Alvise Sommariva

Università degli Studi di Padova Dipartimento di Matematica

19 marzo 2014

Consideriamo lo spazio normato delle funzioni reali misurabili (cf. [6, p.284]) quadrato integrabili ($L^2(a,b)$, $\|\cdot\|_2$) dove a,b è un intervallo della retta reale, non necessariamente limitato (cf. [6, p.386], ricordando [6, p.308]), e

$$||g||_2 = (g,g), \quad (f,g)_2 = \int_a^b f(x) \cdot g(x) dx.$$

Si dimostra (non facile!) che questo spazio euclideo è un esempio di spazio di Hilbert (cf. [6, p.388]), cioè uno spazio euclideo che è completo, separabile e infinito dimensionale (cf. [6, p.155]).

Più in generale se $w:(a,b)\to\mathbb{R}$ è una funzione positiva allora lo spazio $(L^2_w(a,b),\|\cdot\|_{2,w})$ definito come

$$L_w^2(a,b) = \left\{ f \text{ misurabili t.c. } \int_a^b |f(x)|^2 w(x) dx < \infty \right\}$$

è uno spazio di Hilbert dotato del prodotto scalare

$$(f,g)_{2,w} = \int_a^b f(x) \cdot g(x) w(x) dx$$

(cf. [2, p.23]).

Supponiamo di seguito che in particolare sia $w:(a,b)\to\mathbb{R}$ una funzione nonnegativa, con (a,b) non necessariamente limitato, tale che

- 1. $\int_a^b |x|^n w(x) dx < +\infty$ per tutti gli $n \in \mathbb{N}$;
- 2. $\int_a^b g(x) w(x) dx = 0$ per qualche funzione continua e non negativa g implica $g \equiv 0$ in (a, b).

Teorema

Lo spazio vettoriale $L_w^2(a,b)$ contiene lo spazio dei polinomi \mathcal{P}_n di grado n (con $n \in \mathbb{N}$ arbitrario).

Dimostrazione.

Infatti, se $p_n(x) = \sum_{k=0}^n a_k x^k$ allora per la disuguaglianza triangolare e il fatto che per ogni k si ha

$$||x^k||_{2,w}^2 = \int_a^b |x|^{2k} w(x) dx < +\infty$$

necessariamente

$$\|p_n\|_{2,w} = \left\|\sum_{k=0}^n a_k x^k\right\|_{2,w} \le \sum_{k=0}^n |a_k| \|x^k\|_{2,w} < +\infty,$$

e quindi $p_n \in L^2_w(a,b)$. \square

Nota.

Si osservi che se a e b sono finiti, essendo per il teorema di Weirstrass $\|x^n\| = \max_{x \in [a,b]} |x|^n < +\infty$, abbiamo $\int_a^b |x|^n \, w(x) \, dx \leq \|x^n\| \int_a^b w(x) \, dx \, da \, cui \, se \, \int_a^b w(x) \, dx < +\infty$ automaticamente $\int_a^b |x|^n \, w(x) \, dx < +\infty$ per tutti gli $n \in \mathbb{N}$.

Fissata $f \in L^2_w([a,b])$ ed $n \in \mathbb{N}$, il problema ai minimi quadrati (nel continuo) consiste nel determinare il polinomio p_n di grado n tale che sia minima la quantità (cf. [1, p.204-207])

$$||f - p_n||_{2,w} = \int_a^b |f(x) - p_n(x)|^2 w(x) dx.$$

Essendo $L_w^2([a,b])$ uno spazio euclideo, e $(\phi_k)_{k=0,...,n}$ una base di \mathcal{P}_n , abbiamo visto che la soluzione del problema

$$\|f - f^*\|_{2,w} = \min_{g \in \mathsf{span}\{\phi_0, \dots, \phi_n\}} \|f - g\|_{2,w}$$

è

$$f^* = \sum_{j=0}^n \gamma_j^* \phi_j$$

dove i coefficienti γ_j^* verificano le cosidette equazioni normali

$$\sum_{k=0}^{n} (\phi_j, \phi_k)_{2,w} \gamma_k^* = (\phi_j, f)_{2,w}, \ j = 0, \dots, n.$$

La soluzione è caratterizzata dalla proprietà di ortogonalità cioè che f^*-f è ortogonale a tutti gli ϕ_k , con $k=1,\ldots,n$, ovvero

$$(f, \phi_k)_{2,w} = (f^*, \phi_k)_{2,w}, k = 0, \dots, n$$

Nel caso $\phi_k(x) = x^k$ per k = 0, ..., n, le equazioni normali si riscrivono quindi come

$$\sum_{k=0}^n \gamma_k^* \left(\int_a^b x^{j+k} w(x) dx \right) = \int_a^b x^j f(x) w(x) dx, \ j = 0, \dots, n.$$

o in forma matriciale, posto per $j, k = 0, \dots, n$

$$A_{j,k} := \int_a^b x^{j+k} w(x) dx, \quad \beta_j = \int_a^b x^j f(x) w(x) dx,$$

come $A\gamma = \beta$.

Vediamo quale caso particolare $w(x) \equiv 1$, (a, b) = (0, 1). Poichè

$$A_{j,k} = \int_0^1 x^{j+k} dx = \frac{1}{j+k+1}$$

si nota che la matrice A coincide con la matrice di Hilbert (cf. [7])

$$H_{s,t} = \frac{1}{(s-1)+(t-1)+1}, \;\; , s,t=1,\ldots,n+1$$

La matrice di Hilbert H è estremamente sensibile a piccoli cambiamenti nei coefficienti o dei valori del termine noto (si dice malcondizionata).

Per vederlo (cf. [1, p.530-535]), sia $\mathcal A$ una matrice non singolare di ordine $\mathcal N$, $\|\cdot\|$ una norma indotta di matrice [8] cioè tale che

$$||Ax|| \le ||A|||x||, \, \forall x \in \mathbb{R}^N$$

e indichiamo con

$$\kappa(\mathcal{A}) = \|\mathcal{A}\| \|\mathcal{A}^{-1}\|$$

il **condizionamento della matrice** rispetto alla norma $\|\cdot\|$. Si dimostra [3, p.137] che se

$$(\mathcal{A} + \delta \mathcal{A})(x + \delta x) = b + \delta b,$$

allora

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(\mathcal{A})}{1 - \kappa(\mathcal{A})\frac{\|\delta \mathcal{A}\|}{\|\mathcal{A}\|}} \cdot \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta \mathcal{A}\|}{\|\mathcal{A}\|}\right).$$

Per capirne il significato, si supponga per semplicità $\delta \mathcal{A}=0$, Allora

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(\mathcal{A})}{1 - \kappa(\mathcal{A})\frac{\|\delta \mathcal{A}\|}{\|\mathcal{A}\|}} \cdot \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta \mathcal{A}\|}{\|\mathcal{A}\|}\right) = \kappa(\mathcal{A})\frac{\|\delta b\|}{\|b\|}$$

per cui più grande è $\kappa(A)$ più grande è il rischio che piccole perturbazioni sul termini noto b provochino grandi effetti sul calcolo della soluzione x.

- ▶ Si noti che questa stima è solo una maggiorazione.
- In molti casi risulta un buon indicatore di quanto un sistema lineare sia difficile da risolvere al calcolatore, indipendentemente dal metodo utilizzato.

Tornando alla matrice di Hilbert H, vediamo in Matlab valori del numero di condizionamento in norma 2. Se λ_k sono gli autovalori di A ordinati in modulo, cioè

$$|\lambda_1| \leq \ldots \leq |\lambda_I| \leq \ldots \leq |\lambda_n|$$

si dimostra che essendo la matrice H simmetrica e definita positiva (cf. [3, p.140])

$$\mathcal{K}_2(A) = \frac{|\lambda_n|}{|\lambda_1|}.$$

Curiosamente, quest'ultima uguaglianza lega due grandi nomi dell'informatica moderna, essendo la corrente definizione di condizionamento introdotta da Turing mentre il rapporto degli autovalori a secondo membro da Von Neumann [3, p.226].

Per quanto anticipato, calcoliamo il condizionamento della matrice di Hilbert e i corrispettivi autovalori massimi e minimi in modulo. Notiamo che Matlab, non approssimando gli autovalori di una matrice per ottenere il numero di condizionamento (cf. [3, p.139]), per valori grandi dello stesso offre solo un'approssimazione.

D'altra parte si può dimostrare che il condizionamento (in norma 2) della matrice di Hilbert di ordine n è approssimativamente $\exp(3.5 n)$ (cf. [3, p.139]).

```
>> help cond
 COND Condition number with respect to inversion.
    COND(X) returns the 2-norm condition number (the
       ratio of the
    largest singular value of X to the smallest).
       Large condition
    numbers indicate a nearly singular matrix.
    COND(X,P) returns the condition number of X in P-
        norm:
       NORM(X,P) * NORM(INV(X),P).
    where P = 1, 2, inf, or 'fro.'
    See also RCOND, CONDEST, CONDEIG, NORM, NORMEST.
```

```
>> for n=5:5:40
       fprintf('\n \t [n]: %2.0f [cond (norma 2)]: %2.2
           e [det]: %2.2e', n,cond(hilb(n)),...
       det(hilb(n))); end
   [n]: 5 [cond (norma 2)]: 4.77 e + 005 [det]: 3.75 e - 012
   [n]:10 [cond (norma 2)]:1.60e+013 [det]:2.16e-053
   [n]:15 [cond (norma 2)]:8.49e+017 [det]:-2.19e-120
   [n]:20 [cond (norma 2)]:1.91e+018 [det]:-1.12e-195
   [n]:25 [cond (norma 2)]:1.46e+019 [det]:8.14e-275
   [n]:30 [cond (norma 2)]:6.19e+018 [det]:0.00e+000
   [n]:35 [cond (norma 2)]:1.03e+019 [det]:0.00e+000
   [n]:40 [cond (norma 2)]:4.55e+019 [det]:0.00e+000
```

```
>> for n=5:5:40
       fprintf('\n \t [n]: %2.0f [min autov.]: %2.2e [
           max autov.]: %2.2e', ...
       n, min(abs(eig(hilb(n)))), max(abs(eig(hilb(n)))))
     end
   [n]: 5 [min autov.]: 3.29 e-006 [max autov.]: 1.57 e+000
   [n]:10 [min autov.]:1.09e-013 [max autov.]:1.75e+000
   [n]:15 [min autov.]:7.58e-018 [max autov.]:1.85e+000
   [n]:20 [min autov.]:3.05e-018 [max autov.]:1.91e+000
   [n]:25 [min autov.]:1.70e-018 [max autov.]:1.95e+000
   [n]:30 [min autov.]:9.49e-019 [max autov.]:1.99e+000
   [n]:35 [min autov.]:1.68e-017 [max autov.]:2.01e+000
   [n]:40 [min autov.]:2.22e-017 [max autov.]:2.04e+000
```

Ricapitolando

- 1. il problema ai minimi quadrati continui ha un'unica soluzione se e solo se un certo sistema lineare $A\gamma=\beta$ ha una e una sola soluzione;
- 2. nel caso $w \equiv 1$, (a,b) = (-1,1) la matrice A coincide con la matrice di Hilbert che ha un numero di condizionamento estremamente grande, il che comporta che il sistema lineare $A\gamma = \beta$ sarà estremamente sensibile a piccole perturbazioni (cioè malcondizionato);
- 3. la matrice di Hilbert sembra essere singolare, cioè avente determinante nullo, per $n \geq 0$; in realtà , come già detto, si dimostra che è simmetrica e definita positiva, e quindi tutti gli autovalori sono positivi da cui il determinante è non nullo essendo il prodotto degli autovalori.

Notiamo subito che il sistema è difficile da risolvere poichè abbiamo rappresentato il polinomio p_n^* nella base $1, x, \ldots, x^n$. Cosa succede se lo scriviamo come combinazione lineare di elementi di un'altra base $\{\phi_n\}$? Se ad esempio scegliessimo la base $\{\phi_n\}$ cosicchè

$$(\phi_k,\phi_m)=a_k\delta_{k,m},\ a_k>0,\ k,m\in 0,1,\ldots,n$$

con $\delta_{k,m}$ delta di Kronecker, finiremmo per risolvere un problema $A\gamma=\beta$ dove A è una matrice diagonale e quindi senza alcuna difficoltà troveremmo

$$\gamma_k = \frac{\beta_k}{\mathsf{a}_k}$$

con $a_k > 0$.

Risulta quindi di importanza fondamentale cercare basi di polinomi $\{\phi_j\}$ per cui

$$(\phi_k, \phi_m) = a_k \delta_{k,m}, \ a_k > 0, \ k, m \in \{0, 1, \dots, n\}$$

Sia $w:(a,b)\to\mathbb{R}$ una funzione nonnegativa, con (a,b) non necessariamente limitato, tale che

- 1. $\int_a^b |x|^n w(x) dx < +\infty$ per tutti gli $n \in \mathbb{N}$;
- 2. $\int_a^b f(x) w(x) dx = 0$ per qualche funzione continua e non negativa g implica $g \equiv 0$ in (a, b).

La funzione w è detta peso.

Le funzioni peso più comuni sono (cf. [1, p.206], [10], [11],[9])

- 1. $w(x) = 1 \text{ con } x \in [-1, 1] \text{ (peso di Legendre) [14]};$
- 2. $w(x) = \frac{1}{\sqrt{1-x^2}} \operatorname{con} x \in (-1,1)$ (peso di Chebyshev);
- 3. $w(x) = (1 x^2)^{\gamma (1/2)} \text{ con } x \in (-1, 1), \ \gamma > (-1/2) \text{ (peso di Gegenbauer)};$
- 4. $w(x) = (1-x)^{\alpha} \cdot (1+x)^{\beta} \text{ con } x \in (-1,1), \ \alpha > -1, \ \beta > -1$ (peso di Jacobi);
- 5. $w(x) = \exp(-x) \operatorname{con} x \in (0, +\infty)$ (peso di Laguerre) [13];
- 6. $w(x) = \exp(-x^2) \operatorname{con} x \in (-\infty, +\infty)$ (peso di Hermite) [12];

Vediamo ora che proprietà ha un insieme di polinomi $\{\phi_k\}_{k=0,\dots,n}$ in cui il grado \deg di ogni polinomio sia $k-1 < \deg(\phi_k) = k$ e $(\phi_i,\phi_j)_{2,w} = c_i\,\delta_{i,j}$ (con $\delta_{i,j}$ il delta di Kronecker, $c_i > 0$, $i,j=0,\dots,n$).

Una tal famiglia triangolare di polinomi (cioè tale che $\deg(\phi_k)=k$) si dice ortogonale rispetto alla funzione peso w nell'intervallo di riferimento.

Si può dimostrare

- usando la procedura di Gram-Schmidt che una tal famiglia triangolare di polinomi esiste e con la stessa procedura costruirla direttamente;
- inoltre è immediato osservare che ogni polinomio di grado n si può scrivere univocamente come combinazione lineare di ϕ_0, \ldots, ϕ_n .

Di conseguenza se $p_n=\sum_{j=0}^n a_k\phi_k$, allora per la bilinearità del prodotto scalare $(\cdot,\cdot)_{2,w}$

$$(\phi_{n+1}, p_n)_{2,w} = (\phi_{n+1}, \sum_{j=0}^n a_k \phi_k)_{2,w} = \sum_{j=0}^n a_k (\phi_{n+1}, \phi_k)_{2,w} = 0.$$

Inoltre (cf. [4, p.978], [1, p.213])

Teorema

Sia $\{\phi_k\}_{k=0,\dots,n}$ una famiglia triangolare di polinomi ortogonali in (a,b) rispetto ad una funzione peso w. Allora il polinomio ϕ_n ha esattamente n radici reali e distinte nell'intervallo aperto (a,b).

Dimostrazione.

Siano x_1, \ldots, x_m (con $m \le n$) tutti e soli gli zeri di ϕ_n interni ad (a,b) con molteplicità rispettivamente $\alpha_1, \ldots, \alpha_m$. Di conseguenza, per qualche numero a_n abbiamo

$$\phi_n(x) = a_n \left(\prod_{k=1}^m (x - x_k)^{\alpha_k} \right) r(x)$$

avendo supposto $\prod_{k=1}^m (x-x_k)^{\alpha_k} \equiv 1$ se non ci sono zeri interni ad (a,b).

Il polinomio r per costruzione non ha zeri in (a, b) e quindi non si annulla mai ed essendo una funzione continua ha segno costante.

Dimostrazione.

Consideriamo il polinomio

$$q(x) = \left(\prod_{k=1}^{m} (x - x_k)^{mod_2(\alpha_k)}\right).$$

Se uno zero di ϕ_n ha molteplicità dispari ma maggiore di 1 o uno almeno ha molteplicità pari o esiste uno zero complesso non in (a,b), è facile osservare che il grado di q è minore di n. Osserviamo ora che qualsiasi sia un numero naturale, $\alpha_k + mod_2(\alpha_k)$ è un numero pari.

Dimostrazione.

Di conseguenza avendo $\left(\prod_{k=1}^{m}(x-x_k)^{\alpha_k+mod_2(\alpha_k)}\right)r_{n-m}(x)$ segno costante e non coincidente col polinomio nullo,

$$0 = (\phi_{n}, q)$$

$$= \int_{a}^{b} \phi_{n}(x) q(x) w(x) dx$$

$$= \int_{a}^{b} a_{n} \prod_{k=1}^{m} (x - x_{k})^{\alpha_{k}} r_{n-m}(x) \prod_{k=1}^{m} (x - x_{k})^{mod_{2}(\alpha_{k})} w(x) dx$$

$$= \int_{a}^{b} a_{n} \left(\prod_{k=1}^{m} (x - x_{k})^{\alpha_{k} + mod_{2}(\alpha_{k})} \right) r_{n-m}(x) w(x) dx \neq 0$$

da cui la contraddizione.

Dimostrazione.

Potrebbe venire il dubbio su perchè qualche zero non possa essere a o b. Nella dimostrazione avrebbe quale unico effetto che r_{n-m} si annulla in a o b, rimanendo di segno costante in (a,b).

La conclusione è che il polinomio ortogonale p_n ha n radici distinte e semplici, interne ad (a,b). \square

Vediamo ora il Teorema di Clenshaw ([1, p.214]), che stabilisce a partire dai polinomi ortogonali ϕ_0 , ϕ_1 di grado 0 e 1 risp. come calcolare ricorsivamente la famiglia di pol. ortog..

Teorema

Sia $\{\phi_k\}_{k=0,\dots,n}$ una famiglia triangolare di polinomi ortogonali in [a,b] rispetto ad una funzione peso w. Allora per $n\geq 1$

$$\phi_{n+1}(x) = \alpha_n(x - \beta_n)\phi_n(x) - \gamma_n\phi_{n-1}(x)$$

dove, detto a_n il coefficiente di grado massimo di ϕ_n , si ha

$$\alpha_n = \frac{a_{n+1}}{a_n} \tag{2}$$

$$\beta_n = \frac{(x\phi_n, \phi_n)_{2,w}}{(\phi_n, \phi_n)_{2,w}} \tag{3}$$

$$\gamma_n = \frac{\alpha_n(x\phi_{n-1}, \phi_n)_{2,w}}{(\phi_{n-1}, \phi_{n-1})_{2,w}}$$
 (4)

Nota.

Notiamo che

- ▶ scelti i polinomi ortogonali ϕ_0 e ϕ_1 , la procedura determina la famiglia triangolare di polinomi ortogonali di grado superiore, non appena sono disponibili i coefficienti α_k , β_k , γ_k .
- Se ϕ_n è tale che $(\phi_n, \phi_k) = 0$ per k = 0, ..., n-1 allora per $\tau \neq 0$ pure $\tilde{\phi}_n = \tau \phi_n$ è tale che

$$(\tilde{\phi}_n, \phi_k) = (\tau \phi_n, \phi_k) = \tau(\phi_n, \phi_k) = 0, \ k = 0, \dots, n-1$$

e quindi potrebbe essere considerato quale polinomio ortogonale di grado n.

Nota.

In pratica spesso si sceglie $\alpha_n=1$ e i polinomi $\phi_0(x)=1$, $\phi_1(x)=x-\int_a^b xw(x)dx/\int_a^b w(x)dx$ cosicchè i polinomi ortogonali siano monici cioè con coefficiente di grado massimo uguale a 1. In molti altri casi, come nelle routines Matlab di W. Gautschi, si pone $p_{-1}(x)=0$, $p_0(x)=1$ e quindi si applica la formula ricorsiva di Clenshaw con $\alpha_k=1$ per k>0.

K. Atkinson, An Introduction to Numerical Analysis, Wiley, (1989).

K. Atkinson e W. Han, Theoretical Numerical Analysis, A Functional Analysis Framework, Springer, (2001).

D. Bini, M. Capovani e O. Menchi, Metodi numerici per l'algebra lineare, Zanichelli, (1993).

V. Comincioli, Analisi Numerica, metodi modelli applicazioni, McGraw-Hill, (1990).

G. Dahlquist e A. Bjorck , Numerical methods, Dover, (2003).

A.N. Kolmogorov e S.V. Fomin, Introductory Real Analysis, Dover publications, 1970.

Wikipedia, (Hilbert Matrix), http://en.wikipedia.org/wiki/Hilbert_matrix.

Wikipedia, (Norma matriciale), http://it.wikipedia.org/wiki/Norma_matriciale.

Wikipedia, (Orthogonal polynomials), http://en.wikipedia.org/wiki/Orthogonal_polynomials.

Wikipedia, (Polinomi di Chebyshev), http://it.wikipedia.org/wiki/Polinomi_di_Chebyshev.

Wikipedia, (Polinomi Ortogonali), http://it.wikipedia.org/wiki/Polinomi_ortogonali,

Wikipedia, (Polinomi di Hermite), http://it.wikipedia.org/wiki/Polinomi_di_Hermite.

Wikipedia, (Polinomi di Laguerre), http://it.wikipedia.org/wiki/Polinomi_di_Laguerre.

Wikipedia, (Polinomi di Legendre), http://it.wikipedia.org/wiki/Polinomi_di_Legendre.