oi | () AL
element (] of T is given by #{} = K I
(i
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Thus M®* = ZOME D* — T MK* /\')*, and so we

can write M® — M*-D and m®), — Lml . This
O Mo

is combined with (10) to give MP* YR . Mk ¥y k- D
and therefore, since from (9) Y, = M®*Y®  we
obtain Y  — YD which is similar to our initial
assumption.

When i = 1, Y{¥ = YD — ¥, which completes the
induction. We have simultaneously shown that, as

k — oo, each M® — M -1 and each m{), — mmgf)f"
1

Now the ith column of P%*) is given by:
I V103 VI AL (K k)

P = MPMP . Mt('—)lm((i)l
so we have proved that, as k — oo, p{¥ — |—)\—"| LpkD
i

1

and that this is true for whatever way in which the

unitary-triangular decomposition of A% is determined

since, by theorem 1, the decomposition is unique. The

method used above for forming M, MP. ... MP is

chosen for convenience in proving convergence.
Finally, since Q&) = P*—D*P&) we have

, : o A
q’(jg) prf‘ ,..1)*1,!(1\) s i/\ﬁ| . Sij
1
and thus Q) = lim Q¥ exists and is a diagonal matrix,
Ai
the ith element on the diagonal being Wl

We can now prove:

THEOREM 3. If any non-singular matrix A has eigen-
values of distinct modulus, then under the QR transforma-
tion the elements below the principal diagonal tend to
zero, the moduli of those above the diagonal tend to fixed
values, and the elements on the principal diagonal tend to
the eigenvalues.

PrROOF. Since AKX = QWRKX and lim QW = Q)

i

A
exists and is diagonal with ¢{?* = i we have

1

A
k) % ¢ ¢ . £ ¢ _ ! (K
lf) €t QUIRWe,; — efQIRWe, = 311D,
1

Thus below the diagonal lim a{®¥’ = 0 because R is

triangular.  Also, since QWR®) — R DO D we

have Q(*)R® — R* DO and thus

A ro o Sl k=D g0 that  lim|[AR] = lim |a{¥)

T il = i
U J

exists—in particular above the diagonal. The elements
a'® clearly tend to the eigenvalues.

5. Eigenvalues of Equal Modulus

It is possible to show by a more general treatment than
that given in Section 4 that, if the matrix 4 has some
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eigenvalues of equal modulus, then the matrix A%
becomes split into independent principal submatrices
coupled only in so far as the eigenvectors are concerned.
These submatrices are normally, but not always, each
associated with groups of eigenvalues of the same
modulus, a sufficient condition for this being that for
any group, say all the A, for p <r < g + 1 such that
M= N =12

the two minors

.

! |

Uy Uy Uy Uy Upy ..Uy
I Uy Uyy . . . Uy CUry Uyy . .. qu ‘
| | |
| o] \
| | |

| .

| Upy Upy « - - Upp | | uql uqz e uqq

should not be zero.

In this case the ¢ — p eigenvalues A, will be the limiting
values of the roots of the submatrix [a{F], p<(i, )) <q-+1;
the elements not included in this submatrix with both
i > p and j < g converge to zero.

If the above condition holds and a group of eigen-
values are all equal, then (so long as the matrix can be
diagonalized) this group will be resolved as a strictly
diagonal submatrix.

On the other hand, if there are no eigenvalues of equal
modulus apart from equal eigenvalues (e.g. a positive
definite matrix), and the matrix can be diagonalized,
then one can show that no further conditions are required
for all the eigenvalues to be resolved in the limit (cf.
Rutishauser, 1958, theorem 4).

6. Normal, Hermitian and Band Matrices

The matrices of both left and right eigenvectors of a
normal matrix are the conjugate transpositions of one
another and are therefore unitary; thus A4 = VAV*.
(If A4 is hermitian A is real, and if also real ¥ is ortho-
gonal.) Hence it follows that if 4 is normal (hermitian
or real symmetric) then so is A%+ = pPR*4pk
(P® is orthogonal if A is real symmetric). In the limit
A® is diagonal because, since it is triangular and normal,
we have

S a2 A = trace (494®) = £ B
i o

We therefore obtain:

THEOREM 4. Under the QR transformation a normal
(hermitian or real symmetric) matrix remains normal
(hermitian or real symmetric) and tends to a diagonal
matrix if the eigenvalues are non-zero and have distinct
moduli.

If the matrix 4 has zeros in position (i,j) for all
i > j + d, for some d the matrix Q has the same elements
zero and therefore so does RQ. Clearly, when a;;=a;;,
we have:
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THEOREM 5. If A is a hermitian band matrix then the
matrices A® generated from it by the QR transformation
are also band matrices of the same width.

Notice that if 4 is not hermitian the band property is
not retained.

There is also an interesting connection between the
QR and the LR transformations when the matrix is
hermitian. The LR transformation using hermitian
Choleski decomposition gives

A%® D — RORW* where RW*RW — AW and AV — 4,

the underlining distinguishing the LR from the QR case.
Thus if we write A%V = SWAS® -1 where

S® = RWORK-D R we have A+ — SKI*SK),
Now we obtain A% = P®¥S*® from the QR trans-

formation and thus A**4% — 42 = SK*§H) a5 4 |s
hermitian. Thus

A2k — SKI*GkK) — S—‘(Zk)*S;(Zk)’

and since Choleski decomposition is unique we see that
S®) = §C0 and A%+ = 42k D which shows that the
QR transformation generates alternate members of the
series of matrices generated by the LR (Choleski)
transformation.

We can also see why it is that, whereas the LR trans-
formation requires a positive definite hermitian matrix
for necessarily stable Choleski decomposition, the QR
transformation can be applied safely to any matrix.

7. The Hessenberg Almost Triangular Form as Starting
Matrix

It is not claimed that the QR transformation is likely
to be useful for finding eigenvalues when the matrix
involved is hermitian, because other very satisfactory
methods involving less work exist for these matrices.
We are thus mainly interested in the use of the QR
algorithm for finding the eigenvalues of unsymmetric
matrices. Now the amount of computation that the
method involves in one iteration on a general matrix is
rather large (proportional to n?), but if the matrix is
first reduced to “‘almost triangular” or Hessenberg form
the amount can be considerably decreased (made pro-
portional to n?). We will show below that there are
also other important advantages in using this form.

An almost triangular matrix has zeros in position (i, j)
for i > j 4 1. Perhaps the best method for reducing a
matrix to this form is one which makes use of elementary
similarity transformations (combined with permutations
to keep all multiples less than one) to eliminate in turn
the unwanted elements in the columns, starting on the
left. This procedure has been described, for example,
by Wilkinson (1959b). Alternatively, the elements can
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be eliminated in the same sequence by unitary trans-
formations, though such methods (Givens, 1958 : Wilkin-
son, 1960) involve more work. Each of these methods
proves to be numerically stable.

We now give some of the relevant properties of the
almost triangular matrix. We shall denote the sub-
diagonal elements a;; ., by «;, i = 2,3, ... n.

We first notice that, if any element «, is zero, then the
matrix can be partitioned at this point, and the sub-
matrices [a;;] with (i,j) < r and with (i,j) > r can be
treated separately (in so far as the eigenvalues are
concerned).

THEOREM 6. The almost triangular form of a matrix
is preserved under the QR transformation.

This is because the matrices Q%) in the algorithm are
also almost triangular.

THEOREM 7. If all the elements a; are non-zero and
the matrix can be diagonalized (i.e. has no non-linear
elementary divisors) then it can have no repeated eigen-
values.

This well-known result follows from the fact that the
rank of 4 — Al is never less than n — | for any value
of A since the product of the elements «; forms a non-
zero minor of order n — 1.

Conversely, if an almost triangular matrix with linear
elementary divisors has groups of repeated eigenvalues,
and if there are p members in the largest group, then,
however it may have been formed, there will be at least
p — 1 zero «;.

THEOREM 8. If all the elements o; are non-zero and
the matrix can be diagonalized then none of the minors of
order i in the first i columns of U¥*, the matrix of row
eigenvectors, can be zero for any value of i.

Proor. Let D be the i x n matrix of any i/ rows of
U* and let 1 < i < n (the case when i = n is trivial).
Then for some r the rth column of D is linearly dependent
on the previous r — 1 columns. Consequently there is
a vector x such that Dx = O for which x, # 0 and
x, =0 for ¢ >r. Now since U*4 = AU* we can
write D4 = A,D, where A; is a principal submatrix of
A of order i. Thus DAx = O and if we put y — Ax we
see that y, | = «,.x, % 0 and y, = 0 for g > r 4 1.
Therefore, since Dy = O the (r 4 1)th column of D
can be expressed as a linear combination of the previous
r columns. Continuing this argument we obtain the
result that all the remaining columns of D are dependent
on the first ¥ — 1. Now the / rows of D are linearly
independent, being eigenvectors, and it must be possible
to choose i independent columns. Hence we cannot
have r < i and we see that the first / columns of D must
be linearly independent so that the leading minor of
order i is not zero. This is the theorem.

9102 ‘2 feIN UoeAOPEd 1A IPNIS 11Be@ BISIBAIIN e /B10°S feuno [P0 jx0" U fwody/:dny Wwoly papeojumoq


http://comjnl.oxfordjournals.org/

The QR Transformation

Combining this theorem with the results in Section 4
and statements in Section 5 we obtain:

THEOREM 9. [If an almost triangular matrix A is non-
singular, can be diagonalized, and has non-zero elements
a;, then under the QR transformation the principal
diagonal elements of A converge to the eigenvalues in

order of size if their moduli are unequal. A group of

q — p eigenvalues of equal modulus and modulus less than
that of p other eigenvalues becomes identified with the
eigenvalues of the almost triangular submatrix [a{P] in
which p < (i, j) <gq -+ 1.

8. Rate of Convergence and its Acceleration

In the simple case when the eigenvalues of 4 have
distinct moduli and the matrix U is such that the eigen-
values appear on the diagonal of 4% in order of modulus
(which is usually true), one can show thai normally the
element a{¥’ below the main diagonal of A converges

. AnF .
to zero like ()\() (in rare circumstances the convergence
j
is faster).

This is the same rate of convergence as that obtained
in the LR algorithm and, as Rutishauser states, it is
unsatisfactorily slow in many cases. The difference of

with

a¥) from A,, say e, is multiplied by roughly

A,,,]
each iteration of the QR algorithm. If the origin of the
eigenvalues is shifted close to A,, say by X, before an
iteration and shifted back again afterwards, the difference
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