A Nystrom-type method based on anti-Gauss quadrature rules
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1. The problem

Let us approximate the solution f of the following second-kind Fredholm integral
equation
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where k and g are two given functions, and w(x) = (1 — x)%(1 + x)? is the Jacobi
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2. Anti-Gauss quadrature formula

In 1996, Laurie [Math. Comp. 65] introduced an interpolatory (n+1)-point quadra-
ture rule, named anti-Gauss rule,
1 n+1
/ f(x)w(x)dx = Z}\kf(x"k) + é,1(f) =: Gn—l—1(f) + é,1(f).,

- k=1
such that it has an error precisely opposite to the error e,(f) of a n-point Gauss
rule that is

eni1(f) = —enl(f), for all f € Py,

The coefficients {A}/f] are all positive and the nodes {%(}7*1 are all real and

interlace with the Gauss nodes {xk}i_, that is X1 < x1 < %o < ... < X < Xp41.
The formula can be easily constr uctecl by solving a suitable eigenvalue problem
for a modified Jacobi matrix.

Spaces of functions Let us introduce the Jacobi weight
u(x) = (1 —x)’(1 + x)° with y, o > 0 and define

L7 = {f c C°((—1,1)) : l'LnJL(fu)(x) = O} :
equipped with the weighted uniform norm

Hquoo: max _|(fu)(x)].
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For smoother functions, we introduce the weighted Sobolev space ;

W>2(u) = :f e L7 HfHWrOO(u) = Hfu”oo + Hf(")cp"uHOO < oo} :

where r =1,2,..., and ¢(x) = V1 — x2
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3. A Nystrom-type method

-rom now on, let us assume that the given equation has a unique solution f* & L°°
for a given right-hand side g € [*° with0<y<a+Tand0< o< B+ 1.
n order to approximate it, let us consider the equations
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where ?,7+1 are the unknowns. By evaluating the equation at the anti-Gauss nodes

we get
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where a, = f,11(Xk). Then, the Nystrom interpolant is given by
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4. Analysis of the method

Theorem Let us assume that, for an integer r,

g € WX (u), SLIka(X, ')Hw,ceo(u) < 00, sup u(y)”k(-, y) < 0.

[
x| <1 yl<T

Then, for n sufficiently large, system (1) is uniquely solvable and well-
conditioned in the co-norm. Finally, one has

H[f* — ?,7+1]UHOO =0 (n_’”) ,

where the constants in O are independent of n and f*.

5. Averaged Nystrom interpolant

Theorem Let the assumptions of the previous theorem be satisfied and let us
assume that, for any y € [—1, 1], the terms {a;(y)} of the series

k(x, y)f(y Zal ) 77, (

converge to zero sufficiently rapidly Where {m;} are the Jacobi polynomials
orthonormal with respect to the weight w. Moreover, let us hypothises that
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for n large enough. Then, either

fn(y) < f*(g) < ?n+1(y)r

The previous theorem allows us to obtain a better approximation of the solution
by the averaged Nystrom interpolant

1

faly) = 2[ (y) + fn+1(J)] y €[-1,1]

6. Numerical Results

Example 1 Let us consider the following equation in L*°

1 (x+y) /
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Next graphs display our numerical results.
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Fig. 1: Form left to right: comparison of the exact weighted solution with the approximations produced by the Gauss,
anti-Gauss, and averaged rules, for n = 2; errors corresponding to the three quadrature formulae when n = §;

weighted oco-norm errors
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Example 2 We apply our approach to approximate the unique solution ¥ € L%, u(x) = V1 — x?
of the equation

1
fly) — /_1(_L/ + 3)\/| cos(1 + x)]Pf(x)V1 — x2dx = In(1 + y?).

Next table contains the numerical errors at the point y = —0.3

N (fa— f512)u (Fag1 — f512)u | (Fr — f512)u
4 1.87e-03 -1.90e-03 -1.87e-05

8 | 1.66e-05 -1.38e-05 1.39e-006
16 | -1.25e-006 1.43e-00 9.09e-08
32 | -1.39e-07 1.35e-07 -2.08e-09
64 | -1.12e-08 9.97e-09 -5.96e-10

128 1.03e-09 -1.20e-09 -8.23e-11
256 -2.48e-11 3.20e-11 3.58e-12

Perspectives of research In collaboration with L. Reichel and M.M. Spalevi¢,
we are exploring the application of other averaged Gauss quadrature formulae [M.M.
Spalevi¢, Math Comp 76, 2007; L. Reichel and M.M. Spalevi¢ Appl. Num. Math. 165,

2021] to integral equations.
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