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Let us approximate the solution f of the following second-kind Fredholm integralequation
f (y) −

∫ 1
−1 k(x, y)f (x)w(x)dx = g(y), y ∈ [−1, 1],

where k and g are two given functions, and w(x) = (1 − x)α(1 + x)β is the Jacobiweight with parameters α, β > −1.

1. The problem

One of the most popular approach is the Nyström method based
on the well-known n-point Gauss quadrature rule

I(f ) = ∫ 1
−1f (x)w(x)dx = n∑

k=1 λkf (xk) + en(f ) =: Gn(f ) + en(f ).
Basically, the equations (I − Kn)fn = g are considered where fn is the
unknown and (Knfn)(y) = n∑

k=1 λkk(xk, y)fn(xk). They are required to hold
at the nodes {xi}n

i=1 and this yields a linear system whose unknowns
are ak = fn(xk). Once computed, the Nyström interpolant

fn(y) = n∑
k=1 λkk(xk, y)ak + g(y)

provides an approximated solution for our equation.
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In 1996, Laurie [Math. Comp. 65] introduced an interpolatory (n+1)-point quadra-ture rule, named anti-Gauss rule,
I(f ) = ∫ 1

−1 f (x)w(x)dx = n+1∑
k=1 λ̃kf (x̃k) + ẽn+1(f ) =: G̃n+1(f ) + ẽn+1(f ).,

such that it has an error precisely opposite to the error en(f ) of a n-point Gaussrule that is
ẽn+1(f ) = −en(f ), for all f ∈ P2n+1.The coefficients {λ̃k}n+1

k=1 are all positive and the nodes {x̃k}n+1
k=1 are all real andinterlace with the Gauss nodes {xk}n

k=1 that is x̃1 < x1 < x̃2 < ... < xn < x̃n+1.The formula can be easily constructed by solving a suitable eigenvalue problemfor a modified Jacobi matrix.

2. Anti-Gauss quadrature formula

From now on, let us assume that the given equation has a unique solution f∗ ∈ L∞
ufor a given right-hand side g ∈ L∞

u with 0 ≤ γ < α + 1 and 0 ≤ δ < β + 1.In order to approximate it, let us consider the equations
f̃n+1(y) −

n+1∑
j=1 λ̃j k(x̃j, y)f̃n+1(x̃j) = g(y), j = 1, . . . , n + 1

where f̃n+1 are the unknowns. By evaluating the equation at the anti-Gauss nodeswe get
n+1∑
k=1

[
δik − λ̃kk(x̃k, x̃i)] ãk = g(x̃i), i = 1, . . . , n + 1, (1)

where ãk = f̃n+1(x̃k). Then, the Nyström interpolant is given by
f̃n+1(y) = n+1∑

k=1 λ̃kk(x̃k, y)ãk + g(y).

3. A Nyström-type method

Spaces of functions Let us introduce the Jacobi weight
u(x) = (1 − x)γ(1 + x)δ with γ, δ ≥ 0 and define

L∞
u = {

f ∈ C 0((−1, 1)) : lim
x→±1(fu)(x) = 0}

,

equipped with the weighted uniform norm∥∥fu
∥∥

∞ = max
x∈[−1,1] |(fu)(x)|.

For smoother functions, we introduce the weighted Sobolev space
W∞

r (u) = {
f ∈ L∞

u : ∥∥f
∥∥

W∞
r (u) = ∥∥fu

∥∥
∞ + ∥∥f (r)φru

∥∥
∞ < ∞

}
,

where r = 1, 2, . . ., and φ(x) = √1 − x2.

Spaces of functions Let us introduce the Jacobi weight
u(x) = (1 − x)γ(1 + x)δ with γ, δ ≥ 0 and define

L∞
u = {

f ∈ C 0((−1, 1)) : lim
x→±1(fu)(x) = 0}

,

equipped with the weighted uniform norm∥∥fu
∥∥

∞ = max
x∈[−1,1] |(fu)(x)|.

For smoother functions, we introduce the weighted Sobolev space
W∞

r (u) = {
f ∈ L∞

u : ∥∥f
∥∥

W∞
r (u) = ∥∥fu

∥∥
∞ + ∥∥f (r)φru

∥∥
∞ < ∞

}
,

where r = 1, 2, . . ., and φ(x) = √1 − x2.

Theorem Let us assume that, for an integer r,
g ∈ W∞

r (u), sup
|x|≤1

∥∥k(x, ·)∥∥W∞
r (u) < ∞, sup

|y|≤1 u(y)∥∥k(·, y)∥∥W∞
r

< ∞.

Then, for n sufficiently large, system (1) is uniquely solvable and well-conditioned in the ∞-norm. Finally, one has∥∥[f∗ − f̃n+1]u∥∥
∞ = O

(
n−r) ,

where the constants in O are independent of n and f∗.

4. Analysis of the method

Theorem Let the assumptions of the previous theorem be satisfied and let usassume that, for any y ∈ [−1, 1], the terms {αi(y)} of the series
k(x, y)f∗(y) = ∞∑

i=0 αi(y)πi(x)
converge to zero sufficiently rapidly where {πi} are the Jacobi polynomialsorthonormal with respect to the weight w . Moreover, let us hypothises that

max {∣∣∣∣∣ ∞∑
i=2n+2αi(y)Gn(πi)∣∣∣∣∣ ,

∣∣∣∣∣ ∞∑
i=2n+2αi(y)G̃n+1(πi)∣∣∣∣∣

}
<

∣∣∣∣∣∣
2n+1∑
i=2n

αi(y)Gn(πi)
∣∣∣∣∣∣ ,

for n large enough. Then, either
fn(y) ≤ f∗(y) ≤ f̃n+1(y), or f̃n+1(y) ≤ f∗(y) ≤ fn(y).

The previous theorem allows us to obtain a better approximation of the solutionby the averaged Nyström interpolant
fn(y) = 12[fn(y) + f̃n+1(y)], y ∈ [−1, 1].

5. Averaged Nyström interpolant

Example 1 Let us consider the following equation in L∞

f (y) −
∫ 1

−1 e(x+y)1 + x2 + 3y2f (x) dx√1 − x2 = √
|y|9.

Next graphs display our numerical results.
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Fig. 1: Form left to right: comparison of the exact weighted solution with the approximations produced by the Gauss,anti-Gauss, and averaged rules, for n = 2; errors corresponding to the three quadrature formulae when n = 8;weighted ∞-norm errors
Example 2 We apply our approach to approximate the unique solution f∗ ∈ L∞

u , u(x) = 4√1 − x2of the equation
f (y) −

∫ 1
−1(y + 3)√| cos(1 + x)|5f (x)√1 − x2dx = ln(1 + y2).

Next table contains the numerical errors at the point y = −0.3n (fn − f512)u (f̃n+1 − f512)u (fn − f512)u4 1.87e-03 -1.90e-03 -1.87e-058 1.66e-05 -1.38e-05 1.39e-0616 -1.25e-06 1.43e-06 9.09e-0832 -1.39e-07 1.35e-07 -2.08e-0964 -1.12e-08 9.97e-09 -5.96e-10128 1.03e-09 -1.20e-09 -8.23e-11256 -2.48e-11 3.20e-11 3.58e-12

6. Numerical Results

Perspectives of research In collaboration with L. Reichel and M.M. Spalević,we are exploring the application of other averaged Gauss quadrature formulae [M.M.Spalević, Math Comp 76, 2007; L. Reichel and M.M. Spalević Appl. Num. Math. 165,2021] to integral equations.
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