
 

5th Dolomites Workshop on Constructive Approximation and Applications 
 

Pricing the Zero Coupon Bond Under Jump-Diffusion Model  

with Machine Learning 

S. P .Azizi1, A. Neisy2 and S. Cuomo3  
Allameh Tabataba'i University (ATU), Tehran, Iran Mathematical Science, Department of Mathematics, Faculty of1,2 

Email: 1: a_neisy@atu.ac.ir  and  2: eazizak@yahoo.com 

Department of Mathematics and Applications "R.Caccioppoli" University of Naples Federico II, Italy 3 
Email: salvatore.cuomo@unina.it 

Abstract 

A data-driven approach called CaML (Calibration 

Machine Learning) is proposed to calibrate financial 

asset price models using Machine Learning 

methodologies. From the theoretical point of view, 

determining optimal values of the model parameters is 

formulated as training hidden neurons within a machine 

learning framework, based on available financial zero-

coupon bond prices. For this purpose, we consider a 

dynamic system using discretization on stochastic 

variables. To train unknown parameters of the model, 

we consider the loss function in the form of the 

difference between the real and computed value of 

derivatives.  Finally, we investigated the performance of 

this method by estimating the market price of risk of 

Zero Coupon bonds. 

Keywords: financial model calibration, machine 

learning, deep neural networks, zero coupon bond, 
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Introduction 

The bond market, also known as fixed income securities, 

is a market in which fixed income instruments are 

traded. The most important and common fixed income 

securities are bonds. A bond is a type of financial 

contract that the issuer of these bonds promises to pay 

bondholders stream of coupon over a given time period 

and the eventual return the principal at maturity date. 

A debt security that does not pay any interest coupon 

payments is called Zero Coupon Bond(ZCB). These 

bonds are very important to economy and financial 

market. In this paper, we attempt to present a model for 

these type of bonds and then solve it by using the Radial 

Basis Function (RBF)method. Many Scientists and 

researchers study about these bonds in markets, 

universities and across the world (the many references 

cited). Since in the modelling discussion, some 

parameters appear that can’t be observed easily such as 

the most important one ,the market price of risk, in this 

paper we intend to approximate this parameter using 

machine learning.  In this field, Poggi in 2017 and Horva 

in 2019 have articles about neural networks in finance 

which we want to use machine learning and fast 

calibration method for approximating the risk market 

price parameter. 

Modeling 

Bond modelling bonds on two variables, time and 

interest rate which in terms of interest rate having 

various models. If the interest rate is constant, then the 

formula for calculating interest rates is straightforward 

but if it is a deterministic variable then the model of 

bond would be an Ordinary Differential Equation (ODE). 

However, the model that has accurate description of 

market, is determined by stochastic interest rate.  

 using dataset and the RBF so the new dataset is obtained 

as bellow set: 

 𝑃1 =  
𝑃(𝒙1, 𝑡1)

⋮
(𝒙𝑀, 𝑡1)

 , 𝑃2 =  
𝑃(𝒙1, 𝑡2)

⋮
(𝒙𝑀, 𝑡2)

 , … , 𝑃𝑀

=  
𝑃(𝒙1, 𝑡𝑀)

⋮
(𝒙𝑀, 𝑡𝑀)

   

Considering the Ito lemma and other concepts such as risk-
free portfolio and Feynman-Kac formula , the following 
statement can be reached: 

𝑃𝑖+1 = 𝜓𝑃𝑖  
where 𝜓 is derivatives matrix that is obtained from PDE. 

Training 

In this section, we attempt to estimate 𝜆 parameter. To do 

this, we arrange the all parameters in a single vector as 

follows: 

𝜑 = (𝑟, 𝑡, 𝑘, 𝜃, 𝜎, 𝜆 ) 

By using RBF solution, we write the error norm for 

observable values in market and obtained values in the 

following way: 

𝐸𝑖 =  𝑃𝑅𝐵𝐹(𝑟𝑖 , 𝑡𝑖, 𝜑) − 𝑃𝑚𝑎𝑟𝑘𝑒𝑡(𝑟𝑖 , 𝑡𝑖)  

L(𝜑) =  𝑤𝑖𝐸𝑖
2 + 𝛼𝐻(𝑖=𝑀

𝑖=1 𝜑) 

Where  .   is norm and M is the number of simulations. 

So we have: 
𝜑∗ = 𝑎𝑟𝑔 min

𝜑
𝐿(𝜑) 

Where 𝛼 is regulator parameter. Therefore, calibration as an 

optimization problem is considered only as a set of 

educational data. For example, the point between input and 

output of network are obtained with 80% of simulated data 

and with the remaining 20 %, we teach network in order to 

return corresponding output. 

Implementation 

To investigate the performance of this method, we illustrate 

a numerical example and the accuracy of this method 

respect to linear regression and neural network is as follow: 

 

In addition, the result for testing data is as bellow: 
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In this paper we assume that the stochastic interest rate 

has the following model: 

𝑑𝑟 = 𝑘(𝜃 − 𝑟)𝑑𝑡 + 𝜎 𝑟𝑑𝑊 + 𝐽𝑑𝑁(𝜌𝑡), 
 

Where 𝑊 is a standard Brownian motion, 𝑁(𝜌𝑡) is a 

Poission driving process with an intensity function 𝜌, and 𝐽 

is the jump size. 

Now, let 𝑃 = 𝑃(𝑟, 𝑡) be the current price of bond in time t 

with interest rate 𝑟 Considering the Ito lemma, the price 

change of this bond is as follow: 

𝑑𝑃 = 𝑑𝑔 + 𝑑𝑃𝐽  

If we apply the portfolio strategy of Black-Scholes and 

borrow an independent portfolio of two bonds with 

maturity date T1 and T2 then we reach the following Partial 

differential equation (PDE): 

𝜕𝑃

𝜕𝑡
+

1

2
𝜎2𝑟

𝜕2𝑃

𝜕𝑟2
+ 𝑘(𝜃 − 𝑟)

𝜕𝑃

𝜕𝑟

− 𝜆 (𝑃(𝑟 + 𝑧, 𝑡, 𝑇) − 𝑃(𝑟, 𝑡)𝑑 = 0
∞

−∞

 

Where 𝜆 is a market price of risk 𝑃 is the  present value. 

Whenever the only unknown variable in the problem is p, 

we call it Direct Finance Problem (DFP) and if 𝑃 as well as 𝜆 

are unknown variables, the problem is called Inverse 

Finance Problem (IFP).  

Solving the DFP by using RBF 

The obtained PDE in prior section with initial and boundary 

condition is called initial boundary value problem. This 

problem can be solved numerically and many researchers 

have worked on it. In this paper, with the assumption that 

knowing all parameters, the problem is solved by RBF 

method.  

Machin Learning 

 In this study, we try to reach a discrete dynamical system 
to predict future market price of risk value. In fact, using 
data, which are time series, a discrete dynamical system is 
trained and used to predict the next time step by previous 
data. To begin, we must pay attention to the data 
pattern, which is a time series and is arranged in the 
following order: 
Database  

Ω =  (𝒙1, 𝑡1), 𝑃
1), (𝒙2, 𝑡2), 𝑃

2), … , (𝒙𝑀 , 𝑡𝑀), 𝑃𝑀)  

Without losing the generality of problem, we consider the 
input value of this learning problem model as a stochastic 
process: 

𝑑𝒙 = 𝜇(𝑡, 𝒙)𝑑𝑡 + 𝜎(𝑡, 𝒙)𝑑𝑊 

Where  𝒙 = (𝑟, 𝑘, 𝜃, 𝜎, 𝜆; 𝑇 ), and and are drift and 

volatility respectively.  Without losing the whole 

problem, we limit the range of changes of as 

and discretize it to M points, and estimate 

the 𝑃𝑖  value for the discretized points using dataset the 𝑃𝑖  

value for the discretized points 


