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Reconstruction of volatility surfaces: a computational study
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Abstract

• Usually, points of options’ volatility surfaces are implicitly ob-
tained by Black-Scholes’ formula or by stochastic models like
the Heston model. Then, given volatility’s points, reconstruc-
tion of the surface is needed.

• From the point of view of interpolation is interesting to work
on a particular data set as the one used. This set is character-
ized by not scattered or specifically distributed data, as usual,
rather they are arranged on lines.

• The computational study is based on radial basis function
methods. Initially, reconstruction has been made globally,
then the surface obtained has been tested by removing points
and evaluating RMS error.

• Local methods as RBF-partition of unity method have been
used with variable size of subdomains and shape parameters.
To improve the interpolant’s accuracy we added points ob-
tained by the least square method.

• One of the aims of the economic world is to forecast options’
volatility, so the study is continuing to test these methods to
extrapolate volatility surfaces.

1 RBF-Global Interpolant Problem

Let XN =
{
xi ∈ Ω ⊂ Rd, i = 1, .., N

}
, d ≥ 2 and FN = {fi ∈ R,

i = 1, .., N}. The interpolation problem consists in recovering a
continuous function F : Ω −→ R, which satisfies the interpola-
tion condition F (xi) = fi. F is described by radial basis functions
φε(|| · −xj||2), i.e.:

F (xi) =
N∑
j=1

cjφε(||xi − xj||2) = fi .

In matricial form system becomes:

Ac = f ,

where Aij = φε(||xi − xj||2), i, j = 1, .., N , c and f N -dimentional
vectors.

2 Partition of unity method

The basic idea of the PUM is to consider a partition of the open and
bounded domain Ω ⊆ R2 into d subdomains Ωj such that
Ω ⊆

⋃d
j=1Ωj with some mild overlap among the subdomains.

I) We choose a partition of unity, i.e. a family of com-
pactly supported, non-negative, continuous functions Wj

with supp(Wj) ⊆ Ωj such that
∑d

j=1Wj(x, y) = 1.

II) For each subdomain Ωj we consider Rj as local approximant
obtained with linear combination of radial basis functions.

Global approximant is gained as:

I(x, y) =
d∑

j=1

Rj(x, y)Wj(x, y), (x, y) ∈ Ω. (1)

Note that if the local approximants satisfy the interpolation condi-
tions at node (xi, yi), i.e. Rj(xi, yi) = fi, then also the global one
interpolates points, i.e. I(xi, yi) = fi, for i = 1, 2, . . . , n.

3 Improvement of interpolation’s accuracy
by least square method

One of the aims of the study is to understand how to improve
interpolant’s accuracy, especially for local interpolation obtained
by PUM method.

⇓

To achieve that result we have used least square method.

Let fα1,α2,··· ,αk
, function described by parameters α1, α2, · · · , αk that

better describe points’ set. The least square problem is finding these
parameters such that the sum S of square of distances is minimized:

S =

n∑
i=0

(ȳi − fα1,α2,··· ,αk
)2

The minimum problem can be written as:

∂S

∂αj
= 0 for j = 1, . . . , k.

Finally found fα1,α2,··· ,αk
, we use it to obtain new points that allow

us to improve interpolant’s accuracy.

4 Implied Volatility

The fundamentals of economic problem are:

• One way to price options is basing on Black-Scholes model de-
scribed by the following PDE and its boundaries conditions:

∂V

∂t
= rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV ,

where V is the price of the option, S the value of underlying,
r risk free rate and σ volatility, commonly assumed to be
constant.

• We can observe volatility, σ(t, S), varying with time t and
value of the strike price S. The target, removing that as-
sumption, is to forecast future volatility and its surface to
carry out financial reasons as hedging strategies for portfolios.

• Numerically derived value of volatility σ from Black-Scholes’
PDE is named implied volatility. The aim of the study is per-
form an extensive computational analysis, such as to iden-
tify the appropriate method to accurately reconstruct implied
volatility surface using radial basis functions.

5 Numerical Test

We test various methods to interpolate a set of n = 144 data get
from Bloomberg of maturity, strike price and implied volatility. The
following figure is obtained with global interpolant method based
on radial basis functions. Best surfaces are obtained using thin plate
spline adding a first grade polynomial term (conditionally definite
positive function) and with Multiquadrics RBF.

FIGURE 1. Plots of volatility surface obtained with TPS.

Multiquadric’s surface is very close to TPS’ one, most differences
emerge on the boundary of the domain.
Global interpolants are tested removing points and subsequently
compare the new surface with the oldest one. The differences be-
tween the two interpolants is reported in the following figures.

FIGURE 2. Error surface obtained removing 4 points (left) and error surface obtained
removing 5 points (right).

The associated root mean square errors, relative to the removed
points, are: rmserr = 0.0025 for the first interpolant and rmserr =
0.0484 for the second one. These errors can be considered accept-
able since most capitalized assets are traded at the second decimal
digit.

6 Partition of unity numerical tests

A local approach is taken using the partition of unity method. This
method is performed using a variable size of subdomains and shape
parameters to find a better fit. First results are shown on the follow-
ing figures.

FIGURE 3. Plots of volatility surface obtained with Multiquadric (left) and TPS (right).

Most of the problems emerge on the steepest zone of the boundary
also characterized by a low density of data.
To prevent a low level of accuracy as the one shown previously, we
add points to the low-density data area. These new points are ob-
tained with the least square method: approximation has been made
only on the time axis and has been chosen only four points every
row. Accuracy improvements are shown in the following figure.

FIGURE 4. Plots of volatility surface obtained with Multiquadric, green points are
obtained with least square method.

7 Work in progress

Following studies are focused on forecasting futures values of op-
tions’ volatility. To do so we try to extrapolate the obtained surfaces.
First attempt is shown in the following image.

FIGURE 5. Extrapolation obtained with Multiquadric.

We compare the surface obtained using Multiquadric with
Bloomberg’s surface (the green points in the figure), so the maxi-
mum distance between our extrapolation and Bloomberg’s data is
of the order of 0.8%.
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