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Acronymns and settings
c-L: Chebyshev Lobatto;
m-C: mock-Chebyshev;
Cm-CLS: constrained m-C least squares;
m-P: mock-Padua;
Xn = {xi}, xi = −1 + 2i/n, i = 0, . . . , n;
m = bπ

√
n /
√

2c;
XCL
m = {xCLi } the C-L nodes of order m+ 1;

X ′m = {x′i} the m-C nodes of order m+ 1:
|x′i − xCLi | = min

j=0,...,n
|xj − xCLi |, i = 0, . . . ,m;

Πr polynomials of degree ≤ r;
Π̂r ⊂ Πr polynomials interpolating f on X ′m;
Br = {uj(x)}j=0,...,r a basis of Πr;
Xnx × Yny = {(xi, yj)} a uniform rectangular
grid on [−1, 1]2 of (nx + 1)(ny + 1) nodes;
Πrx ⊗Πry the tensor product of the spaces Πrx ,
Πry of polynomials in x, y, respectively;
Π̂(rx,ry) ⊂ Πrx ⊗ Πry polynomials interpolating
f on X ′mx

× Y ′my
;

Padm the set of Padua nodes of degree m;
Pad′m = {(x′i, y′j)} i=0,...,m

j=1,...,bm/2c+1+δk

, δk = 0 if m

is even or m is odd but i is even, δk = 1 if m is
odd and i is odd, the set of m-P nodes of degree
m, obtained from the m-C subsetX ′m and Y ′m+1;
Πr(R2) bivariate polynomials of degree ≤ r;
Π̂r(R2) ⊂ Πr(R2) polynomials interpolating f
on Pad′m;
B̃r = {ui(x)uj(y)} i=0,...r

j=0,...,r−i
a basis of Πr(R2).

Constrained mock-Chebyshev least squares interpolation
Given an analytic function f(x) in [−1, 1], r ∈ N s.t. m < r ≤ n, the Cm-CLS problem is

find P̂Xn
∈ Π̂r such that ||f − P̂Xn

||22 = min
P∈Π̂r

||f − P ||22. (1)

Let be PX′m(t) =
∑m
i=0 `i(t)f(x′i) ∈ Πm the interpolation polynomial on the mock-Chebyshev nodes

and ωm(t) =
∏m
i=0(t− x′i). In [1] it is proven that problem (1) has a unique solution

P̂Xn(t) = PX′m(t) + Q̂X′′n−m
(t)ωm(t), where ||f̂ − Q̂X′′n−m

||22,ω2
m

= min
Q∈Πr−m−1

||f̂ −Q||22,ω2
m
,

with ||u||2,ω2
m

=

( n−m∑
k=1

ω2
m(x′′k)u2(x′′k)

) 1
2

and f̂(t) =
f(t)− PX′m(t)

ωm(t)
.

Alternatively, we can use the Lagrange multipliers method [2] which requires the choice of a ba-
sis Br. Let be V = [uj(xi)]i,j the interpolation matrix at the nodes of Xn relative to Br,
b = [f(x0), . . . , f(xn)]T and we assume both that the first m + 1 points of Xn are those ones of
X ′m and that B′m = {uj(x) : j = 0, . . . ,m} spans Πm. Let be C = [cTi ]i=1,...,m+1 the matrix formed
by the first m+ 1 rows of V and d = [d1, . . . , dm+1]T the vector of the first m+ 1 components of b.
Then

P̂Xn
(x) =

r∑
i=0

âiui(x), where Câ = d and ||V â− b||22 = min
a∈Rr+1

||V a− b||22

solves problem (1). The coefficients â and the Lagrange multipliers ẑ, satisfying the optimality
conditions for Lagrangian function of the problem, form the unique solution of the linear system[

2V TV CT

C 0

] [
â
ẑ

]
=

[
2V T b
d

]
(KKT matrix).

The unisolvence of the interpolation problem on Xn by polynomials of Πn assures the invertibility
of the KKT matrix, since C has linear independent rows and V has linear independent columns.

Tensor product vs total degree interpolation
Tensor product interpolation. Given an analytic function f(x, y) in [−1, 1]2, rx, ry ∈ N s.t. mx < rx ≤ nx, my < ry ≤ ny, the Cm-CLS tensor
product interpolation problem is

find P̂Xnx×Yny
∈ Π̂(rx,ry) s.t. ||f − P̂Xnx×Yny

||22 = min
P∈Π̂(rx,ry)

||f − P ||22. (2)

The method proposed in [1] to solve the univariate Cm-CLS problem is not applicable in this case. The Lagrange multipliers method instead can be used
in analogy with the univariate case with the settings and requirements there specified. We assume both that the nodes of Xnx

× Yny
and the elements

of Brx ⊗ Bry are reshaped into a sequence and that the first (mx + 1)(my + 1) nodes of Xnx
× Yny

are those ones of X ′mx
× Y ′my

and that the first
(mx + 1)(my + 1) elements of Brx ⊗Bry spans Πmx ⊗Πmy . We introduce the matrices V and C in analogy with the univariate case. The unisolvence of
tensor product interpolation problem on Xnx × Yny by polynomials of Πnx ⊗ Πny assures the invertibility of the KKT matrix in this case, since C has
linear independent rows and V has linear independent columns.
Total degree interpolation. The extension of the Cm-CLS problem in this case is based on the Padua points [3] and on the m-P points which mimic
their behavior [5]. Given an analytic function f(x, y) in [−1, 1]2, r ∈ N s.t. m < r ≤ n, the constrained m-P least-squares problem is

find P̂Xn×Yn
∈ Π̂r(R2) such that ||f − P̂Xn×Yn

||22 = min
P∈Π̂r(R2)

||f − P ||22. (3)

The problem (3) has a unique solution since B̃m interpolates on Pad′m [4] and B̃ can be completed to the basis Bn ⊗ Bn interpolating on Xn × Yn.
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Numerical results
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0 10 20 30 40 50 60 70 80 90 100

degree

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

m
e
a
n
 e

rr
o
r 

in
 l
o
g
a
ri
th

m
ic

 s
c
a
le

0 10 20 30 40 50 60 70 80 90 100

degree

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

m
e
a
n
 e

rr
o
r 

in
 l
o
g
a
ri
th

m
ic

 s
c
a
le

0 5 10 15 20 25 30

degree

10
0

10
10

10
20

10
30

10
40

10
50

c
o
n
d
it
io

n
 n

u
m

b
e
r 

in
 l
o
g
a
ri
th

m
ic

 s
c
a
le

Condition number of the KKT matrices

0 5 10 15 20 25 30

degree

10
-4

10
-3

10
-2

m
e
a
n
 e

rr
o
r 

in
 l
o
g
a
ri
th

m
ic

 s
c
a
le

0 5 10 15 20 25 30

degree

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

m
e
a
n
 e

rr
o
r 

in
 l
o
g
a
ri
th

m
ic

 s
c
a
le


