
Orthogonal Bases and the QR Algorithm

by Peter J. Olver

1. Orthogonal Bases.

Throughout, we work in the Euclidean vector space V = Rn, the space of column
vectors with n real entries. As inner product, we will only use the dot product v ·w = vT w

and corresponding Euclidean norm ‖v ‖ =
√

v · v .

Two vectors v,w ∈ V are called orthogonal if their inner product vanishes: v ·w = 0.
In the case of vectors in Euclidean space, orthogonality under the dot product means that
they meet at a right angle. A particularly important configuration is when V admits a
basis consisting of mutually orthogonal elements.

Definition 1.1. A basis u1, . . . ,un of V is called orthogonal if ui ·uj = 0 for all i 6= j.
The basis is called orthonormal if, in addition, each vector has unit length: ‖ui ‖ = 1, for
all i = 1, . . . , n.

The simplest example of an orthonormal basis is the standard basis

e1 =




1
0
0
...
0
0



, e2 =




0
1
0
...
0
0



, . . . en =




0
0
0
...
0
1



.

Orthogonality follows because ei · ej = 0, for i 6= j, while ‖ ei ‖ = 1 implies normality.

Since a basis cannot contain the zero vector, there is an easy way to convert an
orthogonal basis to an orthonormal basis. Namely, we replace each basis vector with a
unit vector pointing in the same direction.

Lemma 1.2. If v1, . . . ,vn is an orthogonal basis of a vector space V , then the

normalized vectors ui = vi/‖vi ‖, i = 1, . . . , n, form an orthonormal basis.

Example 1.3. The vectors

v1 =




1
2

−1


, v2 =




0
1
2


, v3 =




5
−2

1


,

are easily seen to form a basis of R3. Moreover, they are mutually perpendicular, v1 ·v2 =
v1 · v3 = v2 · v3 = 0, and so form an orthogonal basis with respect to the standard dot

9/15/08 1 c© 2008 Peter J. Olver

product on R
3. When we divide each orthogonal basis vector by its length, the result is

the orthonormal basis

u1 =
1√
6




1
2

−1



=




1√
6

2√
6

− 1√
6


, u2 =

1√
5




0
1
2



=




0
1√
5

2√
5


, u3 =

1√
30




5

−2
1



=




5√
30

− 2√
30

1√
30


,

satisfying u1 · u2 = u1 · u3 = u2 · u3 = 0 and ‖u1 ‖ = ‖u2 ‖ = ‖u3 ‖ = 1. The appearance
of square roots in the elements of an orthonormal basis is fairly typical.

A useful observation is that any orthogonal collection of nonzero vectors is automati-
cally linearly independent.

Proposition 1.4. If v1, . . . ,vk ∈ V are nonzero, mutually orthogonal elements, so

vi 6= 0 and vi · vj = 0 for all i 6= j, then they are linearly independent.

Proof : Suppose
c1 v1 + · · · + ck vk = 0.

Let us take the inner product of this equation with any vi. Using linearity of the inner
product and orthogonality, we compute

0 = c1 v1 + · · · + ck vk · vi = c1 v1 · vi + · · · + ck vk · vi = ci vi · vi = ci ‖vi ‖2.

Therefore, provided vi 6= 0, we conclude that the coefficient ci = 0. Since this holds for
all i = 1, . . . , k, the linear independence of v1, . . . ,vk follows. Q.E.D.

As a direct corollary, we infer that any collection of nonzero orthogonal vectors forms
a basis for its span.

Theorem 1.5. Suppose v1, . . . ,vn ∈ V are nonzero, mutually orthogonal elements

of an inner product space V . Then v1, . . . ,vn form an orthogonal basis for their span

W = span {v1, . . . ,vn} ⊂ V , which is therefore a subspace of dimension n = dimW . In

particular, if dimV = n, then v1, . . . ,vn form a orthogonal basis for V .

Computations in Orthogonal Bases

What are the advantages of orthogonal and orthonormal bases? Once one has a basis
of a vector space, a key issue is how to express other elements as linear combinations of the
basis elements — that is, to find their coordinates in the prescribed basis. In general, this
is not so easy, since it requires solving a system of linear equations. In high dimensional
situations arising in applications, computing the solution may require a considerable, if
not infeasible amount of time and effort.

However, if the basis is orthogonal, or, even better, orthonormal, then the change
of basis computation requires almost no work. This is the crucial insight underlying the
efficacy of both discrete and continuous Fourier analysis, least squares approximations and
statistical analysis of large data sets, signal, image and video processing, and a multitude
of other applications, both classical and modern.

9/15/08 2 c© 2008 Peter J. Olver

Theorem 1.6. Let u1, . . . ,un be an orthonormal basis for an inner product space

V . Then one can write any element v ∈ V as a linear combination

v = c1 u1 + · · · + cn un, (1.1)

in which its coordinates
ci = v · ui, i = 1, . . . , n, (1.2)

are explicitly given as inner products. Moreover, its norm

‖v ‖ =
√
c21 + · · · + c2n =

√√√√
n∑

i=1

v · ui
2 (1.3)

is the square root of the sum of the squares of its orthonormal basis coordinates.

Proof : Let us compute the inner product of (1.1) with one of the basis vectors. Using
the orthonormality conditions

ui · uj =

{
0 i 6= j,

1 i = j,
(1.4)

and bilinearity of the inner product, we find

v · ui =

〈
n∑

j =1

cj uj , ui

〉
=

n∑

j =1

cj uj · ui = ci ‖ui ‖2 = ci.

To prove formula (1.3), we similarly expand

‖v ‖2 = v · v =

n∑

i,j =1

ci cj ui · uj =

n∑

i=1

c2i ,

again making use of the orthonormality of the basis elements. Q.E.D.

Example 1.7. Let us rewrite the vector v = (1, 1, 1)
T

in terms of the orthonormal
basis

u1 =




1√
6

2√
6

− 1√
6


, u2 =




0
1√
5

2√
5


, u3 =




5√
30

− 2√
30

1√
30


,

constructed in Example 1.3. Computing the dot products

v · u1 = 2√
6
, v · u2 = 3√

5
, v · u3 = 4√

30
,

we immediately conclude that

v = 2√
6
u1 + 3√

5
u2 + 4√

30
u3.

Needless to say, a direct computation based on solving the associated linear system is more
tedious.

9/15/08 3 c© 2008 Peter J. Olver

While passage from an orthogonal basis to its orthonormal version is elementary — one
simply divides each basis element by its norm — we shall often find it more convenient to
work directly with the unnormalized version. The next result provides the corresponding
formula expressing a vector in terms of an orthogonal, but not necessarily orthonormal
basis. The proof proceeds exactly as in the orthonormal case, and details are left to the
reader.

Theorem 1.8. If v1, . . . ,vn form an orthogonal basis, then the corresponding coor-

dinates of a vector

v = a1 v1 + · · · + an vn are given by ai =
v · vi

‖vi ‖2
. (1.5)

In this case, its norm can be computed using the formula

‖v ‖2 =

n∑

i=1

a2
i ‖vi ‖2 =

n∑

i=1

(
v · vi

‖vi ‖

)2

. (1.6)

Equation (1.5), along with its orthonormal simplification (1.2), is one of the most
useful formulas we shall establish, and applications will appear repeatedly throughout the
sequel.

Example 1.9. The wavelet basis

v1 =




1
1
1
1


, v2 =




1
1

−1
−1


, v3 =




1
−1

0
0


, v4 =




0
0
1

−1


, (1.7)

is an orthogonal basis of R4. The norms are

‖v1 ‖ = 2, ‖v2 ‖ = 2, ‖v3 ‖ =
√

2, ‖v4 ‖ =
√

2.

Therefore, using (1.5), we can readily express any vector as a linear combination of the
wavelet basis vectors. For example,

v =




4
−2

1
5


 = 2v1 − v2 + 3v3 − 2v4,

where the wavelet coordinates are computed directly by

v · v1

‖v1 ‖2
=

8

4
= 2 ,

v · v2

‖v2 ‖2
=

−4

4
= −1,

v · v3

‖v3 ‖2
=

6

2
= 3

v · v4

‖v4 ‖2
=

−4

2
= −2 .

Finally, we note that

46 = ‖v ‖2 = 22 ‖v1 ‖2 +(−1)2 ‖v2 ‖2 +32 ‖v3 ‖2 +(−2)2 ‖v4 ‖2 = 4 ·4+1 ·4+9 ·2+4 ·2,
in conformity with (1.6).

9/15/08 4 c© 2008 Peter J. Olver

2. The Gram–Schmidt Process.

Once we become convinced of the utility of orthogonal and orthonormal bases, a natu-
ral question arises: How can we construct them? A practical algorithm was first discovered
by Pierre–Simon Laplace in the eighteenth century. Today the algorithm is known as the
Gram–Schmidt process, after its rediscovery by the nineteenth century mathematicians
Jorgen Gram and Erhard Schmidt. The Gram–Schmidt process is one of the premier
algorithms of applied and computational linear algebra.

We assume that we already know some basis w1, . . . ,wn of V , where n = dimV .
Our goal is to use this information to construct an orthogonal basis v1, . . . ,vn. We will
construct the orthogonal basis elements one by one. Since initially we are not worrying
about normality, there are no conditions on the first orthogonal basis element v1, and so
there is no harm in choosing

v1 = w1.

Note that v1 6= 0, since w1 appears in the original basis. The second basis vector must be
orthogonal to the first: v2 · v1 = 0. Let us try to arrange this by subtracting a suitable
multiple of v1, and set

v2 = w2 − cv1,

where c is a scalar to be determined. The orthogonality condition

0 = v2 · v1 = w2 · v1 − cv1 · v1 = w2 · v1 − c ‖v1 ‖2

requires that c = w2 · v1/‖v1 ‖2 , and therefore

v2 = w2 −
w2 · v1

‖v1 ‖2
v1. (2.1)

Linear independence of v1 = w1 and w2 ensures that v2 6= 0. (Check!)

Next, we construct
v3 = w3 − c1 v1 − c2 v2

by subtracting suitable multiples of the first two orthogonal basis elements from w3. We
want v3 to be orthogonal to both v1 and v2. Since we already arranged that v1 · v2 = 0,
this requires

0 = v3 · v1 = w3 · v1 − c1 v1 · v1, 0 = v3 · v2 = w3 · v2 − c2 v2 · v2,

and hence
c1 =

w3 · v1

‖v1 ‖2
, c2 =

w3 · v2

‖v2 ‖2
.

Therefore, the next orthogonal basis vector is given by the formula

v3 = w3 −
w3 · v1

‖v1 ‖2
v1 −

w3 · v2

‖v2 ‖2
v2.

Since v1 and v2 are linear combinations of w1 and w2, we must have v3 6= 0, as otherwise
this would imply that w1,w2,w3 are linearly dependent, and hence could not come from
a basis.

9/15/08 5 c© 2008 Peter J. Olver

Continuing in the same manner, suppose we have already constructed the mutually
orthogonal vectors v1, . . . ,vk−1 as linear combinations of w1, . . . ,wk−1. The next or-
thogonal basis element vk will be obtained from wk by subtracting off a suitable linear
combination of the previous orthogonal basis elements:

vk = wk − c1 v1 − · · · − ck−1 vk−1.

Since v1, . . . ,vk−1 are already orthogonal, the orthogonality constraint

0 = vk · vj = wk · vj − cj vj · vj

requires

cj =
wk · vj

‖vj ‖2
for j = 1, . . . , k − 1. (2.2)

In this fashion, we establish the general Gram–Schmidt formula

vk = wk −
k−1∑

j =1

wk · vj

‖vj ‖2
vj , k = 1, . . . , n. (2.3)

The Gram–Schmidt process (2.3) defines an explicit, recursive procedure for construct-
ing the orthogonal basis vectors v1, . . . ,vn. If we are actually after an orthonormal ba-
sis u1, . . . ,un, we merely normalize the resulting orthogonal basis vectors, setting uk =
vk/‖vk ‖ for each k = 1, . . . , n.

Example 2.1. The vectors

w1 =




1
1

−1


 , w2 =




1
0
2


 , w3 =




2
−2

3


 , (2.4)

are readily seen to form a basis† of R3. To construct an orthogonal basis (with respect to
the standard dot product) using the Gram–Schmidt procedure, we begin by setting

v1 = w1 =




1
1

−1


 .

The next basis vector is

v2 = w2 −
w2 · v1

‖v1 ‖2
v1 =




1
0
2



 − −1

3




1
1

−1



 =




4
3
1
3
5
3


.

† This will, in fact, be a consequence of the successful completion of the Gram–Schmidt process
and does not need to be checked in advance. If the given vectors were not linearly independent,
then eventually one of the Gram–Schmidt vectors would vanish, vk = 0, and the process will
break down.

9/15/08 6 c© 2008 Peter J. Olver

The last orthogonal basis vector is

v3 = w3 −
w3 · v1

‖v1 ‖2
v1 −

w3 · v2

‖v2 ‖2
v2 =




2

−2

3


 − −3

3




1

1

−1


 − 7

14
3




4
3
1
3
5
3


 =




1

−3
2

−1
2


.

The reader can easily validate the orthogonality of v1,v2,v3.

An orthonormal basis is obtained by dividing each vector by its length. Since

‖v1 ‖ =
√

3 , ‖v2 ‖ =

√
14

3
, ‖v3 ‖ =

√
7

2
.

we produce the corresponding orthonormal basis vectors

u1 =




1√
3

1√
3

− 1√
3


, u2 =




4√
42

1√
42

5√
42


, u3 =




2√
14

− 3√
14

− 1√
14


. (2.5)

Modifications of the Gram–Schmidt Process

With the basic Gram–Schmidt algorithm now in hand, it is worth looking at a couple
of reformulations that have both practical and theoretical advantages. The first can be used
to directly construct the orthonormal basis vectors u1, . . . ,un from the basis w1, . . . ,wn.

We begin by replacing each orthogonal basis vector in the basic Gram–Schmidt for-
mula (2.3) by its normalized version uj = vj/‖vj ‖. The original basis vectors can be
expressed in terms of the orthonormal basis via a “triangular” system

w1 = r11 u1,

w2 = r12 u1 + r22u2,

w3 = r13 u1 + r23u2 + r33 u3,

...
...

...
. . .

wn = r1n u1 + r2n u2 + · · · + rnn un.

(2.6)

The coefficients rij can, in fact, be computed directly from these formulae. Indeed, taking
the inner product of the equation for wj with the orthonormal basis vector ui for i ≤ j,
we find, in view of the orthonormality constraints (1.4),

wj · ui = r1j u1 + · · · + rjj uj · ui = r1j u1 · ui + · · · + rjj un · ui = rij ,

and hence

rij = wj · ui. (2.7)

On the other hand, according to (1.3),

‖wj ‖2 = ‖ r1j u1 + · · · + rjj uj ‖2 = r21j + · · · + r2j−1,j + r2jj . (2.8)

9/15/08 7 c© 2008 Peter J. Olver

The pair of equations (2.7–8) can be rearranged to devise a recursive procedure to com-
pute the orthonormal basis. At stage j, we assume that we have already constructed
u1, . . . ,uj−1. We then compute†

rij = wj · ui, for each i = 1, . . . , j − 1. (2.9)

We obtain the next orthonormal basis vector uj by computing

rjj =
√

‖wj ‖2 − r21j − · · · − r2j−1,j , uj =
wj − r1j u1 − · · · − rj−1,j uj−1

rjj

. (2.10)

Running through the formulae (2.9–10) for j = 1, . . . , n leads to the same orthonormal
basis u1, . . . ,un as the previous version of the Gram–Schmidt procedure.

Example 2.2. Let us apply the revised algorithm to the vectors

w1 =




1
1

−1


 , w2 =




1
0
2


 , w3 =




2
−2

3


 ,

of Example 2.1. To begin, we set

r11 = ‖w1 ‖ =
√

3 , u1 =
w1

r11
=




1√
3

1√
3

− 1√
3


.

The next step is to compute

r12 = w2 · u1 = − 1√
3
, r22 =

√
‖w2 ‖2 − r212 =

√
14

3
, u2 =

w2 − r12u1

r22
=




4√
42

1√
42

5√
42


.

The final step yields

r13 = w3 · u1 = −
√

3 , r23 = w3 · u2 =

√
21

2
,

r33 =
√
‖w3 ‖2 − r213 − r223 =

√
7

2
, u3 =

w3 − r13 u1 − r23u2

r33
=




2√
14

− 3√
14

− 1√
14


.

As advertised, the result is the same orthonormal basis vectors that we found in Exam-
ple 2.1.

† When j = 1, there is nothing to do.

9/15/08 8 c© 2008 Peter J. Olver

For hand computations, the original version (2.3) of the Gram–Schmidt process is
slightly easier — even if one does ultimately want an orthonormal basis — since it avoids
the square roots that are ubiquitous in the orthonormal version (2.9–10). On the other
hand, for numerical implementation on a computer, the orthonormal version is a bit faster,
as it involves fewer arithmetic operations.

However, in practical, large scale computations, both versions of the Gram–Schmidt
process suffer from a serious flaw. They are subject to numerical instabilities, and so accu-
mulating round-off errors may seriously corrupt the computations, leading to inaccurate,
non-orthogonal vectors. Fortunately, there is a simple rearrangement of the calculation
that obviates this difficulty and leads to the numerically robust algorithm that is most
often used in practice. The idea is to treat the vectors simultaneously rather than sequen-
tially, making full use of the orthonormal basis vectors as they arise. More specifically,
the algorithm begins as before — we take u1 = w1/‖w1 ‖. We then subtract off the
appropriate multiples of u1 from all of the remaining basis vectors so as to arrange their
orthogonality to u1. This is accomplished by setting

w
(2)
k = wk − wk · u1 u1 for k = 2, . . . , n.

The second orthonormal basis vector u2 = w
(2)
2 /‖w

(2)
2 ‖ is then obtained by normalizing.

We next modify the remaining w
(2)
3 , . . . ,w

(2)
n to produce vectors

w
(3)
k = w

(2)
k − w

(2)
k · u2 u2, k = 3, . . . , n,

that are orthogonal to both u1 and u2. Then u3 = w
(3)
3 /‖w

(3)
3 ‖ is the next orthonormal

basis element, and the process continues. The full algorithm starts with the initial basis

vectors wj = w
(1)
j , j = 1, . . . , n, and then recursively computes

uj =
w

(j)
j

‖w
(j)
j ‖

, w
(j+1)
k = w

(j)
k − w

(j)
k · uj uj ,

j = 1, . . . , n,

k = j + 1, . . . , n.
(2.11)

(In the final phase, when j = n, the second formula is no longer needed.) The result is a
numerically stable computation of the same orthonormal basis vectors u1, . . . ,un.

Example 2.3. Let us apply the stable Gram–Schmidt process (2.11) to the basis
vectors

w
(1)
1 = w1 =




2
2

−1


, w

(1)
2 = w2 =




0
4

−1


, w

(1)
3 = w3 =




1
2

−3


.

The first orthonormal basis vector is u1 =
w

(1)
1

‖w
(1)
1 ‖

=




2
3
2
3

−1
3


. Next, we compute

w
(2)
2 = w

(1)
2 −w

(1)
2 · u1 u1 =




−2
2
0


, w

(2)
3 = w

(1)
3 − w

(1)
3 · u1 u1 =




−1
0

−2


.

9/15/08 9 c© 2008 Peter J. Olver

The second orthonormal basis vector is u2 =
w

(2)
2

‖w
(2)
2 ‖

=




− 1√
2

1√
2

0


. Finally,

w
(3)
3 = w

(2)
3 − w

(2)
3 · u2 u2 =




−1
2

−1
2

−2


, u3 =

w
(3)
3

‖w
(3)
3 ‖

=




−
√

2
6

−
√

2
6

−2
√

2
3


.

The resulting vectors u1,u2,u3 form the desired orthonormal basis.

3. Orthogonal Matrices.

Matrices whose columns form an orthonormal basis of Rn relative to the standard
Euclidean dot product play a distinguished role. Such “orthogonal matrices” appear in
a wide range of applications in geometry, physics, quantum mechanics, crystallography,
partial differential equations, symmetry theory, and special functions. Rotational motions
of bodies in three-dimensional space are described by orthogonal matrices, and hence they
lie at the foundations of rigid body mechanics, including satellite and underwater vehicle
motions, as well as three-dimensional computer graphics and animation. Furthermore,
orthogonal matrices are an essential ingredient in one of the most important methods of
numerical linear algebra: the QR algorithm for computing eigenvalues of matrices.

Definition 3.1. A square matrix Q is called an orthogonal matrix if it satisfies

QTQ = I . (3.1)

The orthogonality condition implies that one can easily invert an orthogonal matrix:

Q−1 = QT . (3.2)

In fact, the two conditions are equivalent, and hence a matrix is orthogonal if and only if
its inverse is equal to its transpose. The second important characterization of orthogonal
matrices relates them directly to orthonormal bases.

Proposition 3.2. A matrix Q is orthogonal if and only if its columns form an

orthonormal basis with respect to the Euclidean dot product on Rn.

Proof : Let u1, . . . ,un be the columns of Q. Then uT
1 , . . . ,u

T
n are the rows of the

transposed matrix QT . The (i, j) entry of the product QTQ is given as the product of the
ith row of QT times the jth column of Q. Thus, the orthogonality requirement (3.1) implies

ui · uj = uT
i uj =

{
1, i = j,

0, i 6= j,
which are precisely the conditions (1.4) for u1, . . . ,un to

form an orthonormal basis. Q.E.D.

Warning : Technically, we should be referring to an “orthonormal” matrix, not an
“orthogonal” matrix. But the terminology is so standard throughout mathematics that
we have no choice but to adopt it here. There is no commonly accepted name for a matrix
whose columns form an orthogonal but not orthonormal basis.

9/15/08 10 c© 2008 Peter J. Olver

u1

u2

θ

u1

u2

θ

Figure 1. Orthonormal Bases in R2.

Example 3.3. A 2× 2 matrix Q =

(
a b
c d

)
is orthogonal if and only if its columns

u1 =

(
a
c

)
,u2 =

(
b
d

)
, form an orthonormal basis of R2. Equivalently, the requirement

QTQ =

(
a c
b d

) (
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
=

(
1 0
0 1

)
,

implies that its entries must satisfy the algebraic equations

a2 + c2 = 1, ab+ cd = 0, b2 + d2 = 1.

The first and last equations say that the points (a, c)
T

and (b, d)
T

lie on the unit circle
in R2, and so

a = cos θ, c = sin θ, b = cosψ, d = sinψ,

for some choice of angles θ, ψ. The remaining orthogonality condition is

0 = ab+ cd = cos θ cosψ + sin θ sinψ = cos(θ − ψ),

which implies that θ and ψ differ by a right angle: ψ = θ ± 1
2
π. The ± sign leads to two

cases:

b = − sin θ, d = cos θ, or b = sin θ, d = − cos θ.

As a result, every 2 × 2 orthogonal matrix has one of two possible forms

(
cos θ − sin θ
sin θ cos θ

)
or

(
cos θ sin θ
sin θ − cos θ

)
, where 0 ≤ θ < 2π. (3.3)

The corresponding orthonormal bases are illustrated in Figure 1. The former is a right
handed basis, and can be obtained from the standard basis e1, e2 by a rotation through
angle θ, while the latter has the opposite, reflected orientation.

9/15/08 11 c© 2008 Peter J. Olver

Example 3.4. A 3×3 orthogonal matrixQ = (u1 u2 u3) is prescribed by 3 mutually
perpendicular vectors of unit length in R3. For instance, the orthonormal basis constructed

in (2.5) corresponds to the orthogonal matrix Q =




1√
3

4√
42

2√
14

1√
3

1√
42

− 3√
14

− 1√
3

5√
42

− 1√
14


.

Lemma 3.5. An orthogonal matrix has determinant detQ = ±1.

Proof : Taking the determinant of (3.1),

1 = det I = det(QTQ) = detQT detQ = (detQ)2,

which immediately proves the lemma. Q.E.D.

An orthogonal matrix is called proper or special if it has determinant +1. Geomet-
rically, the columns of a proper orthogonal matrix form a right handed basis of Rn. An
improper orthogonal matrix, with determinant −1, corresponds to a left handed basis that
lives in a mirror image world.

Proposition 3.6. The product of two orthogonal matrices is also orthogonal.

Proof : If QT
1 Q1 = I = QT

2 Q2, then (Q1Q2)
T (Q1Q2) = QT

2Q
T
1 Q1Q2 = QT

2 Q2 = I ,
and so the product matrix Q1Q2 is also orthogonal. Q.E.D.

This property says that the set of all orthogonal matrices forms a group. The orthog-

onal group lies at the foundation of everyday Euclidean geometry, as well as rigid body
mechanics, atomic structure and chemistry, computer graphics and animation, and many
other areas.

4. Eigenvalues of Symmetric Matrices.

Symmetric matrices are the most important subclass. Not only are the eigenvalues
of a symmetric matrix necessarily real, the eigenvectors always form an orthogonal basis.
In fact, this is by far the most common way for orthogonal bases to appear — as the
eigenvector bases of symmetric matrices. Let us state this important result, but defer its
proof until the end of the section.

Theorem 4.1. Let A = AT be a real symmetric n× n matrix. Then

(a) All the eigenvalues of A are real.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) There is an orthonormal basis of R
n consisting of n eigenvectors of A.

In particular, all symmetric matrices are complete.

9/15/08 12 c© 2008 Peter J. Olver

Example 4.2. Consider the symmetric matrix A =




5 −4 2
−4 5 2

2 2 −1


. A straight-

forward computation produces its eigenvalues and eigenvectors:

λ1 = 9, λ2 = 3, λ3 = −3,

v1 =




1
−1

0


 , v2 =




1
1
1


 , v3 =




1
1

−2


 .

As the reader can check, the eigenvectors form an orthogonal basis of R3. An orthonormal
basis is provided by the unit eigenvectors

u1 =




1√
2

− 1√
2

0


 , u2 =




1√
3

1√
3

1√
3


 , u3 =




1√
6

1√
6

− 2√
6


 .

Proof of Theorem 4.1 : First, if A = AT is real, symmetric, then

(Av) · w = v · (Aw) for all v,w ∈ C
n, (4.1)

where · indicates the Euclidean dot product when the vectors are real and, more generally,
the Hermitian dot product v · w = vT w when they are complex.

To prove property (a), suppose λ is a complex eigenvalue with complex eigenvector
v ∈ Cn. Consider the Hermitian dot product of the complex vectors Av and v:

(Av) · v = (λv) · v = λ ‖v ‖2.

On the other hand, by (4.1),

(Av) · v = v · (Av) = v · (λv) = vT λv = λ ‖v ‖2.

Equating these two expressions, we deduce

λ ‖v ‖2 = λ ‖v ‖2.

Since v 6= 0, as it is an eigenvector, we conclude that λ = λ, proving that the eigenvalue
λ is real.

To prove (b), suppose

Av = λv, Aw = µw,

where λ 6= µ are distinct real eigenvalues. Then, again by (4.1),

λv ·w = (Av) · w = v · (Aw) = v · (µw) = µv ·w,

and hence
(λ− µ)v · w = 0.

9/15/08 13 c© 2008 Peter J. Olver

Since λ 6= µ, this implies that v ·w = 0 and hence the eigenvectors v,w are orthogonal.

Finally, the proof of (c) is easy if all the eigenvalues of A are distinct. Part (b) proves
that the corresponding eigenvectors are orthogonal, and Proposition 1.4 proves that they
form a basis. To obtain an orthonormal basis, we merely divide the eigenvectors by their
lengths: uk = vk/‖vk ‖, as in Lemma 1.2.

To prove (c) in general, we proceed by induction on the size n of the matrix A. To
start, the case of a 1×1 matrix is trivial. (Why?) Next, suppose A has size n×n. We know
that A has at least one eigenvalue, λ1, which is necessarily real. Let v1 be the associated
eigenvector. Let

V ⊥ = { w ∈ R
n | v1 · w = 0 }

denote the orthogonal complement to the eigenspace Vλ1
— the set of all vectors orthogonal

to the first eigenvector. Since dimV ⊥ = n − 1, we can choose an orthonormal basis
y1, . . . ,yn−1. Now, if w is any vector in V ⊥, so is Aw, since, by (4.1),

v1 · (Aw) = (Av1) · w = λ1 v1 ·w = 0.

Thus, A defines a linear transformation on V ⊥ represented by an (n− 1)× (n− 1) matrix
with respect to the chosen orthonormal basis y1, . . . ,yn−1. It is not hard to prove that
the representing matrix is symmetric, and so our induction hypothesis then implies that
there is an orthonormal basis of V ⊥ consisting of eigenvectors u2, . . . ,un of A. Appending
the unit eigenvector u1 = v1/‖v1 ‖ to this collection will complete the orthonormal basis
of Rn. Q.E.D.

Using the orthonormal eigenvector basis in the diagonalization formula results in the
so-called spectral factorization of the symmetric matrix.

Theorem 4.3. Let A be a real, symmetric matrix. Then there exists an orthogonal

matrix Q such that

A = QΛQ−1 = QΛQT , (4.2)

where Λ is a real diagonal matrix. The eigenvalues of A appear on the diagonal of Λ, while

the columns of Q are the corresponding orthonormal eigenvectors.

Remark : The term “spectrum” refers to the eigenvalues of a matrix or, more gener-
ally, a linear operator. The terminology is motivated by physics. The spectral energy lines
of atoms, molecules and nuclei are characterized as the eigenvalues of the governing quan-
tum mechanical Schrödinger operator. The Spectral Theorem 4.3 is the finite-dimensional
version for the decomposition of quantum mechanical linear operators into their spectral
eigenstates.

5. The QR Factorization and Algorithm.

The Gram–Schmidt procedure for orthonormalizing bases of Rn can be reinterpreted
as a matrix factorization. This is more subtle than the LU factorization that resulted from
Gaussian Elimination, but is of comparable significance, and is used in a broad range of
applications in mathematics, statistics, physics, engineering, and numerical analysis.

9/15/08 14 c© 2008 Peter J. Olver

QR Factorization of a Matrix A

start

for j = 1 to n

set rjj =
√
a2
1j + · · · + a2

nj

if rjj = 0, stop; print “A has linearly dependent columns”

else for i = 1 to n

set aij = aij/rjj

next i

for k = j + 1 to n

set rjk = a1j a1k + · · · + anj ank

for i = 1 to n

set aik = aik − aij rjk

next i

next k

next j

end

Let w1, . . . ,wn be a basis of R
n, and let u1, . . . ,un be the corresponding orthonormal

basis that results from any one of the three implementations of the Gram–Schmidt process.
We assemble both sets of column vectors to form nonsingular n× n matrices

A = (w1 w2 . . . wn), Q = (u1 u2 . . . un).

Since the ui form an orthonormal basis, Q is an orthogonal matrix. Moreover, the Gram–
Schmidt equations (2.6) can be recast into an equivalent matrix form:

A = QR, where R =




r11 r12 . . . r1n

0 r22 . . . r2n

...
...

. . .
...

0 0 . . . rnn


 (5.1)

is an upper triangular matrix whose entries are the coefficients in (2.9–10). Since the
Gram–Schmidt process works on any basis, the only requirement on the matrix A is that
its columns form a basis of Rn, and hence A can be any nonsingular matrix. We have
therefore established the celebrated QR factorization of nonsingular matrices.

Theorem 5.1. Any nonsingular matrixA can be factored, A = QR, into the product

of an orthogonal matrix Q and an upper triangular matrix R. The factorization is unique

if all the diagonal entries of R are assumed to be positive.

9/15/08 15 c© 2008 Peter J. Olver

Example 5.2. The columns of the matrix A =




1 1 2
1 0 −2

−1 2 3


 are the same as the

basis vectors considered in Example 2.2. The orthonormal basis (2.5) constructed using
the Gram–Schmidt algorithm leads to the orthogonal and upper triangular matrices

Q =




1√
3

4√
42

2√
14

1√
3

1√
42

− 3√
14

− 1√
3

5√
42

− 1√
14


, R =




√
3 − 1√

3
−
√

3

0
√

14√
3

√
21√
2

0 0
√

7√
2


. (5.2)

The reader may wish to verify that, indeed, A = QR.

While any of the three implementations of the Gram–Schmidt algorithm will produce
theQR factorization of a given matrixA = (w1 w2 . . . wn), the stable version, as encoded
in equations (2.11), is the one to use in practical computations, as it is the least likely to fail
due to numerical artifacts produced by round-off errors. The accompanying pseudocode
program reformulates the algorithm purely in terms of the matrix entries aij of A. During
the course of the algorithm, the entries of the matrix A are successively overwritten; the
final result is the orthogonal matrix Q appearing in place of A. The entries rij of R must
be stored separately.

Example 5.3. Let us factor the matrix

A =




2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2




using the numerically stable QR algorithm. As in the program, we work directly on the
matrix A, gradually changing it into orthogonal form. In the first loop, we set r11 =

√
5

to be the norm of the first column vector of A. We then normalize the first column

by dividing by r11; the resulting matrix is




2√
5

1 0 0

1√
5

2 1 0

0 1 2 1

0 0 1 2




. The next entries r12 =

4√
5
, r13 = 1√

5
, r14 = 0, are obtained by taking the dot products of the first column

with the other three columns. For j = 1, 2, 3, we subtract r1j times the first column

from the jth column; the result




2√
5

−3
5

−2
5

0

1√
5

6
5

4
5

0

0 1 2 1

0 0 1 2




is a matrix whose first column is

normalized to have unit length, and whose second, third and fourth columns are orthogonal
to it. In the next loop, we normalize the second column by dividing by its norm r22 =

9/15/08 16 c© 2008 Peter J. Olver

√
14
5 , and so obtain the matrix




2√
5

− 3√
70

−2
5 0

1√
5

6√
70

4
5

0

0 5√
70

2 1

0 0 1 2




. We then take dot products of

the second column with the remaining two columns to produce r23 = 16√
70

, r24 = 5√
70

.

Subtracting these multiples of the second column from the third and fourth columns, we

obtain




2√
5

− 3√
70

2
7

3
14

1√
5

6√
70

−4
7 −3

7

0 5√
70

6
7

9
14

0 0 1 2




, which now has its first two columns orthonormalized,

and orthogonal to the last two columns. We then normalize the third column by dividing

by r33 =
√

15
7

, and so




2√
5

− 3√
70

2√
105

3
14

1√
5

6√
70

− 4√
105

−3
7

0 5√
70

6√
105

9
14

0 0 7√
105

2




. Finally, we subtract r34 = 20√
105

times the third column from the fourth column. Dividing the resulting fourth column by

its norm r44 =
√

5
6

results in the final formulas,

Q =




2√
5

− 3√
70

2√
105

− 1√
30

1√
5

6√
70

− 4√
105

2√
30

0 5√
70

6√
105

− 3√
30

0 0 7√
105

4√
30



, R =




√
5 4√

5
1√
5

0

0
√

14√
5

16√
70

5√
70

0 0
√

15√
7

20√
105

0 0 0
√

5√
6



,

for the A = QR factorization.

The QR Algorithm

We are now ready to apply these results to the problem of numerically approximating
eigenvalues of matrices. As we know, the power method only produces the dominant
(largest in magnitude) eigenvalue of a matrix A. The inverse power method can be used
to find the smallest eigenvalue. Additional eigenvalues can be found by using the shifted
inverse power method, or deflation. However, if we need to know all the eigenvalues, such
piecemeal methods are too time-consuming to be of much practical value.

The most popular scheme for simultaneously approximating all the eigenvalues of a
matrix A is the remarkable QR algorithm, first proposed in 1961 independently by Francis
and Kublanovskaya. The underlying idea is simple, but surprising. The first step is to
factor the matrix

A = A1 = Q1R1

9/15/08 17 c© 2008 Peter J. Olver

into a product of an orthogonal matrixQ1 and a positive (i.e., with all positive entries along
the diagonal) upper triangular matrix R1 by using the Gram–Schmidt orthogonalization
procedure of Theorem 5.1, or, even better, the numerically stable version described in
(2.11). Next, multiply the two factors together in the wrong order ! The result is the new
matrix

A2 = R1Q1.

We then repeat these two steps. Thus, we next factor

A2 = Q2R2

using the Gram–Schmidt process, and then multiply the factors in the reverse order to
produce

A3 = R2Q2.

The complete algorithm can be written as

A = Q1R1, RkQk = Ak+1 = Qk+1Rk+1, k = 1, 2, 3, . . . , (5.3)

where Qk, Rk come from the previous step, and the subsequent orthogonal matrix Qk+1

and positive upper triangular matrix Rk+1 are computed by using the numerically stable
form of the Gram–Schmidt algorithm.

The astonishing fact is that, for many matrices A, the iterates Ak −→ V converge to
an upper triangular matrix V whose diagonal entries are the eigenvalues of A. Thus, after
a sufficient number of iterations, say k⋆, the matrix Ak⋆ will have very small entries below
the diagonal, and one can read off a complete system of (approximate) eigenvalues along
its diagonal. For each eigenvalue, the computation of the corresponding eigenvector can
be done by solving the appropriate homogeneous linear system, or by applying the shifted
inverse power method.

Example 5.4. Consider the matrix A =

(
2 1
2 3

)
. The initial Gram–Schmidt fac-

torization A = Q1R1 yields

Q1 =

(
.7071 −.7071
.7071 .7071

)
, R1 =

(
2.8284 2.8284

0 1.4142

)
.

These are multiplied in the reverse order to give

A2 = R1Q1 =

(
4 0
1 1

)
.

We refactor A2 = Q2R2 via Gram–Schmidt, and then reverse multiply to produce

Q2 =

(
.9701 −.2425
.2425 .9701

)
, R2 =

(
4.1231 .2425

0 .9701

)
,

A3 = R2Q2 =

(
4.0588 −.7647
.2353 .9412

)
.

9/15/08 18 c© 2008 Peter J. Olver

The next iteration yields

Q3 =

(
.9983 −.0579
.0579 .9983

)
, R3 =

(
4.0656 −.7090

0 .9839

)
,

A4 = R3Q3 =

(
4.0178 −.9431
.0569 .9822

)
.

Continuing in this manner, after 9 iterations we find, to four decimal places,

Q10 =

(
1 0
0 1

)
, R10 =

(
4 −1
0 1

)
, A11 = R10Q10 =

(
4 −1
0 1

)
.

The eigenvalues of A, namely 4 and 1, appear along the diagonal of A11. Additional
iterations produce very little further change, although they can be used for increasing the
accuracy of the computed eigenvalues.

If the original matrix A happens to be symmetric and positive definite, then the
limiting matrix Ak −→ V = Λ is, in fact, the diagonal matrix containing the eigenvalues
of A. Moreover, if, in this case, we recursively define

S1 = Q1, Sk = Sk−1Qk = Q1Q2 · · · Qk−1Qk, k > 1, (5.4)

then Sk −→ S have, as their limit, an orthogonal matrix whose columns are the orthonor-
mal eigenvector basis of A.

Example 5.5. Consider the symmetric matrix A =




2 1 0
1 3 −1
0 −1 6



. The initial
A = Q1R1 factorization produces

S1 = Q1 =



.8944 −.4082 −.1826
.4472 .8165 .3651

0 −.4082 .9129


 , R1 =




2.2361 2.2361 − .4472
0 2.4495 −3.2660
0 0 5.1121


 ,

and so

A2 = R1Q1 =




3.0000 1.0954 0
1.0954 3.3333 −2.0870

0 −2.0870 4.6667


 .

We refactor A2 = Q2R2 and reverse multiply to produce

Q2 =



.9393 −.2734 −.2071
.3430 .7488 .5672

0 −.6038 .7972


 , S2 = S1Q2 =




.7001 −.4400 −.5623

.7001 .2686 .6615
−.1400 −.8569 .4962


 ,

R2 =




3.1937 2.1723 − .7158
0 3.4565 −4.3804
0 0 2.5364


 , A3 = R2Q2 =




3.7451 1.1856 0
1.1856 5.2330 −1.5314

0 −1.5314 2.0219


 .

9/15/08 19 c© 2008 Peter J. Olver

Continuing in this manner, after 10 iterations we find

Q11 =




1.0000 − .0067 0
.0067 1.0000 .0001

0 −.0001 1.0000


 , S11 =




.0753 −.5667 −.8205

.3128 −.7679 .5591
−.9468 −.2987 .1194


 ,

R11 =




6.3229 .0647 0

0 3.3582 −.0006
0 0 1.3187



 , A12 =




6.3232 .0224 0
.0224 3.3581 −.0002

0 −.0002 1.3187



 .

After 20 iterations, the process has completely settled down, and

Q21 =




1 0 0
0 1 0
0 0 1



 , S21 =




.0710 −.5672 −.8205
.3069 −.7702 .5590

−.9491 −.2915 .1194



 ,

R21 =




6.3234 .0001 0
0 3.3579 0
0 0 1.3187


 , A22 =




6.3234 0 0
0 3.3579 0
0 0 1.3187


 .

The eigenvalues of A appear along the diagonal of A22, while the columns of S21 are the
corresponding orthonormal eigenvector basis, listed in the same order as the eigenvalues,
both correct to 4 decimal places.

We will devote the remainder of this section to a justification of the QR algorithm for
a class of matrices. We will assume that A is symmetric, and that its eigenvalues satisfy

|λ1 | > |λ2 | > · · · > |λn | > 0. (5.5)

According to the Spectral Theorem 4.3, the corresponding unit eigenvectors u1, . . . ,un

form an orthonormal basis of Rn. The analysis can be adapted to a broader class of
matrices, but this will suffice to expose the main ideas without unduly complicating the
exposition.

The secret is that the QR algorithm is, in fact, a well-disguised adaptation of the more
primitive power method. If we were to use the power method to capture all the eigenvectors
and eigenvalues of A, the first thought might be to try to perform it simultaneously on

a complete basis v
(0)
1 , . . . ,v(0)

n of Rn instead of just one individual vector. The problem

is that, for almost all vectors, the power iterates v
(k)
j = Ak v

(0)
j all tend to a multiple of

the dominant eigenvector u1. Normalizing the vectors at each step is not any better, since
then they merely converge to one of the two dominant unit eigenvectors ±u1. However,
if, inspired by the form of the eigenvector basis, we orthonormalize the vectors at each
step, then we effectively prevent them from all accumulating at the same dominant unit
eigenvector, and so, with some luck, the resulting vectors will converge to the full system of
eigenvectors. Since orthonormalizing a basis via the Gram–Schmidt process is equivalent
to a QR matrix factorization, the mechanics of the algorithm is not so surprising.

In detail, we start with any orthonormal basis, which, for simplicity, we take to be

the standard basis vectors of Rn, and so u
(0)
1 = e1, . . . ,u

(0)
n = en. At the kth stage

of the algorithm, we set u
(k)
1 , . . . ,u(k)

n to be the orthonormal vectors that result from

9/15/08 20 c© 2008 Peter J. Olver

applying the Gram–Schmidt algorithm to the power vectors v
(k)
j = Ak ej. In matrix

language, the vectors v
(k)
1 , . . . ,v(k)

n are merely the columns of Ak, and the orthonormal

basis u
(k)
1 , . . . ,u(k)

n are the columns of the orthogonal matrix Sk in the QR decomposition
of the kth power of A, which we denote by

Ak = Sk Pk, (5.6)

where Pk is positive upper triangular. Note that, in view of (5.3)

A = Q1R1, A2 = Q1R1Q1R1 = Q1Q2R2R1,

A3 = Q1R1Q1R1Q1R1 = Q1Q2R2Q2R2R1 = Q1Q2Q3R3R2R1,

and, in general,
Ak =

(
Q1Q2 · · ·Qk−1Qk

) (
RkRk−1 · · ·R2R1

)
. (5.7)

The product of orthogonal matrices is also orthogonal. The product of positive upper
triangular matrices is also positive upper triangular. Therefore, comparing (5.6, 7) and
invoking the uniqueness of the QR factorization, we conclude that

Sk = Q1Q2 · · ·Qk−1Qk = Sk−1Qk, Pk = RkRk−1 · · ·R2R1 = RkPk−1. (5.8)

Let S = (u1 u2 . . . un) denote an orthogonal matrix whose columns are unit eigen-
vectors of A. The Spectral Theorem 4.3 tells us that

A = S ΛST , where Λ = diag (λ1, . . . , λn)

is the diagonal eigenvalue matrix. Substituting the spectral factorization into (5.6), we
find

Ak = S Λk ST = Sk Pk.

We now make one additional assumption on the matrix A by requiring that ST be a
regular matrix. This holds generically, and is the analog of the condition that our initial
vector in the power method includes a nonzero component of the dominant eigenvector.
Regularity means that we can factor ST = LU into a product of special lower and upper
triangular matrices. We can assume that, without loss of generality, the diagonal entries
of U — that is, the pivots of ST — are all positive. Indeed, this can be arranged by
multiplying each row of ST by the sign of its pivot, which amounts to possibly changing
the signs of some of the unit eigenvectors ui, which is allowed since it does not affect their
status as an orthonormal eigenvector basis.

Under these two assumptions,

Ak = SΛk LU = Sk Pk, and hence SΛk L = Sk Pk U
−1.

Multiplying on the right by Λ−k, we obtain

SΛk LΛ−k = Sk Tk, where Tk = Pk U
−1 Λ−k (5.9)

is also a positive upper triangular matrix.

9/15/08 21 c© 2008 Peter J. Olver

Now consider what happens as k → ∞. The entries of the lower triangular matrix
N = Λk LΛ−k are

nij =





lij(λi/λj)
k, i > j,

lii = 1, i = j,

0, i < j.

Since we are assuming |λi | < |λj | when i > j, we immediately deduce that

Λk LΛ−k −→ I , and hence Sk Tk = SΛk LΛ−k −→ S as k −→ ∞.

We now appeal to the following lemma, whose proof will be given after we finish the
justification of the QR algorithm.

Lemma 5.6. Let S1, S2, . . . and S be orthogonal matrices and T1, T2, . . . positive

upper triangular matrices. Then Sk Tk → S as k → ∞ if and only if Sk → S and Tk → I .

Therefore, as claimed, the orthogonal matrices Sk do converge to the orthogonal
eigenvector matrix S. Moreover, by (5.8–9),

Rk = PkP
−1
k−1 =

(
Tk ΛkU−1

) (
Tk−1 Λk−1U−1

)−1 = Tk ΛT−1
k−1.

Since both Tk and Tk−1 converge to the identity matrix, in the limit Rk → Λ converges
to the diagonal eigenvalue matrix, as claimed. The eigenvalues appear in decreasing order
along the diagonal — this is a consequence of our regularity assumption on the transposed
eigenvector matrix ST .

Theorem 5.7. If A is positive definite, satisfies (5.5), and its transposed eigenvector

matrix ST is regular, then the matrices Sk → S and Rk → Λ appearing in the QR
algorithm applied to A converge to, respectively, the eigenvector matrix S and the diagonal

eigenvalue matrix Λ.

The last remaining item is a proof of Lemma 5.6. We write S = (u1 u2 . . . un),

Sk = (u
(k)
1 , . . . ,u(k)

n) in columnar form. Let t
(k)
ij denote the entries of the positive upper

triangular matrix Tk. The first column of the limiting equation Sk Tk → S reads

t
(k)
11 u

(k)
1 −→ u1.

Since both u
(k)
1 and u1 are unit vectors, and t

(k)
11 > 0,

‖ t(k)
11 u

(k)
1 ‖ = t

(k)
11 −→ ‖u1 ‖ = 1, and hence u

(k)
1 −→ u1.

The second column reads
t
(k)
12 u

(k)
1 + t

(k)
22 u

(k)
2 −→ u2.

Taking the inner product with u
(k)
1 → u1 and using orthonormality, we deduce t

(k)
12 → 0,

and so t
(k)
22 u

(k)
2 → u2, which, by the previous reasoning, implies t

(k)
22 → 1 and u

(k)
2 → u2.

The proof is completed by working in order through the remaining columns, employing a
similar argument at each step.

9/15/08 22 c© 2008 Peter J. Olver

v

u

H v

u⊥

Figure 2. Elementary Reflection Matrix.

Tridiagonalization

In practical implementations, the direct QR algorithm often takes too long to provide
reasonable approximations to the eigenvalues of large matrices. Fortunately, the algorithm
can be made much more efficient by a simple preprocessing step. The key observation is
that the QR algorithm preserves the class of symmetric tridiagonal matrices, and, more-
over, like Gaussian Elimination, is much faster when applied to this class of matrices.
It turns out that, although diagonalizinjg a matrix is effectively the same as finding its
eigenvectors, one can “tridiagonalize” the matrix by a sequence of fairly elementary matrix
operations, based on the following class of matrices.

Consider the Householder or elementary reflection matrix

H = I − 2uuT (5.10)

in which u is a unit vector (in the Euclidean norm). The matrixH represents a reflection of
vectors through the subspace u⊥ = {v |v ·u = 0 } of vectors orthogonal to u, as illustrated
in Figure 2. The matrix H is symmetric and orthogonal:

HT = H, H2 = I , H−1 = H. (5.11)

The proof is straightforward: symmetry is immediate, while

HHT = H2 = (I − 2uuT) (I − 2uuT) = I − 4uuT + 4u (uTu)uT = I

since, by assumption, uTu = ‖u ‖2 = 1. By suitably forming the unit vector u, we can
construct an elementary reflection matrix that interchanges any two vectors of the same
length.

Lemma 5.8. Let v,w ∈ Rn with ‖v ‖ = ‖w ‖. Set u = (v − w)/‖v − w ‖ and let

H = I − 2uuT be the corresponding elementary reflection matrix. Then H v = w and

Hw = v.

9/15/08 23 c© 2008 Peter J. Olver

Proof : Keeping in mind that x and y have the same Euclidean norm, we compute

H v = (I − 2uuT)v = v − 2
(v − w)(v − w)Tv

‖v − w ‖2

= v − 2
(v −w)

(
‖v ‖2 − w · v

)

2 ‖v ‖2 − 2v · w = v − (v − w) = w.

The proof of the second equation is similar. Q.E.D.

In Householder’s approach to the QR factorization, we were able to convert the matrix
A to upper triangular form R by a sequence of elementary reflection matrices. Unfortu-
nately, this procedure does not preserve the eigenvalues of the matrix — the diagonal
entries of R are not the eigenvalues — and so we need to be a bit more clever here. We
begin by recalling that similar matrices have the same eigenvalues.

Lemma 5.9. If H = I − 2uuT is an elementary reflection matrix, with u a unit

vector, then A and B = HAH are similar matrices and hence have the same eigenvalues.

Proof : According to (5.11), H−1 = H, and hence B = H−1AH is similar to A. If λ
is any eigenvalue of A, soAv = λv for v 6= 0, then Bw = λw where w = H−1v, which
implies that λ remains an eigenvalue of B,l and conversely. Q.E.D.

Given a symmetric n× n matrix A, our goal is to devise a similar tridiagonal matrix
by applying a sequence of Householder reflections. We begin by setting

x1 =




0
a21

a31
...
an1



, y1 =




0
±r1
0
...
0



, where r1 = ‖x1 ‖ = ‖y1 ‖,

so that x1 contains all the off-diagonal entries of the first column of A. Let

H1 = I − 2u1 uT
1 , where u1 =

x1 − y1

‖x1 − y1 ‖
be the corresponding elementary reflection matrix that maps x1 to y1. Either ± sign in
the formula for y1 works in the algorithm; a good choice is to set it to be the opposite of
the sign of the entry a21, which helps minimize the possible effects of round-off error when
computing the unit vector u1. By direct computation, based on Lemma 5.8 and the fact
that the first entry of u1 is zero,

A2 = H1AH1 =




a11 r1 0 . . . 0
r1 ã22 ã23 . . . ã2n

0 ã32 ã33 . . . ã3n

...
...

...
. . .

...
0 ãn2 ãn3 . . . ãnn




(5.12)

9/15/08 24 c© 2008 Peter J. Olver

for certain ãij ; the explicit formulae are not needed. Thus, by a single Householder trans-
formation, we convert A into a similar matrix A2 whose first row and column are in
tridiagonal form. We repeat the process on the lower right (n− 1)× (n− 1) submatrix of
A2. We set

x2 =




0
0
ã32

ã42
...
ãn2



, y1 =




0
0

±r2
0
...
0



, where r2 = ‖x2 ‖ = ‖y2 ‖,

and the ± sign is chosen to be the opposite of that of ã32. Setting

H2 = I − 2u2 uT
2 , where u2 =

x2 − y2

‖x2 − y2 ‖
,

we construct the similar matrix

A3 = H2A2H2 =




a11 r1 0 0 . . . 0
r1 ã22 r2 0 . . . 0
0 r2 â33 â34 . . . â3n

0 0 â43 â44 . . . â4n

...
...

...
...

. . .
...

0 0 ân3 ân4 . . . ânn



.

whose first two rows and columns are now in tridiagonal form. The remaining steps in the
algorithm should now be clear. Thus, the final result is a tridiagonal matrix T = An that
has the same eigenvalues as the original symmetric matrix A. Let us illustrate the method
by an example.

Example 5.10. To tridiagonalize A =




4 1 −1 2
1 4 1 −1

−1 1 4 1
2 −1 1 4


, we begin with its

first column. We set x1 =




0
1

−1
2


, so that y1 =




0√
6

0
0


 ≈




0
2.4495

0
0


. Therefore, the

unit vector is u1 =
x1 − y1

‖x1 − y1 ‖
=




0
.8391

−.2433
.4865


, with corresponding Householder matrix

H1 = I − 2u1 uT
1 =




1 0 0 0
0 −.4082 .4082 −.8165
0 .4082 .8816 .2367
0 −.8165 .2367 .5266


.

9/15/08 25 c© 2008 Peter J. Olver

Thus,

A2 = H1AH1 =




4.0000 −2.4495 0 0
−2.4495 2.3333 −.3865 −.8599

0 −.3865 4.9440 −.1246
0 −.8599 −.1246 4.7227


.

In the next phase, x2 =




0
0

−.3865
−.8599


, y2 =




0
0

−.9428
0


, so u2 =




0
0

−.8396
−.5431


, and

H2 = I − 2u2 uT
2 =




1 0 0 0
0 1 0 0
0 0 −.4100 −.9121
0 0 −.9121 .4100


.

The resulting matrix

T = A3 = H2A2H2 =




4.0000 −2.4495 0 0
−2.4495 2.3333 .9428 0

0 .9428 4.6667 0
0 0 0 5




is now in tridiagonal form.

Since the final tridiagonal matrix T has the same eigenvalues as A, we can apply
the QR algorithm to T to approximate the common eigenvalues. (The eigenvectors must
then be computed separately, e.g., by the shifted inverse power method.) It is not hard to
show that, if A = A1 is tridiagonal, so are all the iterates A2, A3, Moreover, far fewer
arithmetic operations are required. For instance, in the preceding example, after we apply
20 iterations of the QR algorithm directly to T , the upper triangular factor has become

R21 =




6.0000 −.0065 0 0
0 4.5616 0 0
0 0 5.0000 0
0 0 0 .4384


.

The eigenvalues of T , and hence also of A, appear along the diagonal, and are correct to
4 decimal places.

Finally, even if A is not symmetric, one can still apply the same sequence of House-
holder transformations to simplify it. The final result is no longer tridiagonal, but rather
a similar upper Hessenberg matrix , which means that all entries below the subdiagonal are
zero, but those above the superdiagonal are not necessarily zero. For instance, a 5 × 5
upper Hessenberg matrix looks like




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


,

9/15/08 26 c© 2008 Peter J. Olver

where the starred entries can be anything. It can be proved that the QR algorithm
maintains the upper Hessenberg form, and, while not as efficient as in the tridiagonal
case, still yields a significant savings in computational effort required to find the common
eigenvalues.

9/15/08 27 c© 2008 Peter J. Olver

