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Abstract

An important problem in web search is to classify the pages according to their
importance. From the mathematical point of view, Google treats this problem by finding
the left principal eigenvector (the PageRank vector) of a certain matrix. Properties of
this vector will be given. It could be computed by the power method whose iterates will
be characterized. Then several approximations of the PageRank vector, and procedures
for accelerating the power method will be discussed.

Introduction

A query to a web search engine often produces a very long list of answers because of the
enormous number of pages (over 8 billions in Google’s database). To help the surfer, these
pages have to be listed starting from the most relevant ones. Google uses several metrics
and strategies for solving this ranking problem.

The importance of a page is called its PageRank and one of the main ingredients of
Google’s link analysis is the PageRank algorithm [3, 6]. A page is considered to be important
if many other important pages are pointing to it. So, the importance of a page is determined
by the importance of the other pages. This means that the row vector r’ of all PageRanks
is only defined implicitly as the solution of a fixed—point problem, as we will see.

1 The PageRank problem

Let deg(i) > 1 be the outdegree (that is, the number of pages it points to) of the page i.
Let P = (p;j) be the matrix which describes the transition from the page i to the page j # i
with p;; = 1/deg(i), and p;; = 0.

The PageRank vector r’ satisfies v’ = r’ P, that is, r = PTr, and it can be computed
recursively by the standard power method

T

() = pTe™ - n—0,1,...,

assuming that all the eigenvectors of PT are present in the spectral decomposition of r(©).
Unfortunately, this iterative procedure has convergence problems.

For avoiding these drawbacks, the original PageRank algorithm was modified. First,
since some pages have no outlink, P is not stochastic. So, P is replaced by another matrix
P. Let w = (w1, ...,wp,)T € RP be a probability vector, that is such that w > 0 and



e’w =1 with e = (1,...,1)T, and p the total number of pages. Let d = (d;) € RP be the
vector with d; = 1 if deg(i) = 0, and 0 otherwise. We set

P=P+dw’.

The effect of the additional matrix dw’ is to modify the probabilities so that a surfer
visiting a page without outlinks jumps to another page with the probability distribution
defined by w. Thus, P is stochastic, and has 1 as a dominant eigenvalue with e as its
corresponding right eigenvector. B

Another problem arises since P is reducible. In that case, P can have several eigenvalues
on the unit circle, thus causing convergence problems to the power method. Moreover, P
can have several left eigenvectors corresponding to its dominant eigenvalue 1.

Then, P itself is finally replaced by the matrix

P.=cP+(1—c)E, E =evT,

with ¢ € [0,1], and v a probability vector. It corresponds to adding to all pages a new
set of outgoing transitions with small probabilities. The probability distribution given by
the vector v can differ from a uniformly distributed vector, and the resultant PageRank
can be biased to give preference to certain kinds of pages. The matrix P, is stochastic
and irreducible since v is a positive vector. P. has an eigenvalue equal to 1 with e as its
corresponding right eigenvector. Indeed

P.e =cPe+ (1 —clevie=ce+ (1 —cle =e.

The power iterations for the matrix P now converge to a unique vector r. (obviously,
depending on ¢) which is chosen as the PageRank vector.

2 The power method

Thus, we are faced to the following mathematical problem. For consistency to prior works,
we set A, = PI.

The p x p matrix A, has eigenvalues |\p| < --- < |Ag] < A\; = 1, and we have to compute
r¢, its unique right eigenvector corresponding to the eigenvalue A\; = 1. For that purpose,
we use the power method which consists in the iterations

r(" ) = 4. n=0,1,...

with r((;o) given.

The sequence (r&”)) always converges to r. but, if ¢ >~ 1, the convergence is slow since
the power method converges as ¢". So, a balance has to be found between a small value
of ¢, which insures a fast convergence of (rﬁ”)), but to a vector r. which is not close to the
real PageRank vector T = lim, .1 r, and a value of ¢ close to 1, which leads to a better
approximation r. of T, but with a slow convergence. Google usually chooses ¢ = 0.85, which

insures a good rate of convergence.



3 Approximation and acceleration

Since computing a PageRank vector can take several days, convergence acceleration or ap-
proximations of the PageRank vector are essential, in particular, for providing continuous
updates to ranking. Moreover, some recent approaches require the computation of sev-
eral PageRank vectors corresponding to different personalization vectors. Recently, several
methods for accelerating the computation of the PageRank vector by the power method
were proposed [5, 4]. The aim of this work is to give a theoretical justification to the meth-
ods of [5], and to put them on a firm theoretical basis. We will interpret them in a different
way, and simplify, unify, and generalize them. In particular, we will explain their connection
with the method of moments of Vorobyev. Other possible acceleration procedures will also
be discussed.

Another problem related to PageRank computations is that, as ¢ approaches 1, the
matrix A, becomes more and more ill conditioned since its condition number behaves as
(1 —¢)~1, the conditioning of the eigenproblem becomes poor, and r. cannot be computed
accurately. So, r. can be computed for several values of ¢ far away from 1 by any procedure,
and then these vectors can be extrapolated at the point ¢ = 1 (or at any other point). In
order for an extrapolation procedure to work well, the extrapolating function has to mimic
as closely as possible the behaviour of r. with respect to the parameter c.

Since P, is stochastic and irreducible, r. is the unique right eigenvector of A. = PCT
corresponding to the eigenvalue 1, that is, A.r. = r.. We have r. > 0, and we normalize it
such that it is a probability vector, that is e’ r, = 1.

So, we will study the properties of this vector, and, in particular, we will give implicit
and explicit expressions for it. Then, we will discuss its computation by the power method.
The iterates given by the power method are, in fact, the partial sum of a power series with
vector coefficients [1]. This discussion will lead us to various procedures for accelerating the
convergence of the power method, and to processes for the approximation of the PageRank
vector. In particular, the iterates of the power method, which are in fact the partial sums
of a vector formal power series, will be used for constructing Padé style approximations of
r.. The convergence of the power method itself will be accelerated by using various vector
sequences transformations, in particular, the e-algorithms and Aitken’s A process. The
acceleration processes proposed in [5] will be put on a firm theoretical basis and explained
in the framework of the method of moments. They will also be generalized.

All these results are explained in details in [2].

References

[1] P. Boldi, M. Santini, S. Vigna, PageRank as a function of the damping factor, Poster
Proceedings of the 14th International World Wide Web Conference, May 10-14, 2005,
Chiba, Japan.

[2] C. Brezinski, M. Redivo-Zaglia, The PageRank vector: properties, computation, ap-
proximation, and acceleration, submitted.



[3] S. Brin, L. Page, The anatomy of a large—scale hypertextual web search engine, Com-
put. Networks ISDN Syst., 30 (1998) 107-117.

[4] S. Kamvar, T. Haveliwala, G. Golub, Adaptive methods for the computation of PageR-
ank, Linear Algebra Appl., 386 (2004) 51-65.

[5] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, G.H. Golub, Extrapolations methods
for accelerating PageRank computations, in Proceedings of the Twelfth International
World Wide Web Conference, ACM Press, 2003, pp. 261-270.

[6] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank citation rank-
ing: bringing order to the Web, Stanford University Technical Report, 1999,
http://dbpubs.stanford.edu/pub/1999-66

Claude Brezinski
Laboratoire Paul Painlevé, UMR CNRS 8524
UFR de Mathématiques Pures et Appliquées
Université des Sciences et Technologies de Lille
59655 - Villeneuve d’Ascq cedex
France
claude.brezinski@univ-lillel.fr

Michela Redivo Zaglia
Dipartimento di Matematica Pura ed Applicata
Universita degli Studi di Padova
Via G.B. Belzoni, 7
35131 - Padova
Italy
Michela.RedivoZaglia@unipd.it



