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Abstract

We discuss a pointwise numerical di�erentiation

formula on multivariate scattered data, based

on the coe�cients of local polynomial interpo-

lation at Discrete Leja Points, written in Tay-

lor's formula monomial basis. Error bounds for

the approximation of partial derivatives of any

order compatible with the function regularity

are provided, as well as sensitivity estimates to

functional perturbations, in terms of the inverse

Vandermonde coe�cients that are active in the

di�erentiation process. Numerical tests are pre-

sented showing the accuracy of approximation.

Introduction

Let us denote by Πd (Rs) the space of s-variate polynomials with total degree not exceeding d, by
Bh (x) the Euclidean ball of radius h centered at x, by Dα = ∂α1

x1
. . . ∂αs

xs
the di�erentiation operator

with multi-index α = (α1, . . . , αs) of length |α| = α1 + · · · + αs, and by Cd,1 (Ω) the space of

Cd functions with Lipschitz-continuous derivatives of length d on a convex Ω, equipped with the

seminorm

sup

{
|Dαf (u)−Dαf (v)|

‖u− v‖2
: u,v ∈ Ω, u 6= v, |α| = d

}
.

Moreover, we consider the graded lexicographical ordering of muti-indices and we adopt the usual

notation with multi-indices where factorials and powers are interpreted as componentwise products,

e.g. α! = α1! . . . αs! and xα = xα1
1 . . . xαs

s .

Error bounds and sensitivity estimates

Theorem 1 Let Ω ⊂ Rs be a convex body, x ∈ Ω, f ∈ Cd,1 (Ω), and pd [y, X] ∈ Πd (Rs) the interpolating polynomial at a unisolvent subset X =
{x1, . . . ,xm} ⊂ Nh = Bh (x) ∩ Ω, where m =

(
s+d
s

)
= dim (Πd (Rs)) and y = [yi]i=1,...,m = [f (xi)]i=1,...,m. Moreover, let ỹ = [ỹi]i=1,...,m be a vector of

perturbed sample of f at X, where ‖y − ỹ‖∞ ≤ ε.
Then the following pointwise di�erentiation error estimate holds

|Dνf (x)−Dνpd [ỹ, X] (x)| ≤ λν,h (x)

(
sd

(d− 1)!
‖f‖Cd.1(Nh) h

d+1 + ε

)
, |ν| ≤ d,

λν,h (x) = ν!h−|ν| ‖ρν,h (x)‖1 ,

where ρν,h (x) denotes the row indexed by ν of the inverse Vandermonde matrix (Vd,h (X))
−1

, with Vd,h (X) =
[(

xi−x
h

)α]
, 1 ≤ i ≤ m, |α| ≤ d.

� It is worth observing that the approximate derivative of f with multi-

index ν can be computed conveniently as

Dνpd [y, X] (x) = ν!h−|ν|cν ≈ Dνf (x) ,

where cν is the interpolation coe�cient corresponding to
(
x−x
h

)ν
, i.e.

the component indexed by ν of the vector c that solves the linear

system Vd,h (X) c = y.

� It is also worth observing that λν,h (x) is the �stability constant� of

pointwise di�erentiation via local polynomial interpolation, namely

the value at x of the �stability function� λν,h (x).

Conclusion

� The key tools behind the good accuracy of

the method on the interior of the domain

Ω are:

1. The local scaling of the shifted mono-

mial basis, to reduce the conditioning

of the Vandermonde matrix.

2. The connection to Taylor's formula

via this basis.

3. The extraction of Discrete Leja

Points from the scattered sampling

set via basic numerical linear algebra.

� The worsening of the accuracy at the

boundary and at the vertex of Ω, can

be ascribed to the fact that the stabil-

ity functions λν,h (x) increase rapidly near

the boundary of the local interpolation do-

mains Bh(x) ∩ Ω.
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Numerical results

We provide some numerical tests on the approximation of function, gradient and second order deriva-

tive values. We �x s = 2, Ω = [0, 1]2 and we take x at the center and on a corner of Ω. We use

Halton points and we focus on the scattered points in the ball Br(x) centered at x for di�erent radii

r = 1
2 ,

3
8 ,

1
4 ,

1
8 , from which we extract an interpolation subset σ of m =

(
d+2

2

)
Discrete Leja Points at

a sequence of degrees d.
For simplicity, we set p := p[y, σ] and, to measure the error of approximation, we compute the

relative errors

fe = |f(x)−p(x)|
|f(x)| , ge =

‖∇f(x)−∇p(x)‖2
‖∇f(x)‖2

, sde =
‖(fxx(x),fxy(x),fyy(x))−(pxx(x),pxy(x),pyy(x))‖2

‖(fxx(x),fxy(x),fyy(x))‖2
,

by using the bivariate test function f1 (x, y) = 2 cos(10x) sin(10y) + sin(10xy).
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Relative errors fe, ge and sde for the function f1 by using 4000 Halton points with x = (0.5, 0.5).
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Relative errors fe, ge and sde for the function f1 by using 4000 Halton points with x = (1, 1).

Remark 0.1 Similar results can be obtained using uniform random points and di�erent positions of the point x in the

interior of Ω, while the accuracy of approximation gets worse taking x at the boundary and at the vertex of Ω. We stress

also that the method is not restricted to dimension 2 and the accuracy of derivative approximation for the 3D case is quite

similar to the 2D case.
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