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Problem
In this work we propose a method for the
quadrature of analytic functions on compact
intervals based on function values on arbitrary
grids. In practice it is not always possible to
sample functions on optimal nodes with a low-
order Lebesgue constant. Therefore, we ex-
tend interpolatory quadrature formulas via the
so-called Fake Nodes [2, 3]. More precisely, we
analyse the Kosloff and Tal-Ezer (KT) map
as stabilizing component of interpolatory and
least-squares quadrature formulas (referred to
as KTI and KTL formulas).
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Fig 1. Polynomial and KT interpolation of
Runge function on 11 equispaced nodes.

Preliminaries on KTL
Let X = {x0, . . . , xm} be a set of quadrature
nodes in the interval I = [−1, 1] and f a contin-
uous function on I. The Kosloff Tal-Ezer map
Mα : I → I is given by

Mα(x) :=
sin(απx/2)

sin(απ/2)
, x ∈ I, for 0 < α ≤ 1,

and M0(x) := limα→0+ Mα(x) for α = 0. While
M0 is the identity map on I, the KT func-
tion Mα with α = 1 maps the open and closed
equidistant Newton-Cotes quadrature nodes to
the Chebyshev and Chebyshev-Lobatto nodes.
If Pn denotes the space of polynomials of degree
at most n, we can associate to Mα the approxi-
mation space

Pαn = {P ◦Mα : P ∈ Pn}.
If α < 1, it is shown in [1] that the polynomial
interpolant onMα(X ) displaysRunge type ar-
tifacts if X is a set of equidistant nodes in I.
To overcome this issue, the node set X was cho-
sen larger such that m > n, and the following
weighted least-squares approximant of the
function f was introduced:

Fαn,X (f) := min
Pα∈Pαn

m∑
i=0

µi|f(xi)− Pα(xi)|2,

with the weights µi given by

µi =
1

2

∫ Mα(xi+1)

Mα(xi−1)

1√
1− x2

dx, i = 0, . . . ,m,

where x−1 = −1 and xm+1 = 1.
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KTL quadrature: development and analysis
For the calculation of the quadrature formula, we
choose a basis Φα = {φαi : i = 0, . . . , n} for the
space Pαn. Then, we can write the least-squares
approximant as

Fαn,X (f) =

n∑
i=0

γiφ
α
i ,

where the coefficient vector γ is determined by
the least-squares solution of the linear system

WAαγ = Wf .

In this system W = diag(
√
µ0, . . . ,

√
µm) denotes

the matrix with the least-squares weights, the
matrix Aα is defined by the entries Aα

ij = φαj (xi)
and f is the vector with all samples of f on X .
Based on this decomposition we have the KTL
formula

Iαn,X (f, I) = γ>τα,

where τα ∈ Rn+1 is a moment vector with the
entries ταi =

∫
I
φαi (x) dx. If m = n the formula

Iαn,X (f, I) is interpolatory and will be referred to
as KTI quadrature formula.

The usage of the Chebyshev polynomials {Ti(x) :
i = 0, . . . , n} leads to the basis {Ti(Mα(x)) : i =
0, . . . , n} and allows to calculate the KTL and
KTI quadrature weights wα in terms of a cosine
and a non-equidistant fast Fourier transform.

Th. 1 (Computation of the moments)

For 0 < α ≤ 1 and i ∈ N0, the moment

ταi =

∫ 1

−1
Ti(Mα(x))dx

corresponds to the i-th coefficient
Fcos(gα)(i) of the continuous cosine
transform of the function

gα(t) =
sin(t)√

1
sin2(απ/2)

− cos2(t)

1

α
, t ∈ [0, π].

We continue by analyzing the computation of the
quadrature formula using the standard monomial
basis. Let C = sin

(
απ2
)
and suppose that Si is a

sequence of numbers satisfying the recursion

Si = −1

i

[
sin(Cx)i−1

cos(Cx)

C

]1
−1

+
(i− 1)

i
Si−2

and in which the initial value S0 is a the exact
moment value

∫ 1

−1 1dx = 2, then ταi = Si/C
i.

Th. 2 (Error divergence of the moments)

If the initial value S0 is a slight perturba-
tion of the exact moment value, then the
error Ei between Si and

∫ 1

−1 sin(Cx)idx
satisfies the recurrence relation

Ei = Si −
∫ 1

−1
sin(Cx)idx =

(i− 1)

i
Ei−2.

Moreover, E2k/ sin(απ2 )2k→∞ for k→∞.

This implies that the calculation of the moments
ταi via the monomial basis is not stable.
The next theorem allows us to have a better un-
derstanding of the numerical results.

Th. 3 (Limit relations)

For the interpolatory KTI quadrature for-
mula we have the limit relations

wαi
α−→ 0+−−−−−→

∫ 1

−1
`0i (y)dy

and

wαi
α−→ 1−−−−−−→ 2

π

∫ 1

−1
`1i (y)

1√
1− y2

dy,

where `αi denotes the i-th Lagrange poly-
nomial defined by the nodes Mα(xi), i =
0, . . . ,m.

Numerical Test: KTI, KTL, Perturbation of the nodes
To test the scheme, we use analytic functions in an open neighborhood of [−1, 1]: f1(x) = 1

1+100x2

(first row) and f2(x) = 1
1+16 sin2(7x)

(second row). We sample them at equispaced nodes on [−1, 1].
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Fig 2. Relative Error for KTI quadrature formula (left), KTL quadrature formula (center), KTL
with perturbed nodes (left). The x-axis describes the number of nodes used by the scheme.


