

On Kosloff Tal-Ezer least-squares quadrature formulas

G. Cappellazzo, W. Erb, F. Marchetti, D. Poggiali

giacomo.cappellazzo@studenti.unipd.it, erb@math.unipd.it, francesco.marchetti@math.unipd.it, davide.poggiali@unipd.it Università degli Studi di Padova - Dipartimento di Matematica "Tullio Levi-Civita"

DWCAA21: Dolomites Workshop on Constructive Approximation and Applications, September 6-10, 2021, Virtual conference

Problem

In this work we propose a method for the quadrature of **analytic functions** on compact intervals based on function values on **arbitrary** grids. In practice it is not always possible to sample functions on optimal nodes with a loworder Lebesgue constant. Therefore, we extend interpolatory quadrature formulas via the so-called **Fake Nodes** [2, 3]. More precisely, we analyse the **Kosloff and Tal-Ezer** (KT) map as stabilizing component of interpolatory and least-squares quadrature formulas (referred to

KTL quadrature: development and analysis

For the calculation of the quadrature formula, we choose a basis $\Phi^{\alpha} = \{\phi_i^{\alpha} : i = 0, ..., n\}$ for the quadrature formula using the standard monomial space \mathbb{P}_n^{α} . Then, we can write the least-squares approximant as $F_{n,\mathcal{X}}^{\alpha}(f) = \sum_{i=0} \gamma_i \phi_i^{\alpha},$

where the coefficient vector γ is determined by the least-squares solution of the linear system

 $\mathbf{W} \mathbf{A}^{lpha} oldsymbol{\gamma} = \mathbf{W} oldsymbol{f}.$

In this system $\mathbf{W} = \text{diag}(\sqrt{\mu_0}, \dots, \sqrt{\mu_m})$ denotes

We continue by analyzing the computation of the basis. Let $C = \sin\left(\alpha \frac{\pi}{2}\right)$ and suppose that S_i is a sequence of numbers satisfying the recursion

$$S_{i} = -\frac{1}{i} \left[\sin(Cx)^{i-1} \frac{\cos(Cx)}{C} \right]_{-1}^{1} + \frac{(i-1)}{i} S_{i-2}$$

and in which the initial value S_0 is a the exact moment value $\int_{-1}^{1} 1 dx = 2$, then $\tau_i^{\alpha} = S_i/C^i$.

as KTI and KTL formulas).

Preliminaries on KTL

Let $\mathcal{X} = \{x_0, \ldots, x_m\}$ be a set of quadrature nodes in the interval I = [-1, 1] and f a continuous function on I. The Kosloff Tal-Ezer map $M_{\alpha}: I \to I$ is given by

$$M_{\alpha}(x) := \frac{\sin(\alpha \pi x/2)}{\sin(\alpha \pi/2)}, \ x \in I, \text{ for } 0 < \alpha \le 1,$$

the matrix with the least-squares weights, the matrix \mathbf{A}^{α} is defined by the entries $\mathbf{A}_{ij}^{\alpha} = \phi_j^{\alpha}(x_i)$ and f is the vector with all samples of f on \mathcal{X} . Based on this decomposition we have the **KTL** formula

 $\mathcal{I}^{\alpha}_{n,\mathcal{X}}(f,I) = \boldsymbol{\gamma}^{\top} \boldsymbol{\tau}^{\alpha},$

where $\boldsymbol{\tau}^{\alpha} \in \mathbb{R}^{n+1}$ is a moment vector with the entries $\tau_i^{\alpha} = \int_I \phi_i^{\alpha}(x) \, \mathrm{d}x$. If m = n the formula $\mathcal{I}_{n,\mathcal{X}}^{\alpha}(f,I)$ is interpolatory and will be referred to as **KTI** quadrature formula.

The usage of the Chebyshev polynomials $\{T_i(x):$ $i = 0, \ldots, n$ leads to the basis $\{T_i(M_\alpha(x)) : i =$ $0, \ldots, n$ and allows to calculate the KTL and KTI quadrature weights \boldsymbol{w}^{α} in terms of a cosine and a non-equidistant fast Fourier transform.

Th. 1 (Computation of the moments)

For
$$0 < \alpha \leq 1$$
 and $i \in \mathbb{N}_0$, the moment
 $\tau_i^{\alpha} = \int_{-1}^1 T_i(M_{\alpha}(x)) dx$

Th. 2 (Error divergence of the moments)

If the initial value S_0 is a slight perturbation of the exact moment value, then the error \mathcal{E}_i between S_i and $\int_{-1}^{1} \sin(Cx)^i dx$ satisfies the recurrence relation

$$\mathcal{E}_{i} = S_{i} - \int_{-1}^{1} \sin(Cx)^{i} dx = \frac{(i-1)}{i} \mathcal{E}_{i-2}.$$

Moreover, $\mathcal{E}_{2k} / \sin(\alpha \frac{\pi}{2})^{2k} \to \infty$ for $k \to \infty$.

This implies that the calculation of the moments τ_i^{α} via the monomial basis is not stable. The next theorem allows us to have a better understanding of the numerical results.

Th. 3 (Limit relations)

For the interpolatory KTI quadrature formula we have the limit relations

 $w_i^{\alpha} \xrightarrow{\alpha \longrightarrow 0^+} I$

and $M_0(x) := \lim_{\alpha \to 0^+} M_\alpha(x)$ for $\alpha = 0$. While M_0 is the identity map on I, the KT function M_{α} with $\alpha = 1$ maps the open and closed equidistant Newton-Cotes quadrature nodes to the Chebyshev and Chebyshev-Lobatto nodes. If \mathbb{P}_n denotes the space of polynomials of degree at most n, we can associate to M_{α} the approximation space

 $\mathbb{P}_n^{\alpha} = \{ P \circ M_{\alpha} : P \in \mathbb{P}_n \}.$

If $\alpha < 1$, it is shown in [1] that the polynomial interpolant on $M_{\alpha}(\mathcal{X})$ displays **Runge type artifacts** if \mathcal{X} is a set of equidistant nodes in I. To overcome this issue, the node set \mathcal{X} was chosen larger such that m > n, and the following weighted least-squares approximant of the function f was introduced:

$$F_{n,\mathcal{X}}^{\alpha}(f) := \min_{P^{\alpha} \in \mathbb{P}_{n}^{\alpha}} \sum_{i=0}^{m} \mu_{i} |f(x_{i}) - P^{\alpha}(x_{i})|^{2},$$

with the weights μ_i given by

$$u_{i} = \frac{1}{2} \int^{M_{\alpha}(x_{i+1})} \frac{1}{-dx_{i} - 0} m_{\alpha}$$

corresponds to the *i*-th coefficient $\mathcal{F}_{\cos}(g_{\alpha})(i)$ of the continuous cosine transform of the function

$$g_{\alpha}(t) = \frac{\sin(t)}{\sqrt{\frac{1}{\sin^2(\alpha\pi/2)} - \cos^2(t)}} \frac{1}{\alpha}, \quad t \in [0, \pi].$$

and

$$w_i^{\alpha} \xrightarrow{\alpha \longrightarrow 1^-} \frac{2}{\pi} \int_{-1}^1 \ell_i^1(y) \frac{1}{\sqrt{1-y^2}} dy,$$

where ℓ_i^{α} denotes the *i*-th Lagrange polynomial defined by the nodes $M_{\alpha}(x_i), i = 0, \dots, m.$

Numerical Test: KTI, KTL, Perturbation of the nodes

To test the scheme, we use analytic functions in an open neighborhood of [-1,1]: $f_1(x) = \frac{1}{1+100x^2}$ (first row) and $f_2(x) = \frac{1}{1+16\sin^2(7x)}$ (second row). We sample them at equispaced nodes on [-1, 1].

References

- [1] B. Adcock, R.B. Platte, A mapped polynomial method for high-accuracy approximations on arbitrary grids, SIAM J. Numer. Anal. 54 (2016).
- [2] S. DE MARCHI, F. MARCHETTI, E. PERRACCHIONE, D. POGGIALI, Polynomial interpolation via mapped bases without resampling, J. Comput. Appl. Math., **364** (2020), 112347.
- [3] S. DE MARCHI, F. MARCHETTI, E. PERRACCHIONE, D. POGGIALI, Multivariate approximation at fake nodes, Appl. Math. Comput., **391** (2021), 125628.
- [4] S. DE MARCHI, G. ELEFANTE, E. PERRACCHIONE, D. POGGIALI, Quadrature at fake nodes, Dolomites Res. Notes Approx. 14 (2021), pp. 27–32.

Fig 2. Relative Error for KTI quadrature formula (left), KTL quadrature formula (center), KTL with perturbed nodes (left). The x-axis describes the number of nodes used by the scheme.