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A SPECIAL STABILITY PROBLEM FOR LINEAR 

MULTISTEP METHODS* 

GERMUND G. DAHLQUIST 

Abstract.  

The trapezoidal formula has the smallest truncation error among all linear 
multistep methods with a certain stability property. For this method error bounds 
are derived which are valid under rather general conditions. In order to make sure 
that  the error remains bounded as t --> oo, even though the product of the Lip- 
schitz constant and the step-size is quite large, one needs not to assume much more 
than that  the integral curve is uniformly asymptotically stable in the sense of 
Liapunov. 

1 .  Introduction. 

The  general  l inear  It-step m e t h o d  for  the  a p p r o x i m a t e  numer ica l  com-  
pu t a t i on  of the  solut ion x = x ( t )  of a sy s t em of o rd ina ry  differential  

equa t ions  of the  f irst  order,  

dx/dt = [( t ,x) ,  x(0) = xo, (x e R 8, t >= 0 ) ,  (1.1) 

is def ined b y  the  formula ,  

~kX~÷k+~k-lX,~÷k-1+ - - .  +~oX~ = h(f lk[~÷k+.. .  +field),  (1.2) 

The  t h e o r y  of such me thods  is t r e a t ed  tho rough ly  in the  book  of Henr ic i  
[6]. W e  assume  t h a t  cci, fli are  real  cons tants ,  i =  0,1, 2 . . . .  k, CCk:~ O, h is 
a pos i t ive  cons tan t  called t he  step-size, t~n=mh, fm=f(tm,xm). I f  the  

vec tors  Xo,Xl , . . . ,Xk_  ~ are given, t hen  Xk, Xk+l , . . .  are c o m p u t e d  recur-  
s ively  b y  (1.2). This  offers no difficulties, when  the  m e t h o d  is explicit, 
i.e. when  fik = O. ~Vhen the  m e t h o d  is implicit, i.e. when  flk~: O, some 
condi t ions on h and  f are required  in order  to  gua ran t ee  the  existence and  

uniqueness  of xn+ k, when xn+k_ 1 . . . .  ,xn+l,x n are  known,  cf. Sect ion 3. 
I n  connect ion  wi th  the  difference equa t ion  (1.2), i t  is na tu r a l  to  in t ro-  

duce the  po lynomia l s  k k 

~($) --- Z ~i~ j, a(~) = Z ~J~ (1.3) 
and  the  ope ra to r  j=o j=0 

* T h e  p r e p a r a t i o n  of th i s  p a p e r  w a s  p a r t l y  sponsored  b y  t h e  Office of N a v a l  R e s e a r c h  

a n d  t h e  U S  A r m y  R e s e a r c h  Office ( D u r h a m ) .  R e p r o d u c t i o n  in  whole or  in p a r t  is per-  
m i t t e d  for a n y  purpose  of t h e  U S  G o v e r n m e n t .  
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L = ~ ( E ) - h D a ( E ) ,  (1.4) 

where D = d/dt, and E is the displacement operator, defined by 

Ex( t )  = x ( t + h ) ,  or Ex,~ = x~+ 1 . (1.5) 

I t  is assumed that  ~($) and a($) have no common divisor. The order of 
a method is the largest integer p such that  

Lq~(t) = O, 

identically for all polynomiMs ~o(t) of degree p. By Taylor's theorem with 
the remainder in integrM form it then follows that  

L~p(t) ~ - chP+l~(P+l)(t), (h -> 0) (1.5) 

for arbitrary functions ~0(t), ~0(t)e C p+~, where c~=0, and where c and p 
are independent of the function ~0(t), although they depend on the coef- 
ficients of ~($) and a(~). A method is called consistent, when p > 1. I t  is 
easily shown, cf. [6, p. 224], that  the condition of consistency is expressed 
by the relations 

~(1) = 0, ~'(1) = a(1). (1.6) 

I t  follows that  a(1) ~e 0, because ~ and a would otherwise have a common 
factor. The quanti ty c*, 

c* = e / a ( 1 ) ,  

which is called the error constant of a method, is an adequate measure for 
the comparison of the accuracy of methods with the same p,  el. [6, pp. 
223, 238 and 251]. 

The constants c (or c*) and p can be determined by a suitable speciM 
choice of ~0(t) in (1.5). Take ~o(t)=d, and put en---~. Then, 

e(S)-a($) logs ~ - c - ( ~ -  1) p+I, (S --> 1), 
whence 

log~-e(~)/a(S) ~ c * . ( ~ -  1F +~, (~ -~ 1). (1.7) 

I t  is known that,  for a given/c, the polynomials ~($) and a(~) can be 
determined so that  p = 2k, and that  no larger p is possible. However, 
it is natural  to require that,  ff h is small, then x,~ should be close to 
x(tn) in some sense, for all t~ of interest, for any choice of starting vectors, 
x~, ( i=0,  1 , . . . , / c - 1 ) ,  sufficiently close to x(tt) .  Several exact, idealized 
definitions of this vague requirement have been suggested in the litera- 
ture, and it has been found that  the maximum value of p has to be re- 
duced considerably by such requirements. For instance, no method with 
p >/c q- 2 can possess a certain stability property, cf. [6, pp. 217 and 229], 
which it is reasonable to require for any extensive numerical integration. 
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In  this paper we shall investigate a different formulation of this 
requirement. 

DEFINITION. A k-step method is called A-stable, i f  all solutions of (1.2) 
tend to zero, as n-+ ~ ,  when the method is applied with fixed positive h 
to any differential equation of the form, 

dx/dt = qx ,  (1.8) 

where q is a complex constant with negative real part. 
In  most applications A-stability is not  a necessary property. For cer- 

tain classes of differential equations, however, it would be desirable to 
have an A-stable method with a small truncation error. A simplified 
example is the numerical integration over a long time of a non-homo- 
geneous linear system with constant coefficients, 

d x / d t  = Q x  + l ( t )  , 

where some of the eigenvalues of Q have large modulus but  negative 
real part. The solution is of the form 

x = g(t) + eQtc, 

In  many  problems g(t) has a relatively slow variation, cf. Dahlquist [4]. 
When the components of eQtc in the directions of the eigenvectors 
mentioned have lost their importance in the physical system, one would 
like to proceed with a step h, determined only by the behaviour of g(t) 
and independent of the norm of Q. Non-linear problems of a similar type 
are encountered in many fields, such as control engineering or chemical 
engineering, cf. Hamming [5, p. 218]. Although it may be worthwhile to  
design special methods for such problems, it is of interest to see what 
can be achieved within the class of linear multistep methods. In  Section 
3, it is shown that  the most accurate of all A-stable linear multistep 
methods has a remarkable stability property even in non-linear problems. 

The requirement of A-stability is an extreme formulation of the wishes 
in such situations. The reader may also enjoy the less extreme approach 
to this class of problems made by Robertson [7], who designs linear 
multistep methods (with k=2 ,  p=3) ,  such that  all solutions of (1.2) 
tend to zero in a large portion of the complex plane for the quanti ty qh, 
though not in the whole half-plane Re(qh)< 0. 

2. Some consequences of A.stability. 
A preliminary upper bound for the order of an A-stable method was 

obtained in [4, Theorem 4]. In  this Section, the least upper bound will 
be found. I t  is equal to 2. We first need a Lemma. 
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LEMMi 2.1. A k-step method is A-stable, i f  and only if  e($)/z(.~) is 
regular and has a non-negative real part for I~l > 1. 

PROOF. When f ( t ,x)=qx,  (1.2) becomes a difference equation with 
constant coefficients, the characteristic equation of which reads 

e(~)-qha(~) = 0 .  (2.1) 

A-stability is then equivalent to the proposition: 

(2.1), and Re(qh) < 0 implies I$1 < 1. 

In  other words: 

(2.1), and I~] > 1 implies Re(qh) > 0 .  

However, qh = e($)/a($), if a(~) # 0, 
If 8i is a zero of a($), then e(~i)# 0, because e and a are not allowed 

to have common factors. In  the neighbourhood of $1, one has 

e(~)/~(~) ~ - a ( ~ - ~ l ) - ~ ,  a # 0 ,  

for some positive integer m. This is clearly inconsistent with Re{e(¢)/ 
a(~)}>0 in a whole circle around ~i. Hence a(~i)#0 , if 15[ > 1, i.e. 
e($)/a(~) is regular for t¢[> 1. (Simple zeros of a(¢) may, however, exist 
on the boundary, [$1 = 1.) This proves the Lemma. 

A similar argument gives the following result. 

THEO~E~ 2.1. An explicit k-step method cannot be A-stable. 

PttooF. fik = 0 for explicit methods. Hence, for some integer m, m > l, 
we have (r(¢)~a~ k-m, when ¢-> 0% a%0. However, O(¢),-~eCk¢ k, 0%40. 
Hence 0(¢)/g(¢) ~ b$ m, where b + 0, m > 1. This is clearly inconsistent with 
a non-negative real part  for all ¢ outside the unit circle; 

On the other hand, by  the aid of Lemma 2.1 and (1.6) it is easy to 
verify that  there exist implicit methods, which are both A-stable and 
consistent, e.g. the trapezoidal rule, which has the generating polynomials 

e(~) = ~ - 1 ,  ~(~) = ½ ( ~ + 1 ) .  (2.2) 
Another example is 

The following example shows that  there exist consistent and A-stable 
methods for any positive integer k: 

e(~) = ~ k _  1, ~(~) = ½k(~k+ I ) .  

We shall now prove the main result of this Section. 
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TEEO~M 2.2. The order, p, of  an A-stable linear muttistep method can- 
not exceed 2. The smallest error constant, c* = 1 ,  is obtained for the trape- 
zoidal rule, k =  1, with the generating polynomials (2.2). 

P~ooF. Introduce a new variable, z, by the transformation 

z = ($+ I)](~-1),  ~ = ( z + l ) / ( z - 1 ) ,  
and put 

k--1 

j = 0  

k 

j = 0  

(It follows from (1.6) that  ak= 0.) The relation (1.7) for the determination 
of p and c* may  now be written in the form, 

log z + 1 r(z) c* (z --, ~o) . 
z -  1 s ( z )  ~ 

Expanding the logarithm into powers of l/z, we obtain, if p > 2, 

r(z)[s(z) = 2z - l+(~-8c ' ) z -a+O(z-4) ,  (z -> oo), (2.3) 
where 

c' = l c*' if p =  2,  
[0, i f p  > 2.  

We shall see that  a positive coefficient of z -8 is inconsistent with A-stab- 
ility. Lemma 2.1 may now be written thus: 

A/s-step method is A-stable, if and only if r(z)/s(z) is regular and has 
a non-negative real part  in the half-plane Re (z)> 0. 

Since the statement is independent of the degrees of the polynomials 
r(z) and s(z), it is natural  to apply a general device from the theory of 
analytic functions. Following a suggestion of Professor P. D. Lax (oral 
communication), we shall use a variant of Riesz-Herglotz' theorem, cf. 
[1, p. 152], according to which any analytic function ~(z) satisfying the 
conditions 

sup{tx~(x) [  [ 0 < x < ~ }  < oo ,  

~(z) regular for Re(z) > 0,  

l~e~(z) > 0 for Re(z) > O, 

can be represented by  an integral 

oo 

f d~o(t) (Re(~) > O) (2.4) 
~(z )  = J - i ~ '  
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where o~(t) is bounded and non-decreasing. (For rational functions, this 
theorem may  be derived in an elementary way from Poisson's integral.) 
We can apply this theorem to ?(z)=r(z)/s(z), because of (2.3) and the 
Lemma.  

For x positive, r(x)/s(x) is real. Hence, by (2.4), 
c o  c o  

xr(x) f xdeo(t) (x2d~o(t) 
s(x--7 = J ~ = J ~C~+t ~ '  (2.5) 

~ C O  - - 0 0  

Since, for given t, x~/(x~+ t 2) is a non-decreasing function of x, xr(x)/s(x) 
is also non-decreasing, which is clearly inconsistent with a positive 
coefficient of z -8 in the expansion (2.3). Hence 

§-8c'  < O, i.e. e* = e '  > ~ ,  p =  2 .  

The min imum of c* is obtained for the trapezoidal rule, k =  1, because 
in this ease 

r(z)fs(z) = e(~)/~(~) = 2 ( ~ -  l ) / ( ~ +  1) = 2 t z .  

Hence, by (2.3), §-8c'=0, i.e. c*=c'=~. This completes the proof. 
In  fact, the trapezoidal rule is the only linear multi-step method, for which 

p=2, c*= 1. For, by (2.3), c'=~ implies 

lira x s r ( x ) / s ( x ) -  2x ~ = O . 

By (2.5) and (2.3), 

f do~(t) l im (t) = lim xr(x)/s(x) = 2. 
x-+oo X + t x ->co  

- - 0 0  - - O O  

By this formula and (2.5), 

- - - -  CO X 4 

xar(x) 2x ~ = f x ~  d°~(t)- 
s(x) 

The last integral has a negative limit, unless deo(t)= 0 for all t 4: 0. Then, 
by (2.4), r(z)/s(z)= a/z. By (2 .3 ) ,  a = 2.  Since r(z) and s(z) have no common 
factors, these polynomials are uniquely determined by their quotient  
(apart from a trivial constant factor). We already know tha t  r(z)/s(z)= 
2/z for the trapezoidal rule. 

c o  c o  

f - r  x~ d~o(t) = j ~ =< - j 

The concept of A-stability has an obvious meaning also outside the 
class of linear multistep methods. For example, the Runge -Ku t t a  method 
is not  A-stable, because when applied to (1.8), it gives the sequence 

O + q h + ( q h ) 2 / 2 ! + ( q h ) ~ / 3 ! + ( q h ) ' / 4 ! ) ~  (n = 0, a ,2  . . . .  ) 



A S P E C I A L  S T A B I L I T Y  P R O B L E M  F O R  L I N E A R  M U L T I S T E P  M E T H O D S  33 

and this does not  tend to zero everywhere in the hag-plane t~e (qh) < O. 
In  fact, the base of the exponential tends to infinity, when qh-~ -oo.  
Notice, however, that  the theorems of this section are proved for linear 
multistep methods only. Actually, the following modification of a linear 
multistep method is sufficient for the construction of an A-stable proce- 
dure of order p = 4. 

Let x(t,h) and x(t,2h) be the results of the numerical integration of 
the same differential equation with the trapezoidal formula, using the 
step-size h and 2h, respectively. Apply Richardson extrapolation without 
using the extrapolated values in the succeeding computation, i.e. for t = 2h, 
4h, 6h, 8h . . . .  compute 

x*(t,h) = x(t,h) + ~(~(t ,h)-x(t ,  2h)) = ~(4x(t,h)-x(t ,  2h)). 

One can prove that,  for given t, the error of x*(t,h) is 0(h4), and the 
procedure is A-stable, since it is obtained by subtraction of the results of 
two A-stable procedures. Notice, however, that  if the extrapolated values 
are used in the succeeding computation, then the A-stability is destroyed, 
because ( l+qh  

lira ½ 4 \i-L--_ ~lq-h] 1L~qh] = ~ > 1 .  

3. Generalized A-stabil ity and error estimation for the 
trapezoidal formula. 

Consider the differential equation 

dx/dt =I( t , x ) ,  x e R  8, t o < t < oo (3.1) 

and make the following assumptions: 

CONDITION A. There exists a solution, x=x( t ) ,  of class Ca on the interval 
to <t< c~. 

CONDITION B. For some positive ~, the vector [(t,x) and the matrix ~f/~x 
are bounded and uniformly continuous on the set, 

~ = {(t ,x) I 0 < t < o% l x - x ( t ) I  < ~}. 

Introduce the modulus of continuity of ~[/~x, 

w(e) -- sup {l(~//0x)(,, ~ , ) -  (a//0x)¢,, ~,,)1" I x ' - x " l  < e, 
(t,x') e ~ ,  (t ,x") e ~ } .  

The notation Ix I means the euclidean norm of x. For the norm of a 
square matrix A, we write IAI =sup~lAxl/Ix]. Pu t  

BIT 3 - -  3 
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x - x ( t )  = y ,  

~( t , x ( t )+y) - f ( t , x ( t ) )  = g(t,y) = A ( t ) y + j ( t , y ) ,  (3.2) 
where 

A(t) = (~[/~x)x=~(t), (3.3) 

By Condition B, A(t) is bounded, and 

]j(t,y)l <__ a)(lyl).ly I <__ o)(~)]y[ , (3.4) 

uniformly on ~ .  
Next we need a generalization of the notion of A-stability. The most 

natural  generalization would be to consider the case that  x(t) is a uniform- 
asymptotically stable solution of (3.1) in the sense of the Liapunov 
theory, el. Antosiewiez [2], but  this case seems to be a little toowide. 
One might instead assume that  the origin is uniform-asymptotically 
stable for the linear system 

dy/dt = A( t )y  (3.5) 

where A(t) is defined by (3.3), i.e. for the so-called first approximation 
to (3.1) in the neighbourhood of x(t). We shall make this assumption 
temporarily, although it is more restrictive than necessary. I t  then fol- 
lows from a theorem af Malkin [2], Theorem 16, m =  2, that  symmetric 
matrices G(t) can be found for all t, t > t o, such that  the total derivative 
of the quadratic function 

V(t, y) -- yTG(t)y 

for solutions of the linear equation (3.5) is equal to - y T y ,  i.e. 

yT(G(t)A'(t) + AT(t)G(t) + ~G]~t)y = - y T . y  (3.6) 

G(t) and ~G/~t are bounded and uniformly continuous for t > t 0, and 
there exist positive constants ~, fl, y, such that  the following inequMities 
hold for all t > t o and for all non-zero vectors z, 

c¢2]z] ~ =< V(t,z) <= t521zl ~ (3.7) 

t~g/~tl < o~2y. (3.8) 

In  other words, the function V is a quadratic Liapunov function for (3.5). 
I t  is, however, a Liapunov function for (3.1) as well. For if y = x - x ( t ) ,  
then the total derivative of V for solutions of (3.1) is equal to 

d V/dt = yrG(t)g(t,  y) + gr(t,  y)G(t)y + yT~G/~t y .  (3.9) 

By (3.2), (3.6) and (3.4), 

d V/dt = yTG(t)A(t)y + yTAT(t)G(t)y + yT~G/~t y + yrG(t)i(t,  y) 

+jT(t, y)G(t)y ---- -- y T y +  2yTG(t)j(t, y) <= _ ly[2 + 2o~(~)[y[2/92. 
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Hence dV/dt  is negative definite, if ~ is small enough, and it follows 
from [2], Theorem 13, that  x(t) is a uniform-asymptotically stable solu- 
tion of (3.1). 

Now consider the following condition: 

CO~-DITIO~ C. There exists a quadratic form V(t, y ) = y r G ( t ) y ,  such 
that, i f  

dy/dt  = g(t, y) = t ( t , x ( t )  + y) - t ( t , x ( t ) )  , 

then its total derivative is negative definite on a t .  The matrix-valued func-  
tion G(t) should satisfy (3.7) and (3.8) and ~G[~t should be uni formly con- 
tin~wus for  t > t o. 

We have seen that  condition C is not harder than the second of the 
suggestions for generalization made above. In  fact, it is less restrictive. 
Consider for instance the scalar equation 

dy[dt = - y~ , 

and put V(t, y )=  y~. Then d V/dt = - 2 y  ~. Condition C is obviously satis- 
fied, although the origin is only non-asymptotically stable for the first 
approximation, which reads dy/dt = 0 in this case. 

Now we shall investigate the application of the trapezoidal rule to 
the computation of the solution x = x ( t ) .  W e  confine ourselves to t h~  
method because of the minimum property shown in Section 2. We com- 
pute a sequence of vectors, x o , x l , x 2 , . . ,  from the difference equation, 

Xn+ l -x  n = ½h(f(tn+l,xn+~) +f(tn,xn)) +Pn , 

where Po,P~, . . .  are perturbations, due for instance to roundoff errors. 
p~ is the error in the determination of x n + ½h$(t~,x~), when x ~ -  ½hI(tn,~¢~) 
is given. The existence of x~+ 1, when x~ and p~ are given is not clear a 
priori. The equation may  also be written 

3/~rt+l-- ½hf(tn+l,xn+t) = x n + ½hI(t~,xn) + p,~ . (3.10) 

Assume, however, tha t  there exists another sequence of vectors, xo' , 
x~ ' , . . . ,  associated with another set of perturbations, Po ' ,P l ' , . . .  satisfy- 
ing the equation 

x',~+l - ½hf(t~+l,x'~+l) = x~' + ½hl(t,,x~') + Pn' . 

(We shall later put  xn '=x( t~) ,  in which case p~' is equal to the local 
truncation error, but  we do not specialize yet.) Put  

I ( t , z + y ) - I ( t , z )  = g ( t , y , z ) .  (3.11) 

Note  tha t  9 ( t , y , x ( t ) )=y ( t , y ) .  For (t ,z) e ~ ,  ( t , y + z )  e ~ ,  we have 
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Ig( t ,y ,z) -g( t ,y) i  <= ~(Iz-x(t)l)[yl. (3.12) 
Put,  for n = 0,1,2 . . . .  , 

] • Yn = x n - x n ,  gn = g(tn, Yn,Xn'), qn = Pn--Pn' (3.13) 
Then 

Yn+l  --  ~ h g n + l  -~ Yn  -~ ½hgn "~ q n  " (3.14) 

Define a family of norms, [Y]n, n = 0 ,  1 ,2 , . . . ,  by 

[y[n 2 = yrG(t~)y,  (3.15) 

where, for each n, G(tn) is a positive definite, symmetric matrix. (We 
shall later impose further conditions on these matrices.) By the triangular 
inequality, 

lYn+~- ½hYn+lln < lYn + ½hyn[n + iqnfn " (3.16) 

Now, let y , z  be two arbitrary vectors, and put  g =g(t, y, z). Then 

[Y + ½hg]n ~ -  [Y -  ½hgl~-i 

= ]Y+ ½hgl~ $ -  ]Y-  ½hy],~2+ [Y-  ½hgl,~ 2 -  l Y -  ½hg[~_~ 

= hW(tn, Y , z ,h  ) (3.17) 

where W is defined by 

W(t, y, z, h) = 2yrG(t)g -I- ( y -  ½hg) r G(t) - G(t - h) (Y _ ½hg) (3.18) 
h 

Note that,  by (3.9), 
lim W(t,y,x(t) ,h) = dV/d t .  
h--~O 

The last relations give a motivation for the following modification of 
Condition C. 

CONDITION C~'. Given h, ~, 4. There should exist a symmetric matrix 
G(t) satisfying (3.7) and (3.8), for all t, t>to such that for all (t,z) ~ ~ ,  
( t , y+z)  e ~ ,  O<u<_h, 

W(t ,y ,z ,u)  <<. 2~({y]~ + ]½ugl~) . (3.19) 

In  many cases, the same G(t) can be used for the differential and the 
difference equation. For examp]e: if the differential equation is linear, 
and if there exists a time-independent, quadratic Liapunov function, 
V = y T G y ,  then, by (3.9) and (3.11), W(t ,y ,z ,u)  =dV/dt.  I t  can then be 
shown that  there exists a negative 4, such that  C~' is true for all h,~. 
If  there exists a Liapunov function of the same kind for the first approx- 
imation (3.5) to a non-linear system (3.1) then there exists a negative ~, 
such tha t  C~' is true for all h and all sufficiently small ~. 
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We shall always assume that  A, B, C/  are true for the values of h, 
~, A under consideration, and that  (t,z) ~ ~ ,  ( t , y + z )  e ~ .  We need a 
few notations, identities and inequalities. Consider the well-known 
identity 

2(tYi~+ I½hgl ~) = IY + ½hgI~ + l Y -  ½hgl ~ . (3.20) 

Hence, by (3.5) and (3.15), 

~hYt,_0 < 2(lY] 2 ~_2(ly q_ ½hg[n2 + ly__l 2 

+ 1½hgt ~) < c¢-Z(IY+ ½hgI,~+ lU-  ½hg[2-1) • (3.21) 
Put  

4' = l A~-z' if A => 0 ,  
[At~ -~, if A < 0 .  

By (3.17), (3.19) and (3.21), if g=g( t~ ,y , z ) ,  

~hgl,~_1 = hW(t=,y,z ,h)  < hA'(ly+ ½hg[,2 + l Y -  ½hgJ~1) . l y  + ½hg l .  ~ -  l y  - ~ 

(3.22) 
Hence 

1 + hA' 
ty+½hgl~ ~ < - - l y - ½ h y l ~ ,  if hi '  < 1.  (3.23) 

= 1-hA'  

By (3.21) and (3.23), 

2lyl 2 ~ 2(lyl~+ I½hgl z) <= ~-~((1 +hA')/(1 -h~.') + 1 ) ly -  ½hgl2~_l 
lYl < (1-hA')-½~-~ly-½hgln-D if hA' < 1.  (3.24) 

Now put 
1 1 + hA' 

# =2-h l ° g l - h A "  if hA' < 1.  (3.25) 

By (3.23), 
]y+ ½hgln ~ e"h]y - ½hg]n_a, (3.26) 

and hence, by (3.16), we obtain the important inequa/ity 

lYn+l-- ½hgn+l]n ~ e"h]Yn-- ~hgn[n-l + ]qn[,~ " (3.27) 

Let q* be an upper bound for tpnl + lPn'f. Note that  

[q=l~ < fllqn] --< /~q*. (3.28) 

Let e o be an upper bound of the errors inxo(1-hA')~ andxo+  ½h/(to, Xo), 
and put  

1 - -  e st 

¢(t,  h) = eo eÈ(t-h) + q , .  -1--- e ~ . (3.29) 

I t  is easily verified that  Cn=¢(tn ,h)  is the solution of the difference 
equation 
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q)n+l --- e'hqSn+q*, ~b~ = %+q* .  (3.30) 

Comparing (3.27) and (3.30), we find by induction that  

Ty~-½hgn]~_ 1 < fl#(t~,h), (n > 1) (3.31) 

(which leads to a bound for IYnt by use of (3.24)), provided that  we can 
be sure that,  at each step, (3.10) has a solution (tn+l,x~+l) e ~ .  How- 
ever, we have to worry about this, because the iterative method, which 
is usually applied in a constructive existence proof, converges, roughly 
speaking, only if a~ eigenvatues of ½h~l/~x are located inside the unit 
circle, which is an unsatisfactory restriction. By means of a modification 
(under-relaxation), this procedure may  be extended to the ease where 
the real part  of every eigenvalue of ½h~[]~x is less than unity. This might 
be applied here, at least ~o the case with a constant Liapunov function. 
We shall, however, proceed in a different way. 

L E M ~  3.1. Given xn, Pn. I f  h2' < 1 (which means no restriction on h, 
i f  2<0), then the equation (3.10) has at most one solution, such that 
( t .+ l , x .+ l )  ~ ~. 

# ! 

PROOF. If there were two different solutions, x,+~, X,+l, with Pn =pn, 
t 

then y=xn+1-Xn+ 1 would satisfy 
1 r y -  ~hg(tn+ 1, y,x,+l) = 0 .  

We find tha t  y=O, by substituting n +  1 for n in (3.24). 

L E M ~  3.2. I f  h2' < 1, then the matrix I-½h~[/3x is non-singular, for 
all points (t,x) ~ Co. 

PROOF. If it were singular, there would exist vectors y of any length 
such tha t  y - ½h~[ (t, x )/~x. y = 0. Hence, by (3.11), for any ~, there would 
exist a vector y such tha~ 

iy-½hg(t,Y,X)l < elYI, 

but  this is impossible, according to (3.24). 
Now, put  x n' =x(tn). Then, Pn' "is the local truncation error of the 

trapezoidal rule, which is known to be less than h a sup [x'"(t)[[12. Hence 
we may put 

q* = u.b.[pnl + h a sup Ix'" (t)l/12 . (3.32) 

LE~Y~A 3.3. Given h, ~, ~, n, (tn,x,) e ~ ,  Pn, x , /  =x(tn), e>0.  Suppose 
that h2' < 1 and that 

IYnln < o~ - f i q* -~ ,  lyn+~hg(tn, y,~)In <= a~(1-h2 ' )½- f lq*-~ .  (3.33) 

Then (3.10) has a solution, (t~+~,x.+i) e ~ .  
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PROOF. For given tn, substitute u for h in (3.10) and the equivalent 
equation (3.14), which then reads 

Y n + l -  ½ugn+l = Yn + ½ugh, + qn, gn+l = y(tn + U, Yn+l) " (3.33') 

Assume tha t  O <_ u < h, tn+l = t ,  + u , x'n+i =x(t~ + u), q , = p , ~ - p ~ ;  depends 

on u, but  by (3.32) it is still true that  lqn] <q*, if h is replaced by  a 
smaller quantity. The solutions of (3.10), (3.33) will be considered as 
functions xn+l(u), y~+~(u). Also note that  C~' holds, when h is replaced 
by u. Hence, we may substitute u for h in all the results of local type 
we have derived so far. 

Clearly, 

ly,~+l(O)l = ly,~ +q,~l <= ~-~ly,~l ,~+q* < a-~q*/o~ +q* <= a, 
by (3.33). Hence (t,~,%+1(0)) e ®0. When u increases, x~+l(u ) is continu- 
ous, by Lemma 3.2 and the existence theorem for implicit functions, as 
long as (t~+u,X,+l(U)) stays in ~ ,  i.e. as long as [y~+l(U)l<& Now, 
consider the inequalities (3.33). We can interpolate between them, 
because lye, + ½ugn[n is a convex function of u, while (1 -u2 ' ) t  is concave. 
Hence 

l y e +  ½ug,~l,~ <= o~O(l--u~,')½--,Bq*--a. 
I t  follows from this, (3.33') and (3.28), that  

ly~+~(u)  - ~ug,,+~]~ < ~ ( ]  - u~ ' )~ -  
and, by (3.24), 

{y~+:(u){ < 0-~-1(1-u%')-4~.  

This shows tha t  (t,~+u,xn+~(u)) will not be able to reach the boundary 
of ~0, under the assumptions made. Hence (3.10) has a solution in ~ .  

We shall now obtain sufficient conditions for the validity of (3.31), 
but  first we need one more inequality. Let x be an arbitrary vector. Then 

h 

ixl,  _ 2  Ixln_i2 = x ~ ( G ( t ' ~ ) - G ( t ~ - h ) ) x  = --XT --_.t" ~G~tn-- ~) 

o 

by (3.6) and (3.5). Hence 
lxl. 2 5 (l+hr)]xI~n_l • (3.34) 

THEOREM 3.1. Given h, ~, ~. Assume that 
(i) h2' < 1, (which means no restriction i f  2 < 0), 

(ii) CA' is satisfied, 
(iii) for  all t, t o < t < T < co, 
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~b(t, h) < (vcO/fl- q*)((1 - h2') -1 + ½hT)-}. 

Then, (3.10) uniquely defines a sequence X x , X 2 , . . . x n , . . .  as long as 
t o + nh < T.  The following bound is valid : 

Ixn--x(tn) [ <= qS(t~,,h)(fl/o;)(1 - h2')-½. (3.35) 

REMARK. Expressions for q~(t,h) and q* are found in (3.29) and (3.32). 

PROOF. Assume that  y~ exists and that  [y~I<O, for n = l , 2 ,  . . . .  m. 
Hence (3.31) holds for n < m ,  

[yn-½hg,tln_l <= flqS(tn, h ) (3.36) 

and (3.35) is obtained by an application of (3.24). We now only need to 
show that  the conditions for the existence of a point (tm+l,x~+l) e ~ ,  
given in Lemma 3.3, are satisfied. (The verification for m = 1 is straight- 
forward, by (3.29) and (iii)). By (3.26), (3.36), (3.30) and (iii), 

[Ym+ ½hgml m <= e"hflqS(tm, h) = flq~(tm+l,h)-q* fl < a~ (1 -h2 ' )½- f i q* .  
(3.37) 

Consider the identity 

2(lYmI~2+ ]½hg~l~ ~) = lye+  ½hgmlm2 + I Y . -  ½hg,~l~ 2. 

By (3.23), (3.34) and (3.36), 

(1 +h2'  ) 
2lYml,~ u < \-f--~_~, + 1 + h 7 fl2~9(tm, h) .  

Hence 

lYmlm ~ ( (1 -hX ' ) - l  + ½h~)~fl~(tm, h) < (o~-~q*)  , 

by (iii). This inequality and (3.37) are equivalent to the conditions of 
Lemma 3.3, since they are strict inequalities. Hence (3.10) has a solution 
(tm+l,Xm+l) E ~ ,  which is unique, by Lemma 3.1. Hence (3.31) holds 
also for n = m + 1, and the theorem is proved. 

The classical error estimates contained exponentials with a Lipschitz 
constant, essentially I~[/~x[, as the coefficient of t in the exponent. In  
recent years, several writers have derived error bounds, where the expo- 
nents may be negative, just like/~ in our error bound, when 2 < 0. Some 
bounds of this kind are found in [3, Ch. 5], but, in connection with the 
trapezoidal formula, they  are less general than Theorem 3.1. For ex- 
ample, they  do not always give sharp bounds, when Liapunov functions 
with variable coefficients are needed, and, above all, they  are based on 
the assumption ½h]~[/~x[ < 1. According to Theorem 3.1, when 2< 0 the 
choice of step size can be made with consideration of the local truncation 
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error and the rate of change of the Liapunov function only. Even though 
lhOf/0x I is large, the error is bounded in an unlimited computation, if 

< O. This is a generalization of the A-stability property. 
If 4= O, O(t, h) grows linearly with t, because 

1 -- e ~t t 
lim = 

There are, however, important cases, where the error is bounded, when 
= 0, although Theorem 3.1 fails to indicate this. Let us introduce a new 

condition. 

CONDITION Co". In  addition to condition Co' , it is required that, for 
lYl < 8, W(t,y,x(t),h) is not larger than some continuous, negative definite 
(though in general not quadratic) time-independent function of the vector 
y -  ½hg, say 

W(t,y,x(t),h) < - 2 ] y -  ½hg]n_~ Wl ( [y -  ½hgln_l) , 

where y = g(t, y), Wl(s ) > 0 for s # o. 
We may use any result, tha t  has been obtained under Condition Co'. 

Hence, by (3.22), 

1 2 [y + ½hg[n 2 -  ] y -  ~hg[,~_~ < - 2 h [ y -  ½hg]n_l W l ( [ y -  ½hg]n_l) . 

Divide by [y + ½hg[n + ] y -  ½hgl,~_ ~ <= 2 [ y -  ½hg]n_ 1. Hence 

]y + ½hg]~- l Y -  ½hg[n-~ < - h W ~ ( [ y -  ½hg]n-i) . 

(It is now seen tha t  WI(0)= 0.) Put 

]Yn- ½hgn[n-1 -- Sn " 

I t  now follows from (3.14) and (3.28) tha t  

Sn+ 1 <: s n - h  Wl(Sn) + flq* . (3.38) 

Now we are going to prove: 

THEOREM 3.2. Given h, 5. Assume that: 

(i) Co" is satisfied, 
(ii) flq*/h < lim Wl(s). 

Put M = s u p { s - h W l ( s ) + f i q *  l O<s<s'} 
where s' is the largest root of the equation hWl(s)=flq*. 

(iii) M <  (~ - f lq*) (1  + ½hr) --~, 

(iv) s 1 < M. 

Then s n < M for all n, and 
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[x . -x( t~) [  < o,-~M < ~. (3.39) 

P~OOF. Note that  s' < M, and that  h W l ( s  ) > flq*, for s > s'. If s,~ < s' ,  

then s~+ 1 < s~ - hWl(s~)  + flq* < M .  I f  s n > s', then sn+ 1 < s~ + ( - hWl(s~)  + 

flq*) < s~. Hence, in any case, if a n < M ,  then s~+l < M. All this is based 
on the assumption that, at  each step, (3.10) has a solution in @~. The 
proof of this assumption is obtained by  the substitution of M for flq~(t,h) 

in the proof of Theorem 3.1. (3.39) is obtained by  an application of (3.24). 

THEOREM 3.3. M a k e  the same  as sumpt ions  as i n  the preceding theorem, 

except  that (iv) i s  replaced by the mi lder  a s s u m p t i o n  

(iv') 81 < ( ~ - ~ q * ) ( 1  + ~h~)-~. 

Then ,  as  n - +  ~ ,  limsn < M  and lira I x n - x ( t n )  I <:o¢-IM. 

PROOF. If, for some n, s~ < M, then the statement follows from the 
preceding theorem. Therefore, assume that  s n > M for all n. Then, a 
fortiori, s n > s ' ,  so that  S n + l < S n - h W l ( s n ) + f l q * < s n .  Hence {sn} is a 
bounded, decreasing sequence, which tends to some limit, s "  satisfying 
the inequality s " < s " - h W l ( s " ) + ~ q * .  Hence h W l ( s " ) < f l q * ,  whence 
s "  <8'  < M ,  and the theorem is proved. The argument also shows that, 
i f  M 4 8' then s n < M for  all su f f ic ien t ly  large n. 

A simple example, where Co" is satisfied although Ca' is not, for any 
negative ~, is given by  the equation d y / d t =  _ y a .  Take V( t )=y2 .  Then, 
W ( t, y, z) = - 2y((y + z) a - z 8) = - 2y~(y ~ + yz  + z ~) < - y2(y~ + z ~) < - y ' .  On 
the other hand, W ( t , y ,  O) = - 2y  4 > - 2~y ~, when ]y] < ~. 

The remarkable stability property of the trapezoidal formula has to 
be matched against two obvious disadvantages: 

1. p is only equal to 2, 
2. the method is implicit. 

To some extent, one can compensate for the first, disadvantage by use 
of Richardson extrapolation. In  many cases, the second difficulty may 
be overcome by  a suitable combination of elimination and iteration, 
although in other cases it may be more economical to use an explicit 
method and a smaller step-size. The previous theory is applicable, when 
the computations are arranged so that  the sum of the perturbation tPnl 

in (3.10) and the local truncation error IPn't never exceeds some fixed 
bound called q*. I t  is, however, important to realize that  any condition 
of this type  may  be violated, eventually, if an iterative technique is 
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used with a fixed number of iterations, and the error lx~-x(tn)l may 
grow to infinity, even though Ih~[/Oxl is rather small. 

I t  is instructive to s tudy the application of the iterative scheme 

x(O) ~ Xn n+l 

x(~) = x,~+½h(f(x~)+f(x~+l))), i = 1,2, . j :  n+l " " 

for different constant values of j ,  in the case f ( x ) =  qx, where q is located 
on or very close to the imaginary axis. The boundedness of the sequence 
{xo)}~°=~ for fixed j and fixed imaginary values of qh of small modulus, 
then depends on the residue of j modulo 4. Prof. Herbert  Keller, New 
York, pointed out this peculiar fact to the writer. 
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Note, added in proof. 
I t  ought to be mentioned that  if  an A-stable method is applied to (1.8) 

with purely imaginary q, then all solutions are bounded. By continuity, the 
roots of (2.1) satisfy the condition ]~]<1, and by  the technique used in 
the proof of Lemma 2.1, it can be shown tha t  the roots of unit modulus 
are simple. (Note that  e(~)/~(~) - qh has a non-negative real part  for l~l > 1.) 
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