The QR Transformation—Part
By J. G. F. Francis
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The QR transformation is an analogue to the LR transformation (Rutishauser, 1958) based on
unitary transformations. Both these transformations are global iterative methods for finding the
eigenvalues of a matrix, the matrix coaverging in general to triangular form. In Par t1 of this
paper the QR transformation was briefly described and we were then principally concerned with
proving convergence, the main result being expressed in theorem 3. We also showed that if the
matrix is first reduced to almost triangular form important advantages are gained (further
advantages will become apparent) and we gave in outline a way in which convergence could be
improved. In this part of the paper we consider the practical application of the QR transformation.
Two versions of the algorithm have been programmed for the Pegasus computer; these are
described and an attempt is made to evaluate the method. Some results and detailed algorithms
are given in appendices. Part 1 was published on pp. 265-71 of this volume (Oct. 61).

9. The Basic Iteration, Conjugate Complex Eigenvalues

The QR transformation consists of forming a sequence
of matrices 4A*), where

A (M= A4, the given matrix,
and Ak D QU Q)

The matrix Q% is unitary and is chosen so that
QR*4® — R® where R% is an upper triangular
matrix.

In fact we shall use the generalized transformation (12)
discussed in Section 8 in which Q® is chosen so that
QW 4W — [y — R® because a suitable choice of
the origin shift %) accelerates the convergence of the
last diagonal element. We call the transformation of
A% into A%~V an iteration.

We are mainly concerned in this paper with the use
of the QR transformation in finding the eigenvalues of
non-hermitian matrices which we shall consider to have
been reduced to almost triangular form. If the matrix
is real we must expect conjugate complex pairs of eigen-
values to be present. If these pairs are the only eigen-
values of equal modulus—which is likely—we know by
theorem 9 that under the transformation the pairs will
become associated with separate 2 > 2 submatrices of
which we can find the eigenvalues by solving quadratic
equations.

The method of accelerating the convergence of the
last diagonal element by using the generalized trans-
formation is virtually useless when we are concerned
with a pair of complex eigenvalues if the origin is shifted
only by real quantities. This is clearly because we cannot
move arbitrarily close to either of the roots by such a
shift. We must therefore use a complex shift in this
case, and this would appear to involve us in generating
complex matrices although the matrix is initially real.

To avoid this we develop a more sophisticated tech-
nique. Intuitively we would expect that a scheme of
iteration using pairs of conjugate origin shifts could be
devised that would accelerate the convergence of a
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“quadratic factor,” preserving the real nature of the
matrix. This would be analogous to the Bairstow
process for finding pairs of roots of polynomials.

First we extend theorem 2 to cover the generalized
QR transformation employing shifts of origin. Suppose
that the origin shifts {”) are distinct from the eigenvalues:

k
then in the sequel we write II'® — [1(4 — ("), and
I
II%) is non-singular.
THEOREM 10.  If the generalized QR transformation is
performed on the matrix AV — A with origin shifts {")
then the unitary matrix P% = QW . . Q% such that

A®D = PRO*YAPX) can be derived from the unitary-
triangular decomposition of TI™.

PrROOF. We have A% — (W] — QWRHM and, substi-
tuting this in  PXSW — g QWRK R,

we obtain

POSHK — QW) Q- D4k — (ORKE DR,
As QW QKRR — 4O QK D
we get

P(/\')SU\):(A_ C(/\)I)Q(l)._'Q(/\ I)R(A‘ |).'_R(1).

Clearly by repeated substitution
PRSK — (4 — {WINA — [*=DI) . (4 - (D)= TIW

and as the right-hand side is non-singular it uniquely
determines the decomposition on the left-hand side
(theorem 1).

Now if the matrix is real and any iteration with a
complex shift {” is followed by one using the conjugate
shift so that {1 = {®, then the product II® is also
real. Thus, since the unitary-triangular decomposition
of a real matrix is also real, the matrix P® and hence
AGSD — PO*AP®) s real too. It is thus clear that,
at the expense of doing two complex iterations instead
of one, when we are concerned with a complex pair of
eigenvalues we can return to the real form of the matrix
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and still retain accelerated convergence. We base the
two origin shifts on the roots of the submatrix

(k) (k)
I:an In—1 an - Injl
(k) (k) .
ann -1 aIHI °

it can be shown that the roots of this submatrix then
tend to A, and A, ; = A, when (% and (D are
sufficiently close to these eigenvalues.

This technique unfortunately involves us in complex
arithmetic in the intermediate stages, and appreciably
more work than that required by two iterations with
real shifts. Since the matrix is real before and after a
“double iteration,” we are led to look for a purely real
process which can be uniformly employed for origin
shifts which are either both real or else conjugate complex.

Now we know that
Ak D Q(/‘ ”*Q“‘)*AU")Q“")Q(" 1)
and from theorem 10 that
(AD — {B)(A® — (& DIy QWQU DR DRK),

Thus one method would be to form the real matrix
T = (A® — {W[)(A% — (k- DJ), compute its unitary-
triangular decomposition to obtain QWQ&- D and
transform A‘*) by means of this, giving 4% 2. This
process requires a prohibitive amount of work but we
show below that when the matrix is almost triangular it
Is unnecessary to compute more than the first column of
T, and that this immediately gives the transformation
to be applied to 4%,

Suppose an almost triangular matrix with real non-
negative subdiagonal elements is similar, through a
unitary transformation, to another matrix (whether
almost triangular or not). Then the first column of the
transformation in general uniquely determines the almost
triangular matrix. If we write F = W*AW, where F is
almost triangular and W unitary, we can derive:

fij=widw;, fori=1,....j

j i
and, if h— ij — ,'Zl A/i/‘wi* ;> forj =1,...
|

1 (13)

then f;;., — ||h||and w; | = — .k
fij -1
We can thus see that the transformation is uniquely
characterized by w, up to the first zero subdiagonal
element f;;. . If w; can be analysed into a linear
combination of all the right eigenvectors, and there are
no repeated eigenvalues, then & will not vanish till j = n.
We can now prove an important theorem:

THEOREM 1. Suppose that A is a diagonalizable
almost triangular matrix with real, positive (non-zero)
subdiagonal elements, and suppose that it is transformed
by a unitary matrix W into another almost triangular
matrix W*AW wwhich has real, non-negative subdiagonal
elements. Then if the first column of W is given by

1

W, = H?(xk)”n(lk) where i is the first column of TI®,
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the resulting matrix is identical to the kth matrix gener-
ated by the generalized QR transformation, so that
A% D = WrAW.

PrOOF. The vector e; is a combination of all the right
eigenvectors v; of 4 because the proportion in it of each
is given by u;*e, = u;; and by theorem 8 none of the
elements u,; can be zero. Hence w; contains all the
right eigenvectors because none of the factors 4 — (V1
of TIW can eliminate them from e, in w® — IIWe,.
the (" being distinct from the eigenvalues. Thus we
see that w, uniquely determines W*AW, the subdiagonal
elements being non-zero. Now from theorem 10 we

have

I ke, — PRISHKe, — skiph) . gtk
and clearly st — ||7{®|| because it is real and
positive and |[p\®|| = 1. Hence w, — p% and
A D o pREAPR) — W* AW, being unique.

This theorem now forms the basis of the technique
we use for performing a double iteration. At the Ath
stage of the QR transformation we devise a real trans-
formation of A® such that A% =2 = W*A4WW with the
sole requirement that

KW, = (A(k) — CU")I)(A“‘) L é(l\ l)l)eI Y

where « is a normalizing factor and (¥ and {* D are
either both real or conjugate complex origin shifts.
Thus we do not have to find the transformation by the
unitary-triangular decomposition of

(A — (PIA — (% D))

but instead we base it on only the first column of this
matrix, Yy, which is trivial to compute. The equations (13)
above provide a possible way of performing the trans-
formation, but for this method to be stable in practice
each new column w; _; has to be ‘“reorthogonalized™
against all the previous w,. In fact we shall use an
elimination procedure and this is much more economical;
it is described in detail later.

10. Implications of Theoretical Conditions

Before going into the details of a QR algorithm it is
necessary to remark on some of the conditions imposed
in the theoretical treatment. Iteration on singular
matrices and on matrices with zero subdiagonal elements
o; has been excluded. Yet it would appear that our
whole objective is to reduce the elements «; effectively
to zero and to hasten this process by origin shifts as
close to the eigenvalues as possible.

The shift of origin will certainly tend to make the
matrix A% — &[] singular, and when singular (or, in
practice, nearly singular) the iteration (however com-
puted) will not be fully determined. In theory, if the
oi® are non-zero, the matrix after the iteration will be
fully defined excepting only the nth column. This will
not matter because the nth diagonal element will then
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be the eigenvalue, and the last subdiagonal element
«f D will be zero, allowing the matrix to be deflated
by the omission of its nth row and column. (The double
iteration technique in theory will behave similarly, the
last two rows and columns being relevant in this case.)
Wilkinson (1959) has demonstrated that a process of
deflation like this due to Givens (1958) is quite unreliable
in practice. With this process the origin is shifted to an
arbitrary eigenvalue, and because this shift and the
arithmetic cannot be exact it can happen that the ele-
ment of the transformed matrix which should be equal
to the eigenvalue is grossly inaccurate, and its “‘coupling”
off-diagonal element is not small. In these circumstances,
reducing the order of the matrix will have disastrous
consequences.

Fortunately, however, the objections to the Givens
transformation do not apply to our case. Primarily
this is because we never deflate the matrix until we know
that we can—that is, not until the last subdiagonal
element is effectively zero. The worst that can happen
is that we continue to iterate and however ill-determined
the transformations may be, though they may upset
convergence, they cannot radically effect the eigenvalues
because we can always ensure that they are unitary.
Secondly, the origin shifts we use are essentially of a
type which behave stably in the Givens deflation process
and hence in our iterations leading up to deflation.
Wilkinson shows that if the nth component of the row
eigenvector associated with the origin shift is large, then
the practical process behaves as it should in theory.
This is exactly the situation we have, for our origin
shifts are based on the eigenvalue to which the nth
diagonal element is converging, and obviously the
associated eigenvector tends to ef. Thus we can con-
fidently expect the iterations to be stable, any ill-deter-
minacy not disturbing convergence, and this is con-
firmed in practice. (The most unstable situation would
occur if an origin shift were to be based on the first
diagonal element.) If near-singularity should occur
which is not associated with the last diagonal element,
it is possible to show that a limited number of iterations
will always suffice to convert the matrix to a form in
which it is.

As far as the subdiagonal elements are concerned
they present no difficulty for the first method described
below. When they become effectively zero we partition
or deflate the matrix, and we do this if some are initially
zero. If they are small then the transformations will be
sufficiently defined, for ratios of two small quantities
will not normally be involved. If such ratios are
involved, however, we have a situation closely con-
nected with the effect of unstable near-singularity and,
as we have stated, this will correct itself after a small
number of iterations. In the second method to be
described, essential significance is lost in certain transi-
tional subdiagonal elements unless they are scaled up.
If this is done the situation is as for the first method.

Another point to consider is the presence of eigen-
values of equal modulus. The only serious problems
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that arise are concerned with the conjugate complex
eigenvalues of a real matrix and with equal eigenvalues.
Other cases are hardly likely to cause any difficulty (none
has occurred in practice) because real origin shifting
with a real matrix and complex shifting with a complex
matrix are almost certain to break up the groups in
question. We have already outlined the strategy for
dealing with complex conjugate pairs in a real matrix,
and will expound it in detail below. In the theoretical
treatment we have said (theorem 7) that equal eigen-
values of a diagonalizable almost triangular matrix will
necessarily be associated from the start with isolated
principal submatrices, and we have ignored the question
of matrices that cannot be diagonalized. Analysis
indicates that a group of equal eigenvalues, belonging
to a non-linear elementary divisor of a non-diagonalizable
matrix, will become associated with a principal sub-
matrix, as will most other groups of eigenvalues with
equal modulus.

In practice, on account of round-off errors, one is
concerned not so much with strict equality and whether
the matrix can be diagonalized or not, but with the
extent to which very close eigenvalues are well or ill-
determined. In the diagonalizable case we shall generally
not obtain zero subdiagonal elements in the initial
reduction to almost triangular form, and the eigenvalues
will appear in the same submatrix (not exactly equal) in
the way that those of a non-diagonalizable matrix do.
We can certainly say that all such eigenvalues will
become separately resolved to an extent depending on
how well determined they are. In the worst cases there
may be no convergence, but with origin shifting we will
usually obtain a linear rate of convergence or better; in
the best cases they will be almost completely resolved
from the start. (Of course, using a double iteration
technique we can always solve a quadratic to find just
two equal eigenvalues.)

11. Practical Computation

We describe below two different algorithms in which
the QR transformation is applied to almost triangular
matrices. Programs using these algorithms have been
written for the Pegasus computer. The first is the
simplest, but it does not deal very satisfactorily with a
real matrix with complex roots; the second is designed
for this problem and is based on the method introduced
in Section 9.

An iteration can be performed in various ways.
Different methods may or may not require the explicit
formation of either the matrix R or the matrix Q, or Q
may exist only as a product of factors. Methods also
vary in the number of muitiplications and storage loca-
tions they require, their ease of computation, and their
stability. Almost triangular matrices are certainly best
transformed by an elimination procedure, for the number
of multiplications will then be proportional to the square,
not the cube, of the order n.
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First Method

In the first method we shall consider the matrix to be
either real or complex. The n — 1 subdiagonal elements
a; ; (i=1,2,...,n— 1), which at present we shall
assume to be non-zero and real, are eliminated in turn
by a series of elementary unitary transformations starting
with a,;. This is essentially the process described in
Section 3 applied to almost triangular matrices. A
typical stage in the reduction would be*

[~ l n [~ ¥ r o . " . ﬁ‘
1 r

RS
R ™~ ~

r
r
v
X
a

QN %= ==

NN N e

INEESEENER g

’

where the elements r, v* and « are those of the final
triangular matrix, and the elements a, x and « are in
their original state. The elements in the two rows that
are changed are given by:

)k = (|B]> + o?)* (real)

X' = px —vrand )’ = gy -+ vx (complex) }>(14)
where u == fB/k (complex) |

v = a/k (real). |

In this way all of the elements below the diagonal are
eliminated, using the multipliers u;andv;(i=1,...,n—1).
leaving real elements on the diagonal, except for the
last. This last element 8 becomes « = |B| by a further
elementary transformation which multiplies the last row
by fi, = B/x. We have then formed the matrix
R = 0*4, and Q% is equal to the product of the ele-
mentary unitary transformations used.

We now want to find the matrix RQ and this is done
by post-multiplying R in turn by the conjugate transpose
of the elementary unitary transformations employed in

forming it. We thus have as a typical stage:
¢ a x v r r r] [ T
a a x v r r 1
a x v rr B —v
K F F v =
ror
;

1

~ N N SN S S -

Here the elements r, 1 and « are so far unaltered from
the triangular state, and the elements a, x” and « are in
their final state. We have in the two columns that are
changed:

o == VK (real)

B = ik (complex)

X = px +vrand p = @y — vx (complex).

The operation completing the iteration consists of the
multiplication of the last column by w,.

* We will sometimes use a matrix of a fixed rather than general
order for illustration.
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The iteration is quite easily programmed in fixed-
point arithmetic, but in this case care must be taken to
preserve the unitary property of the transformation by
ensuring that |u,|> — v} = 1 for each 7/ (when i=n,
“p;” = 0). This is done by shifting up the double-length
quantity |B|*> + o2 in (14) before taking the square root
by the largest possible even number of binary places
such that it is still fractional. If this number of places

Fror r r r
Fror or ror
P2 R R N

X x xx

a a a a

a a a
a a |

is 20 we form & - {22%([B|> + «?)}!, a-= 2% and
B = 2%8 and use these shifted quantities in the ratios
wand v. We obtain « — 2 "k as the diagonal element.

If the matrix is real all the arithmetic in an iteration
is real; if the elements below the diagonal are real (this
will always be the case) but the rest of the matrix is
complex we see that the v, are real and the subdiagonal
elements remain real after each iteration. There are
about 4n? multiplications in a real iteration and 12n> in
the complex case.

In the Pegasus computer the matrix is stored by
columns on a magnetic drum, and efficient access to the
rows of the matrix is impossible. It might seem that
this would cause the first part of an iteration to be very
inefficient, but we deal with this difficulty by a change
in the order of the operations. We perform the row
operations one column at a time: that is, on eliminating
the element a;. ; we will have correctly performed the
first i row operations on those parts of the rows up to

t—

o=

Q
R = =x =

-
~ % = o= o=
N~ =N = = =
SN v N Y %o

and including their ith elements. We then proceed to
the next column and perform the appropriate operations
on its elements before eliminating a; ,;. (. This is
continued until the last column is reached. No difficulty
over access to the elements occurs in the second part of
an iteration.

The programs which have been written will find the
eigenvalues of arbitrary real matrices (initially reducing
them to almost triangular form). The convergence of
the matrix under repeated application of the above
iteration is first order—the pth eigenvalue in order of
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size appearing as the pth diagonal element unless there
are others of the same modulus. When there are, for
example, two eigenvalues of equal modulus, say the
pthand the (p + 1)th, these will become the eigenvalues of
the pth 2 > 2 submatrix on the diagonal (see theorem 9).

We accelerate the convergence of the smallest eigen-
value according to the principle described in Section 8.
We subtract a quantity {® from the diagonal of the
matrix before the kth iteration and add it back again
afterwards. Before the Ath iteration we find the roots
of the last principal 2 © 2 submatrix and then distinguish
two cases. If these roots are real we choose the one that
differs least from the last diagonal element a*) and we

Hi
call this quantity A®).  We then compare this with the

previous similar quantity A% D (initially A© — 0),
which we have retained. by testing the size of
AR N

BT If this quantity is less than } we set

R = AR but otherwise %) == 0. Thus the second
order process of origin shifting starts when about one
binary place of significance has been achieved. (See
footnote on page 339.)

The other case to be considered occurs when the roots
of the last 2 > 2 submatrix are complex. If it is known
that the matrix has only real eigenvalues we should use
the real part of these roots as the potential origin shift:
otherwise, with the present algorithm, we may be com-
pelled to do a complex iteration, for we set A% to one
of the 2 < 2 roots, compare it with A%* 1 (disregarding
the sign of the imaginary part), and make () = Xk
or 0. If {® is non-zero the iteration, being complex.
is immediately followed by another using the conjugate
shift %D = 7% The matrix then returns to the real
form and we set A%+ D — X% for the next comparison.
(This procedure is rather unattractive on account of the
complex arithmetic necessary, but it was incorporated
in the program because the more sophisticated method
discussed later had not been developed at the time.)

The arithmetic for a real iteration is performed by a
separate section of the program from that used for a
complex one, and it is appreciably faster. Unfortunately
it is not strictly accurate to say that an iteration employ-
ing a complex shift followed by one using the conjugate
shift returns the matrix to the real form. It is probably
possible for the second of a pair of such iterations to
be badly determined, with the effect that some of the
imaginary parts will not disappear. This has not yet
caused any difficulty in practice, and it is possible that
it only can happen in the last two columns in circum-
stances when the arithmetic will remain complex until
deflation occurs, and the situation rights itself. The
only purpose of returning each time to a real matrix is
to save time when finding real roots. If we give up this
objective (for example, for matrices with few real roots)
the difficulty can be overcome by using complex arith-
metic once a complex shift has occurred for all subse-
quent iterations, and in this case it is more efficient to
omit the alternate conjugate shifts. However, because
the danger is mainly hypothetical, it is probably worth
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making a simple test on the sum of the moduli of the
imaginary parts, and to use real arithmetic for a real
shift unless this is not sufficiently small.

If the program had been written for finding the eigen-
values of general complex matrices (including normal
matrices), we would have none of the above difficulties.
We would simply use a series of complex shifts deter-
mined in the same way as the real shifts with a real
matrix.

The subdiagonal elements a,, ; and a, ,_, are
tested after each iteration. If either are zero we deflate
the matrix and print out the one or two eigenvalues
found. Here we can mention another point: while the
iterations proceed, all the subdiagonal elements (or at
least those separating certain submatrices) are tending to
zero, and some may well become zero. We therefore
inspect them before each iteration and only carry out
the iteration on the lowest part of the matrix such that
they are all non-zero. This saves unnecessary work and
also ensures that a condition is fulfilled for some earlier
remarks and theorems to be true.

Second Method

The method we have just described is clearly not very
satisfactory when the matrix is real and yet has complex
eigenvalues, and this has prompted the development of
the second technique which combines two iterations in
one real operation.

We know that the result of two iterations,

A(k 2) . Q(k )% Q(k)* A(k) Q(A’) Q(k I)q
is such that if W — QWQ* 1D and
I‘ — (A(l\') . Z(k)l)(A(k) . Z(k T I)I)’

then W*TI' = A (say) is an upper triangular matrix.
However, we showed in Section 9 that it is unnecessary
to form the matrix T to find W, because A% -2 is fully
determined by the first column only of T, combined
with the almost triangular natures of A4*) and A% : 2,
The first column of T, y,, gives the first column of W
which defines the transformation.

Now W* is a unitary matrix which reduces T to the
triangle A, and W is therefore composed of n unitary

I, , 0
factors (see Section 3) of the form N, = [ it J so

0 M,

that W= N, N,...N,. The pre-multiplication of T
successively by the first n — 1 N} causes the elements
below the diagonal to be eliminated in turn column by
column; the last factor N (in which M} is scalar)
merely ensures that §,, is positive. From the form of
each IV; we see that the first column of W is equal to the
first column of N, = M, and this is any unitary matrix
the transpose of which eliminates the unwanted elements
in the first column of I'. (There are two such elements
to eliminate because I is the product of two almost
triangular matrices and has all y;; = 0 for i > j -+ 2.)

We wish to transform A% by means of W. As a
first step let us operate on it with /N, which is deter-
mined so that Ny, = §, = 6,,¢;, by any suitable
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unitary elimination procedure. This will change the
first three rows and columns of 4¥), so we have

app 4y a3 dyg - . 4y
dyy dyy dzz Ay . . Ay,
dzy Q33 d3zg . . Az,
(k) -
4 43 Qag - - Qg
asq
allll._
ay dix diz g - - 4y
ay axn a3 . .y
a3y 43y dsz dzg . . Ay,
— ’ ’ 4 — * (k)
g Aap a3 Qg4 - . Qyy NFA®N,
asa
ann_

where the elements changed by the row and column
operations are underlined and primed respectively. The
resulting matrix is no longer almost triangular and so,
since A% ©2) is, we can say that the matrices IV,, . . . NV,
reduce N,AWN{ to almost triangular form. This
reduction is easily accomplished column by column by
any unitary elimination procedure, and since such a
process will use a series of transformations which have
exactly the same form as N,, ..., N, the product of
all the transformations on 4® will have the required
first column—that of N,. The technique we have
derived for a ““double iteration” is therefore to perform
an initial transformation on A%, and to reduce the
resulting matrix to almost triangular form by a method
such as that due to Givens (1958) or Householder
(Wilkinson, 1960), obtaining A%+2. The individual
transformations are not uniquely determined but on
account of our earlier reasoning their product must be
so, provided the subdiagonal elements of A® are
non-zero.

A typical stage in the iteration can be illustrated thus:

(A h h

J

zZ z z z z z
h h h z z z z z z
h h z z z z z z
d d d z z z z
d d d z z z =z
d d d a a a a
a a a a
a a a
- aa_
(h h h h z z z z z]
h h h W z z z z z
h h v z z z z z
h bz 2z z z
— 0 d & d z z :
0 d d& d z z z]
d d d a a a
a a a
L aa-
F
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where we indicate the elements changed by the trans-
formation as above, three rows and three columns being
affected. The elements @ and / are those of the initial
and final matrices 4¥) and A%~ 2 respectively; the ele-
ments ¢ may need special treatment and are discussed
below.

We observe that the first transformation of A%, by
Ny, is similar to the subsequent transformations, and
we can set up the initial conditions for the iteration by
finding y,,, v,; and y;,; these are given by

yi =aya — o)+ ap,.ay +p
Y21 = (@) + ay; — o)
and Y31 = dyp - A3

where o and p are the sum and product of the two
origin shifts being used. For purposes of computation
it is useful to imagine the column vy, adjoined to the
matrix on its left. The transformation by N, | is
atypical in that only one element, that in position
(n, n — 2), is eliminated by it, and it therefore only
effects two rows and columns—the last—of the matrix.
and the transformation by N, is nugatory and need
not be performed, only affecting signs in the last row
and column (since the matrix is real).

As we mentioned earlier, the transformation leads to
A%~ only when it is unique. This is not true if a
subdiagonal element of A% is zero, and we must there-
fore ensure uniqueness by iterating on only a principal
submatrix if some a;.,;; = 0. However, the trans-
formation is also in danger of being ill-determined on
account of the smallness of the subdiagonal elements, for
at least some of them are tending to zero and in this
case will involve us in ratios of small quantities. This
is why the submatrix of elements,

dyo dyy dyy
[d,] = [dzo dy, dZZ:I, involved in each stage of the
dyo d3y ds,

iteration needs special treatment. Even though they are
small, these elements are still able to determine the
transformations sufficiently well (that is, as well as two
steps of the first method would determine them) for the
transformations can be identified individually with the
parallel set of transformations /V; by which we could
reduce T to A, provided that these are defined by the
same scheme of elimination. If the /V; are so defined,
the three elements d|,, d,y and d;, in the ith stage of the
iteration in column i — 1 are in fact a multiple (perhaps
small) of the three elements which determine the ith
transformation in the triangularization of I. These
are the elements in positions (i, i), ( + 1, i) and (i + 2, i)
of N ... N¥N{T. Itis therefore necessary to attach
some form of scale factor to the d,, below the diagonal,
and in practice it has proved convenient to carry out
the operations on all nine elements d,, with floating-
point arithmetic.

It should be emphasized that, if these elements were
not be to be treated in this or an equivalent way,
inaccuracies would not be introduced into the eigen-
values of the matrix, but the convergence of the algorithm
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would be jeopardized. On a machine with built-in
floating-point arithmetic, it would naturally be best to
perform all the operations in an iteration with floating-
point arithmetic, and then those on the d,, would not
be separated from the rest. On Pegasus, however,
floating-point operations have to be specially pro-
grammed, so the main part of the iteration is done with
fixed-point arithmetic.

Householder’s method has been chosen for carrying
out the eliminations as it appears to involve least work,
and the program is easy to write. With this method
the transformation matrices are of the form

Ny = N =1 2t.8}

where #; is a vector such that ||¢;|| = I, of which the
elements ¢;; are given by:

t;; —=0forj<iandj>i- 2,

)

dso
- 2ty

and

i1

(130
2kt

Liioa

where « = signdq . (d}, + d3y + d?)}. We remove
one of the square roots here and reduce the number of
multiplications involved in the transformation by writing

1

zp = [0,...,0, 1, ¢, ,,0,....0] — t—.t,-*
obtaining N; = I — (1 + )z,z*
dio dso dso
h __H1o 20 . 30
where ¢ e e s and i, Ky (15)

These last three quantities cannot be greater than one,
and therefore can be stored in fixed-point form for the
fixed-point part of the iteration. If they are formed
with floating-point arithmetic there is no difficulty, but
if they should be formed with fixed-point arithmetic the
unitary property of N; would have to be maintained,
either by shifting up their components (as in the first

. 2

method) or else by computing ¢ as R 1.
(Whatever the inaccuracies in Jy and ¢, the second
technique makes N, unitary, and this may even com-
mend it in floating-point working for reducing round-off
errors.)

As illustrated above the ith (i + 1)th and (i + 2)th
rows and columns are changed when the matrix is
multiplied before and after by N,. For the operation
on the columns we have

la;,a;. 1, a;:,] 1

=la;, a;., a; ]| I—(+ fﬁ)l:‘/‘l][la by, o]

2

so that, if 0 = (1 + ¢)(a; + a;. | + Ja; ),
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then a; = a; —
a, | =a; | — iy (16)
;. —4a;. y— ‘7[’27]

and there are similar formulae for the operation on the
rows. The column operation makes the elements in
positions (i + 3, i) and (i — 3, i + 1), non-zero—they
become new d3, and new d3,—and it can be easily verified
that the row operation eliminates d,, and dy, in posi-
tions (i4 1, i — 1) and (i -~ 2, i — 1) as is required,
and replaces d|, in position (i, i — 1) by —«. This
last point implicitly contravenes the restriction imposed
in Part 1 on the diagonal elements of the triangular part
of the unitary-triangular decomposition. There we
required these elements to be positive so that the decom-
position should be unique. Waiving this restriction,
however, is of no practical consequence, for the diagonal
elements, and the size of those off the diagonal, in the
successive matrices generated will still be unchanged.
The condition is also violated by our not applying the
final transformation matrix N,

On a machine which can hold the whole almost
triangular matrix in immediate-access storage, each row
operation can be carried out and completed at once, as
can each column operation. On Pegasus, storing the
matrix by columns, we meet the problem of access to
rows in a similar way to that described in the first
method.

We have stated above that it is essential to partition
the matrix and operate on a submatrix when any element
a;.; — 0. This is no disadvantage and is in fact the
obvious device used in the first method, mainly to save
unnecessary work. (If the elements of the matrix are
stored in floating-point form they will not normally
vanish at any stage, but for the purposes of saving work
and testing convergence the subdiagonal elements should
be treated as zero when less than a suitable amount.)
We thus scan the subdiagonal elements before each
iteration to find the smallest ¢ such that all a;.,; # 0
forg < i<n.

The program written for this method also incorporates
a further device which often results in a significant
saving of work. When the product of the (i — I)th
and the ith subdiagonal elements is small enough to be
treated as zero, it may be possible to start the iteration
at a;; rather than a,,. Consider the situation if we were
to do this: we find the initial quantities ¢, i, and ¥,
froma;;,a;; \,a;. ,;,a;,,;+,and a; . ,;.,and perform
(notionally) the first row operation. The previously
zero elements in the (7 + 1)th and (i + 2)th positions of
column (i — 1) would become, using (16), --i;n and
—i,m, respectively, where 7 = (1 + é)a;; ,. Thus

i1

a
from (15) these two elements become — e

aii
— . d}o:
K

. (/20 and

Clearly, if both these are sufficiently

small they can be ignored and we can start the iteration
in column 7. A satisfactory criterion for this proves
to be the size of
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8 = |a;i_i lM
i ii—11 - Id10|
—la.. a . .[aii_i_ai%li"rl_UI‘}‘IH,‘:ZHII‘
|dii=1dicai aa;;—o)+a;;a;.;+pl

which should be less than ¢/2 where ¢ is the smallest
effectively non-zero number (on Pegasus & = 2738)
Thus, at the same time as inspecting the subdiagonal
elements for finding ¢, the program finds the smallest p
such that all 6, > ¢/2 for p<i<n—3. Clearly
l<g<p<n

Using this system we thus start an iteration at the pth
row and column of the matrix, each column operation
beginning at the gth element of each column. Notice
that if p > g it is necessary to change the sign of the
element a,, .

After each iteration the roots of the 2 x 2 principal

s Qn—tn—14p-1
submatrlx[ ne "1 are found, and the sub-
Ay n—1 a, n

diagonal elements a,,,_, and a,_,_, are inspected. If
either or both of these is zero (or effectively zero) the
program prints the appropriate eigenvalue or eigenvalues,
and the order of the matrix is reduced by one or two.
If the order of the reduced matrix is less than three the
remaining eigenvalues are found and printed; otherwise
the roots of the new lowest principal 2 X 2 submatrix
are calculated and the new subdiagonal elements a,,,_,
and a,_,,_, are tested (as after an iteration), and we
either return to iterate again, if they are non-zero, or
else print the appropriate eigenvalues and deflate as
above.

Before each iteration we thus have the roots of the
last principal 2 X 2 submatrix. We call these A®
and A%+D_ ordered to differ least from a,_,,_, and a,,
respectively, and, having retained the two previous

AR \(k=2)

similar roots A%* =2 and A%~ D, we calculate e }
INK+H1)  \K- 1)‘ o .

and iW\ The choice of the origin shifts

{® and {**D for the iteration depends on these quan-
tities. If they are both greater than % we set
(W = iD= 0; if they are both less than % we set
(W) = A® and (k=D = Xk D: otherwise we set both
{% and {* D to be the real part of either AKX or Ak D
whichever corresponds to the quantity less than 3.
We then have p = (R {%* D and o = {® L (kD and
proceed to find p and g for the iteration.

The system of origin shifting used here and in the
first method is not the only one possible and may not be
the best. For example, there are some advantages in
using a ‘“‘non-restoring” type of shifting, in which any
shift, or pair of shifts, which is set zero in the present
system is replaced by the shift or pair of shifts used in
the previous iteration. This technique, however, would
not be suitable in the first method when we perform

*

* The experimental work has been done with a criterion of 1,
but this is somewhat arbitrary and there are indications that a
smaller amount, say §, would be better.

E*
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complex shifts, which are alternately conjugate, with an
essentially real matrix.

12. Conclusion

The principal merits and demerits of the two versions
of the QR algorithm will probably be clear to the reader
at this stage. The first method has the advantage of
being conceptually simple, and the programming would
present no difficulties on most machines. Experiments
have shown that it is a powerful technique for finding
the eigenvalues of real unsymmetric matrices when the
eigenvalues are all real. Unfortunately this is often
not the case, and there are distinct disadvantages when
the method is adapted to finding conjugate complex
pairs of eigenvalues of a real matrix, the main one
being the increase which becomes necessary in the
amount of work and the storage space required by the
complex arithmetic. In this instance one would naturally
wish to avoid the complex arithmetic—the problem being
essentially real—but in the case of the general matrix with
complex elements the method would seem to be promising.

The second variation of the algorithm is designed to
deal satisfactorily with the general case of a real unsym-
metric matrix having both real and complex eigenvalues.
The arithmetic is real throughout and there is no signi-
ficant distinction between finding real and complex
roots. No more storage space is required than that
needed for the original matrix. It is remarkable how
much less work it involves than the first method in
finding complex pairs of roots, for two complex itera-
tions of the first method involve about 24n2 (real) multi-
plications as opposed to 5»? multiplications of the double
iteration of the second method. (Use of the House-
holder rather than the Givens type of eliminations
would only reduce the factor 24 to 20.) The only dis-
advantage of the second method is the necessity of
using some sort of floating representation for some of
the quantities. This causes no difficulty on machines
with built-in floating-point arithmetic, and on such
machines the algorithm is very simple to program.

The general strategy of the QR transformation as we
have presented it (particularly in the second method)
has much to commend it. There are only two stages—
reduction to almost triangular form and iteration—and
neither involves using multiples greater than one. One
would therefore expect the round-off errors to build up
only gradually, and in practice this is borne out, no
stage requiring greater than single-length precision.
Unitary similarity transformations cannot change the
condition number of a matrix for each eigenvalue (see
Fike, 1959), and the eigenvalues which we find will be
the exact eigenvalues of a matrix which differs by a
relatively small amount from the original matrix. The
process is also one which combines guaranteed linear
convergence with convergence of a higher order, and
therefore the origin shifting technique has a certain sure-
ness and stability as well as efficiency. Deflation is
automatic, and criteria for convergence are simple.
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The two programs have been tried out in experiments
on a number of different matrices, the second technique
being used on about 25 matrices of orders from 3 to 32
(up to 49 is acceptable). No difficulties have yet been
encountered, in spite of close or repeated roots. The
number of iterations required is often remarkably few.
This is probably due to the fact that the convergence of
the smallest eigenvalue (or pair of eigenvalues) is very
rapid once a few figures have been found. Each iteration
helps to resolve all the eigenvalues, so that when the
stage is reached for shifting the origin towards a parti-
cular one we are likely to know it already to several
significant figures.

Some typical results are summarized in Appendix A.

At the beginning of this paper 1 suggested the use of
elementary transformations with interchanges in place
of unitary transformations, since they are more econo-
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Appendix A

Practical Results

The Pegasus programs which employ the two methods
we have described for applying the QR transformation
have been used on a number of matrices of widely
dgifiering types. From our concluding remarks it is clear
that, for real unsymmetric matrices, the second method
(the method of double iterations) is of greater interest,
and we shall therefore confine our discussion to results
obtained in using it.

In the accompanying tables details are given relating
to five typical, real, unsymmetric matrices which have
the following main characteristics:

NAME ORDER EIGENVALUES
A 10 10 real
B 15 15 real
C 19 13 real, 3 conjugate complex pairs
D 24 12 conjugate complex pairs
E 27 21 real, 7 occurring twice; 3 complex

pairs, one occurring twice

340

All the elements of matrices 4 and C are printed while
matrix B is an example given by Wilkinson (1959b).
Matrix D, of which we give only the elements in the last
12 columns, has a 12 X 12 zero submatrix in its top
left-hand corner and 107I,, in its bottom left-hand
corner; thus

di,d; ... d] = 107[e;5 ey, . . ., €24].

Many of the elements of matrix E are zero, and the
other elements (ignoring their signs) take only 80 dis-
tinct values. In Tables 6 and 7 these values are num-
bered and the matrix is shown in symbolic form; a period
represents zero and the number of the value of each
other element is given, a bar over it indicating change of
sign. This matrix may be thought to be far from typical,
and it is in fact possible by simple, if laborious, operations
to split it up into independent submatrices—two matrices
of orders 4 and 5 each occurring twice, a matrix of
order 8, and a single zero eigenvalue. However, this
sort of matrix does seem to occur in practice and it may
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be quite reasonable to expect an eigenvalue-finding
program to cope with it—particularly when, as in this
case, the repeated eigenvalues are rtelatively well
determined.

The exact number of iterations required to find the
eigenvalues of a matrix depends to some extent upon
finer points of machine characteristics and program
details than are usually given. These points include, for
example, the number of significant digits in the data,
the number of guard bits used, the word length of the
machine, and the size of elements treated as zero when
testing convergence. Another point in the present case
concerns the criteria for choosing the origin shifts
immediately after deflation. In the Pegasus program,
before an iteration a copy is made of the elements that
will be changed on the principle diagonal and on the
two adjacent diagonals. This enables the roots of the
last 2 x 2 submatrix, on which the shifts depend, to be
compared in all circumstances with the roots of the same
submatrix as it was before the previous iteration. On
other machines the trouble of copying these elements
may not be worth the increase in efficiency gained, and
after deflation one may have to repeat one or both of
the origin shifts used for the previous iteration.

The size of that part of the matrix involved in each
iteration depends upon the values of p and ¢, as described
in the paper, and upon the number of eigenvalues
already found. These parameters have a considerable
effect on the time taken in iterating, but different matrices
follow quite different patterns. Thus, for example, in
most cases the subdiagonal elements do not become zero
except in the normal process of finding a pair of eigen-
values, and ¢ = 1 throughout. However, this is far from
true of matrix E which becomes split up to a great
extent (not always or only on account of its repeated
eigenvalues). When a matrix, such as D, has all of its
eigenvalues complex, then no two consecutive sub-
diagonal elements will both converge to zero, and we
shall find that normally p = ¢ for all iterations. On the
other hand, often p > ¢ for a matrix such as B. The
behaviour of this matrix, which is characteristic of its
type, is shown in Table 1.

Another factor which will have an effect on the time
taken by the program is whether or not the machine
has built-in floating-point operations. There are about
27 multiplications and 24 additions at each stage of an
iteration which are done with floating-point arithmetic.
These take an appreciable proportion of the time on

Table 1

ITteration

Order = No. of |15 15 15 15\131311111 199|705 5/33
. | !

123 4|5 6!7 8 910 11]12]13 14]15 16

rows involved

(asq = 1) |
No. of columns |15 15 15 15|13 13111 1 317 4 5‘ 3 313 3
involved ‘ ‘ |
No. of roots found | 2| 2 2 20 2| 2 E
| | |
Table 2
Matrix L4 | B | c| b | E
Order a0 | s |19 | 24 | 27
Significant bits in largest element (in- 25 27 24 36 26
cluding guard bits)
Guard bits used 0 6 6 7 6
Maximum error in roots found as 20 8 10 31 16
integer in least significant guard place
Number of (double) iterations 13 | 16 | 28 | 21 | 19 |
Time taken (in minutes and seconds) T
for (a) reduction to almost triangle 0.07 { 0.19 | 0.35 1.00 | 1.26
(b) complete process 2.27 | 3.57 | 6.34 | 10.38 | 6.42

Pegasus, on which they have to be specially programmed,
but this proportion decreases as the order of the matrix
is increased.

In Table 2 the number of iterations needed, and the
time taken to find the eigenvalues of each of the five
matrices, are set out with some of the other relevant
details. In each case the convergence criterion for the
subdiagonal elements was exactly zero. To appreciate
the times given we should mention that Pegasus has an
addition time of about 0-3 msec, and a multiplication
time of about 2 msec. Floating-point addition in this
program takes about 10 msec.

The matrices are given in Tables 3 to 7, and their
eigenvalues in Tables 8 to 13. In the latter, the eigen-
values of A, B, etc., are given accurate to 2 or 3 decimal
places; the almost triangular matrices formed are repre-
sented by a subscript 7, e.g. Cr, and where I know their
accurate eigenvalues I give the figures that differ from
those of the original matrices. The eigenvalues of A,
By, etc., are the actual eigenvalues found, and, again,
the figures that differ are given. Notice that the eigen-
values of A in Table 8 have no figures after the decimal
point because no guard bits are used in their calculation.
The frequencies of occurrence of the eigenvalues of
matrix E are given in Table 12.

Table 3: Matrix A4

-3360147 +12700359 -8759239 +13758458 —15938949
+934130 +3654401 +rg537060 *+3516663 +12381154
-2038193 =—7472731 +7589804 ~13745093 +a8603110
+1033571  +7357176 -268136 +7383395 +4331460
+804793 +6518376 —4381893 *r11555654 -17256997
-956075 —4359899 +3856081 -7055870 +13560511
+972197 +6411527 ~—3873830 +ro588003 -6933131
-694134 -3673931 *4396381 -6r105317 +14598775%
+517619 +4043981 T4307104 471153249 -13150398
-165743 —697517 675793 -1124599 +3363906

+8150598 +16332450 -38138100 +36250338 ~54402238
-10155937 —4237114 +26300588 ~22816599 +25294184
-15956903 -19868285 +57390730 ~49901355 +66325076
-4319692 +4901481 +8817744 9691392 *tI5311073
+13237810 +16864383 —40703516 t40339048 -52764354
~7935016 -10897566 +30769288 —37049063 +41380960
+4015466 +10674457 14958366 +13519476 —15710641
-6232239 -8839453 +36413007 -18396035 +20760535
+10029400 +10395106 ~27067685 +24819163 —26414792
-2002370 -1758468 ‘5417694 5875347 +11057995

341

9102 ‘2 fe N uoeAoped 1Q IpNIS 1B elseAIuN T /610°S eulnopio xo” ju wody/:dny wouy papeoumoq


http://comjnl.oxfordjournals.org/

The QR Transformation—Part 2

Downloaded from http://comjnl.oxfordjournals.org/ at Universita Degli Studi Di Padova on May 2, 2016

Lo64 zS€o01. 662g€~ zoelg~ L1g06¢~ 6o9oSeIiy Io1SggI4 oF9ILEf. €€9rLfI4 6S51C. 190614 6vSCLS
1944 6So¥- ¥ b €941~ 9819 0286019%; £0L662f4 108V¥6o~ pfP9zoSy gb6gVLE-  9zE6LI4 geolf64
144 7% S¥YELy C¥SLley zLE Sy Sg18g9- 6Lo1S914+ S6e¥Sees 6SLo¥Eh~  Yooby 9Sz19g- 06154 gesv6S1y
ellzy gev6I- Sg€fL 6vr6zI~ Iol¥gg- oozglfey gvL¥gLSy+ SoYrolg-~ tglorzzy 1264y 9¢gSS+ tfozbery
orI~ 05L6y €088 €4 zSzgty 1%1L06~ 6ogeh 14 ¢lLoStz14 9bgoS61~ 6Yotol~  Gofiegy SLEYL- 6¥Sooo14
192~ 660¥- S60¥1- Ll61z~ 156gofs  996S€g1- £6L9g61~ Lbzoloby vIgrog-  Cglezbly  czllIS—  IIIIgI
61 6¥S— Loty Chrry L1g291~  6896LzI~ cobeeb- 152g6024+ 1VYobge. 61lgSz— ogl6z4 LggorIyt
o+ uﬂ._' gL+ IoI4 651~ wwwﬂ+ Mwu.vﬂ.—. Homwl thmwn._.. 1.8212- 1g¥61- wn&w@wl
8+ Sly Ioty 1Lzt 6LL1~ 9L64 99¥S+ oot t9bogg - YLgg1§- ehoShiy 9fz1ges
014 8 6254 of ¥y ZI0Y. LLY6y 62€64 z€eh1m Ligbg¥-  SgS60S1- 9fSLSey  LgTIICa
L¥e C¥ey z9L+ 106+ Sgbg+ f€gelory  9i1SE€S: 1¢907~  olgggoIl4 68fof¥z_  1fLfebr. gS6zeILI-
o4 6v4 gII4 614 61¥4 gobLy oY ¥y S6611m €LSoV€4+  ggo1Se~  6Slg- 65gL90 T
€64 zgolI- g¥g€~ ¥€Lom 9£92fm 6199¥14  t1gg614  6gg¥9f~  czolgly  6L6V+ 6991+ €g8E S+
9052264 96599v¥1- oloeczig. EVSo¥¥i. Gg6150ers 71213668~ gS2z¢€LgI~ 10¥106954+ o0SoIEPgf~ bh1g14 Tobo- Livefra
9fL6S~ L1629S5~  g9So¥bz. I900PgE- Tob¥CzSy $S6L2Si- 189022~ g@eogogfry €€.g€SS~ peSiy 6£E Sy zofely
L6SgLEy  YL66gE.  pEyxrgr. I¥ho¥be- ozL9fl¥y  19gL6SS-  SoogzLi- Togflbols LY69¥LE— cc1S14 gLLS+ Peof¥rs
6LLiS1.  Lebrlofy ogbogSgbiy SIISgIvey Lgogigfor-1zlg6G1ey 1LSYeefl1y cgt6Lg608lgSg068S115Lgglty ELESETI.  o0gbLIgs
LeCozy 6558281~ g9g99lIge~ wnwn¢mnl ¥256g9z4 095568821 cL1922001-6209986¢C+cLLg60122-yL1565 6S12- $S8896724+
YLgba S€o¥f2.  LPEgfE vhelgS- §60S0lg+ 2019606S~ 69¥L6z9b. I0fIo¥I64 P61162gS- 8T09Z— zS11€4 LLgb¥1n
ocofzfa £9L999e+ +¥19g19l4 PELIOGIIL SHgglSige 8gVv6feg1fy 1LL1YvzobEioreb6SLlol-ozeloefSotro1f00ghs tPoYorey 6z¥gggoey
VL6S oSofLy 3186284 9£6¥%06.+ t%9989%1~ grtergSe LlozIobII4 {gv6ezhSi- $5SSoLLf- 065LSgS5+ 6g9oghey (2333442
6.1~ o¥ofy4 06£€ 4 96% z4 Letzv®y  S¥Sotory 6¥g9g9ge~  SSkglez—~  SCLgLilby S1Sef10f- roglgol- Co¥Egrél-
tsy 65 b4 lozts Eobsy o¥oTolm  gegb6a- z€L1vey  SoogS+ Lof¥684  SSggff. o0SSE62S~  Sgofogh-
(2 4 Loty oty 99¢~ 9l6gg+ zgfeiey globria 9zvg I+ 661loog+ 1T9Iegf- 2ILIfI. Cebvivvia
d XMEIA Jo pT-€] suwm[o) :¢ d[qe],
6024 09+ oS- L1131~ ¢¥L_ E¥v_  Lgl¥y LoS14 0011+ 10gI— o1t1- 126_ gQS1ef_ Shoob- Q0&Ll¥4+ 9zfSzy 0ZOSI4+ LLgb- 6r161—
fro- o¥ELyy €861~ Lfo¥- ggee. 6L9r- £gf14 ¥SLLy 16YTi LgS¥e gei1f- Lggr- bogfy 6Vio6. veghs R66S114YECEEL SSLSI_ zeqrv—
SgS1~ 1§5S1- Le9fS+ Lzov— gvge_ 6LYe— otii- ob114 ¥9€g+ 6961— 1SLe— LShe_ LSeory LotSy 18156- eSLley S91¥64+ Sg1gsy 6glob-
060t grle— ggS¥- g¥E¥S: ggg1. 96te— ¥S1z~ o0Sgr- 6061~ SLSEgy LSors Lzoio S6roes 96105+ T191Z- YSa¥k6- 9tLoT- g9g9gg+ 1S€g-
gLS1~ 9lLfz— 198¥- E£Efe~ 6196%, LECI- Sobi- cobf S6S¥- zoley Lells €6g1+ Vvo¥Liy £095S+ LS¥St Lof€S¥- 29PLo1-LE6St+ o6Lol+
glS— vL6- 96L1~ Vi1g- gTI— 6g65€+g6t- L¥Si- gviz— Sgery €SL14 1095+ zobgy ¢©f¥b6ry oSily oStoe- L160f- Lolgf- z1gSE4
00S¢9-0+ o+ o+ o+ o+ o+ o+ 04 o+ o4 o+ o4 o4 o+ o+ o4 o+ o+
o+ oooSti-04+ o+ o4 o4 o+ o+ o+ o4 o4 o+ o+ o+ o+ o+ o+ o+ o+
o+ o+ 0005Z21-04+ o+ o+ o+ o+ o+ o+ o4 o+ o+ o+ o+ o4+ o+ o4 o+
o+ o+ o+ 000521-¢, o4 o+ o4 o+ o+ o+ o4 o4 o+ o+ o4 o4 o+ o4+
o+ o+ o+ o+ 0005CI-0+ o4 o4+ o+ o+ o+ o+ o4+ o+ o+ o+ o+ o+ o+
o+ o+ o+ o+ o+ 00§29-04 ot o+ o+ o+ o+ o+ o4 o+ o4+ o+ o+ o+
SE€¥14 6ogf- 1eTYy o0Tgi-  Llefy 8S8- 6189+ 699€1-ZLLYIi¥9gf1_gES1x, 1gEb. 6S1€g€471Se—  coro¥- 6601+ S90gf- 9f1¥I4+ 6o¥le—
LLEYy Sggl— 06864 ¥666- i, zli- Lge61:SLygz-66L18+vLocE_SLEVe,gLlfo1-60zo1- 09r61bsiPISEa— 9g6fey SLL9g- Litley L6LLS-
Y9994+ £S9L- LS164 S6f11_ Y1194 6tle- mn~¢n+mmso«-m05nn+umwmnlunwn«+m«nmunmmannu €g615+ zf1lefiglboe, 16996~ givofy Lg6S9-~
SLoS4+ zgor— 6LEoI+ 0068I- o0al, 9r0f- 9Sgre, £gg9- C6¥9f+z1¥0S - zg91e4 9ShEe_9gg6~ 60LES, TLIGT- golov¥iviveri—LoloSs vEeol-
0o1S4+ V69g- SSY614+ 19E51- oelLS, gTES— €6¥6r+ £9L68-011L9+£6205-6¥S02+56C€E-g0SSe oSor94+ L¥fzl- 025864+ VYob6grigggess Sorgl-
@918+ 1015- obrrry ofré- 6¥99+ ©0geS~ m¢no~+nwmbnnmnhwm+owoantmocnn+mmoo¢|mob¢u| ev €98y goreb- 66295+ V1v¥S9- 6geé¥vizSifg-
¥E1vy SSoo0r- SgS9r+ 25991- ¢4SCp, oL6S— YLlyeesofg9C g1LLS 1 SLg6S—Lyvgv.Sgotv-zCLLe. £gSESy SIgog— 69t$6. 896€01-LSe964 SrolzS4

D XIeA :p dqel

342


http://comjnl.oxfordjournals.org/

The QR Transformation—Part 2

Table 6: MatrixE

T 3 « 30 38 . . . . 44 53 $3 53 $3 52 53 53 §3 73
e I « o e s 11 + « « o <36 o o o o 53 5S4 54 53 53 54 54 S3 .

1 1 36 54 3 53 54 54 53 53 3%

' 16 40 ss 55 55-55 55 55 53 S5

. ' 16 40 55 55 55 55 55 55 55 55
s ar a9 45 56 56 56 56 56 56 56 56 74
3 s © 33 30 .« . o .« 46 57 57 57 57 57 57 57 ST 7S
3 13« e e e . 37 o o o + 58359 59 $8 58 59 59 5B .
e 3 4« 4 « 4 «I3 « 4 e « 437 « o« <59 5B SB 59 59 58 58 59 .
e 3 + « 4+ + eI7 « + « o o 41 .« .60 60 60 60 60 60 60 50 .
P 41 o+ 60 60 60 60 60 60 60 60 .
3 6 . « o ©333F e o o o 47 61 61 61 61 61 61 61 61 76
W 7 e « o e 3433 « .« o« o 48 6363 63 63 63 63 63 63 77
W I3 « e e « <13 o o o o 63646463 63 64 64 63 .
© 13 o o o o I3 o o o 6463 636484 6386364 o
« 28 o« o+ o o o 43 o o 658585 65 65 &5 &5 65 .
. e« 18 o+ o« o+ o o 43 o 6565 8s 8s 65 65 85 &5 .
8 3533 . o o+ 49 66 66 66 66 66 66 66 66 78
9 14 Is 19 19 26 34 3B 33 43 43 50 67 68 69 70 71 70 69 68 79
9 15 14 13 19 26 34 39 3B 43 43 50 68 67 68 69 70 71 70 69 79
9 T5 14 T9 T3 36 34 39 38 43 43 50 69 68 67 68 69 70 71 70 79
9 Ta 15 19 T9 26 34 38 33 73 43 50 70 69 68 67 68 69 70 71 79
9 T4 T5 19 19 36 34 38 39 43 43 50 71 70 69 68 67 68 69 70 79
9 15 T4 19 19 26 34 39 38 43 43 5O 70 71 70 69 68 67 68 69 79
9 15 T4 19 T9 36 34 39 38 43 43 50 69 70 71 70 69 68 67 68 79
9 14 T3 19 T3 26 34 38 39 43 43 50 68 69 70 71 70 69 68 67 79
© 10 o« o o © 3735 « o o o S 7373737373 78 7% 73 8o

Table 7

1 -3874 17 -3326 33 96343 49 =-—138433 63 70970
2 +28740 I8 —37142 34 -1053459 50 +405367 66 <-—109778
3 -3930 19 +44833 35 -1314933 st =-376838 67 —1350490
3 +789 30 +646 36 +3351 53 +9193 68 -—987969
s +20857 3T ~535 37 -—asérg3 53 +3306 69  ~444428
6 -s600 33 —4587 38 4634536 54 +1369 70 ~369933
7 -arg716 33 "3353 39 +a63834 53 +r473 71 470456
8 +35630 34 +35182 4o +1686 56 -2386 73 301656
9 +336803 35 35040 41 -11885 §7 —so688 73  ‘rosta
10 +35ss84 36 “8I78I 43 —y38a4r 58 +33298 T4 +633
11 1304 37 +6565 43 4315357 59 +965: 13 ~14576
13 +1978 38 +r10335 44 -2064 60 +ro379 16 4455
13 -632473 29 =3089 4 +1650 61  +16815 77 +580896
14 +135894 3%  TT3768 46 414546 63 +393577 18 34600
15 +36a89 31 +14733 47  -11639 63 +r71483 79 739763

16 =563 33 *313693 48 -~114534 64 +71031 80 1404278

Appendix B

Programs like the two described in this paper—for
finding the eigenvalues of a matrix by the QR trans-
formation—contain a procedure for reducing the matrix
to almost triangular form. It might seem more com-
patible with the techniques of the QR transformation to
use either Givens’ or Householder’s method for this
reduction, as these employ unitary transformations, but
the method of eliminations which I have used has been
shown to be very satisfactory and is more efficient. This
method is described, for example, in papers by Wilkinson
(1959b) and by Strachey and Francis (1961). In the
appendix of the latter paper an algorithm is given which
incorporates the reduction to almost lower triangular
form of a real matrix. This can easily be transposed to
suit our purpose for producing an almost upper
triangular matrix, and can be modified in an obvious
way for the complex case.

In the second place, the root-finding part of the
program requires procedures for testing convergence, for
finding the origin shifts, and for performing the iterations
on the matrix which constitute the QR transformation.
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Table 9

Eﬁaenv‘duﬂ 6} B BF
—605e47 .52
+3587e14 o 19
+43990481 «83
+73704¢19 .23
+151487487 .87
+173583e37 o 17
+257611.17 25
+308201460 .50
+36993148 .48
+517836012 .I2
+976578496 -84
+1296443e15 oII
+1593256.12 o1 4
+4830173488 92
+6294127673 .78

Table 12

Eigenvalues o E
2 +o } Xt
+2e312 X3
-32860.95 X3
-2861.67 X2
-286488 Xx

Table 8
Bsenwlu“ !'-s A AF
+407361443 365
-10670604232 057
+1357863e87 866
~1777648452 653
+2461373¢7! 375
~5512964466 965
+701355023 553
+15637089¢47 108
+18107432e58 414
+263129063e12 957
Table 1o
EiseAvaluQS 0§ C C,.r CF'
+4242056 65 64
+4468e9 4 «82 «83
+4055e57 52 e 50
+497733 *42 o4 4
+3068.90 ¢35 QeO§
1455156 57 *55
+20650439 26 35
+29712e12 .06 oIy
+37023¢57 78 72
+47051495 *93 94
+49873433 32 38
+55404078 «72 66
438567325 e18 16
+34090e561 o5I 52
{+4°°323-32, *35 33
t366134501 53 48
{+360523.z4 31 32
2562344131 .08 «09
+342105438 .33 «38
Table 1}
Eijenv.(ues of D D,
{ -1138324530 e544
+14582804711 <864
+14635 e671
+147034978321 756
{ -388313.196  +316
1155420601501 IS4
=12195¢233 235§
+£3351590eX451 IS0
-808620116 o143
+322431168111 o863
{ -975810e479 484
+656216004651 489
—3210739e234 <344
+7193238.1781 o183
-63883+445 e4323
{t99°4946-x78i °199
L -84057338 <335
1333917401341 070
=6685004313 335
{t=23t8797-232i «236
=3419600249 328
{t43542600.31ot 386
=1395902e315 31
{193506806.6431 «670

-2868.81 X1
=614793 Xz
=6236422 X2
-6556082 Xa
~6816,08 X1
=404793248 Xz
~4598032414 X3
=47265386 } Xt
+203637e331
=$36166.56 X3
+1436614031

~13433218439 X3
=5377068¢53 Xt

Table 13
iqeavalues of E
23 +o£og
+2433
De +3027
e 530 -3861.83
o711 =2861e55
«676 —2860e98
<789 =6236408
0343 ~-6236047
e133 =286097
333 -6556e72
180 ~6556486
eI41 ~536166456
«91 4 +1426600971
469 {-536:66.56
o477 +14266T0331
273 ~459803e14
o148 =459803013
04323 ~r3432218433
«195 ~1342218436
246 -2868.77
e070 =2864486
«238 =614798
358 —~6816466
e334 —4047932e47
0433 {-472053.81>
«3207 +3036017e501
648 =5277068450
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Our principal interest is in these iterations and we
give below two procedures for performing them, corre-
sponding to the two methods described in the paper.
For the first procedure the initial matrix is assumed to
be complex and to have been reduced to almost triangular
form so that its subdiagonal elements are real. (These
elements can be made real during the reduction by a
simple transformation which puts the modulus of the
largest element in the subdiagonal position at each stage
before the elimination in each column.) For the second
procedure all the elements are real.

The elements of the matrix are stored in floating-point
form for the two algorithms (though in the paper we
have shown how fixed-point arithmetic and representa-

tion can be used). The elements can thus be of any size,
but the truncation errors in them must be of the same
order of magnitude and this must be attained if necessary
by scaling the rows and columns initially. It should
always be possible to take out a scaling factor and
express the matrix in fixed-point form without any
appreciable loss of significant figures.

The notation employed is the same informal publica-
tion-language version of Algol used by Strachey and
Francis (1961). In the first algorithm it has proved con-
venient to extend Algol to allow the type declarators
complex and complex array. Where the meaning may
not be quite clear notes are given in the form of
comments.

SINGLE COMPLEX QR ITERATION

Procedure QR Iteration 1 (a) order (») shift ({)
Value #, {
Integer n
Complex {
Complex array «a[l : n, 1 :n]
Begin Real « Complex i
Real array v[l : n — 1]
Complex array p[l : ]
Integer 7, j, g

Fori=n—2,i—1 while((> 1) A (absa; ,;>90) dog=1i

Fori—=gqstep luntilndoa;; =a;; —
For i = g step 1 until » — 1 do
Begin « = /(|a; ;|* + ai2+1,i)

Ri = @k
Vi = ai~:—1,i/K
aji —= K

For j = i - 1 step 1 until # do
Begin w = a; ;
Aij = - Ai; + Vi i
dii1,j = Mi-Gizyj — Vi W

End
End
Mn == dp, n/|an,n[
Ap,y = @y, ]

For j = g step 1 until » — 1 do
Begin For i/ = g step 1 until j do

Begin w = a; ;
ai,j = K- dij T V- Qi
Ajjog = - Qijg — V. W
End
Ajit,j = Vi Gjgj1
Gotjrt = g1 - Gie,jen

End
For i = g step 1 until » do
Begin Ain = Mn-din
aj;=a;; +{
End
End

Comment See note 1
Comment See note 2

Comment Find ¢q. See note 3
Comment Shift origin
Comment Reduce to triangle

Comment Row operation

Comment Triangle
Comment Inverse operation
Comment Column operation

Comment Notes.—(1) { is the origin shift, in general complex. Where we require the modulus of a complex number,
say x, we write |x| and we denote its complex conjugate value by .
(2) The almost triangular matrix has complex elements. However, the subdiagonal elements are real
and where these are involved in the iteration real arithmetic is used.
(3) The quantity 8, which is a global variable, is the convergence criterion.
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DOUBLE QR ITERATION

Procedure QR Iteration 2 (@) order (n) shift (o, p)
Value n, o, p
Integer »n

Real

o, p

Array «a[l :n, 1 :n]
Begin Integer i, j, p, q

End

Comment Note.—« can only be zero when i = n — 1 because in all other cases 3 7 0 due to the subdiagonal elements

Real a,m,«
Array [l : 3] [l :2]
Fori=n —2,i — 1 while (i > 1) Comment Find p
A (absa,- i > 8)
A {absla; ;. a; 5 q(abs(ai i |~ @iigiia — 0) absa; 3 »)/
@i @ iy —0) a2 Giai P> 8}
dop =i
Fori—=p,i — 1 while(i> 1) A (absa; ;> 06)dog=1i Comment Find ¢
For i = p step 1 until » — 1 do Comment Iterate

Begin If i = p then
Begin vy, =, ,(a,, — 0) T App1-dp.1,p TP
Y2 = dp »rl,p(ap.p + dpit,p-1 O)
Y3 =4dpi1,p-Ap+2,p+1

Api2,p =
End
Otherwise
Begin vy = a;;_,
Y2 =di-1,i-1
y; = if i < n — 2 then a; ., ;| otherwise 0
End
x — if y; = 0 then 1/(y? -+ y% -+ ¥2) otherwise — +/(y] — y3 — ¥3)
o = if k 7= 0 then v/« -~ | otherwise 2 Comment See note

iy = if k %= 0 then y,/(y; + «) otherwise O
i, = if k % O then y;/(y, -+ «) otherwise 0
If i # q thena; ;_, = (if i = p then —a; ;_, otherwise — «)

For j — i step 1 until n do Comment Row operation

otherwise 0])

Qi = Qi 1 — Py
]fi<\nf2thena,~ 2']':61,‘_2.1‘*(/12.7]

End
For j = ¢ step 1 until (if i < n — 2 then i — 2 otherwise n) do Comment Column operation
Begin = a(a;; + ¢y .a;; . + [ifi<n—2then,.q,; »
otherwise 0])

a4 = G — M

@iy =ai g — .7

Ifi<n-—2thena;; ,=a;;.,— 2.7
End

If i < n — 3 then
Begin 1 = o . 5. 4; 3 2

aiy3,i = 7N
divzic1 = = l/‘1-77
i3 .2 = 4d;i. 3it2 — ¥2.7

End
End

being non-zero.
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