Calcolo Numerico Tutoraggio, lezione 7

SI RACCOMANDA AGLI STUDENTI DI commentare adeguatamente SCRIPT E FUNCTION MATLAB.

1. si consideri la seguente tabella contenente i coefficienti correttivi per la radiazione solare su superficie orizzontale; Nord Italia, latitudine 44° N

	Orientamento				
Inclinazione	0°	15°	30°	45°	90°
0°	1.0000	1.0000	1.0000	1.0000	1.0000
10°	1.0700	1.0600	1.0600	1.0400	0.9900
15°	1.0900	1.0900	1.0700	1.0600	0.9800
20°	1.1100	1.1000	1.0900	1.0700	0.9600
30°	1.1300	1.1200	1.1000	1.0700	0.9300
40°	1.1200	1.1100	1.0900	1.0500	0.8900
50°	1.0900	1.0800	1.0500	1.0200	0.8300
60°	1.0300	0.9900	0.9600	0.9300	0.7700
70°	0.9500	0.9500	0.9300	0.8600	0.7100
90°	0.7400	0.7400	0.7300	0.7200	0.5700

Si osserva immediatamente che la colonna relativa all'inclinazione manca del dato corrispondente agli 80° , che può essere ottenuto calcolando per ogni k-sima colonna di orientamento ($k=1,\ldots,5$) l'approssimazione ai minimi quadrati di grado 3 delle coppie inclinazione-orientamento, immagazzinando la sua valutazione a 80° nella k-sima componente del vettore valore_inclinazione80gradi.

A tal proposito,

- si scarichi nella propria directory il file dati_radiazione.m (si veda la pagina web del corso);
- si definisca una function demoI che carichi questi dati mediante la function dati_radiazione.m;
- definisca grado=3;
- al variare di k tra 1 e 5, mediante un opportuno ciclo-for,
 - mediante un comando del tipo dati_ksimacolonna=dati(:,k); si selezioni la k-sima colonna di coefficienti
 correttivi;
 - noto il vettore colonna inclinazione degli angoli 0°,...,90°, e dati_ksimacolonna, mediante il comando polyfit si calcolino i coefficienti del polinomio approssimante le coppie

(inclinazione,dati_ksimacolonna)

nel senso dei minimi quadrati di grado 3, e siano coeffs i coefficienti di tale polinomio, diciamo $p_3^{(k)}$;

- mediante polyval e coeffs si valuti valore_inclinazione80gradi(k)= $p_3^{(k)}(80)$.
- salvi su un file dati_80gradi.txt le coppie di angoli 0°, 15°, 30°, 45°, 90° e il coefficiente correttivo ottenuto con un'inclinazione a 80°; in particolare si usino per la variabile di orientamento 2 cifre prima della virgola e nessuna dopo la virgola mentre per il coefficiente correttivo valore_inclinazione80gradi si usino una cifra prima della virgola e due dopo la virgola, in formato decimale.
- si apra il file dati_80gradi.txt e si veda se i dati salvati hanno senso se paragonati con quelli indicati nella tabella.
- 2. Si osserva immediatamente che la colonna relativa all'orientamento manca del dato corrispondente a 60° , che può essere ottenuto calcolando per ogni k-sima riga di inclinazione (k = 1, ..., 10) l'approssimazione ai minimi quadrati di grado 3 delle coppie inclinazione-orientamento, immagazzinando la sua valutazione a 60° nella k-sima componente del vettore valore_orientamento60gradi.

A tal proposito,

- si scarichi nella propria directory il file dati_radiazione.m;
- si definisca una function demoII che carichi questi dati mediante la function dati_radiazione.m (si veda la pagina web del corso);

- definisca grado=3;
- al variare di k tra 1 e 10, mediante un opportuno ciclo-for,
 - mediante un comando del tipo dati_ksimariga=dati(k,:); si selezioni la k-sima riga di coefficienti correttivi;
 - si scriva il vettore dati_ksimariga come vettore colonna (e non riga) mediante il comando di trasposizione di vettori;
 - noto il vettore colonna orientamento degli angoli 0°, 15°, ..., 90°, e dati_ksimariga, mediante il comando polyfit si calcolino i coefficienti del polinomio approssimante le coppie

$(\verb"orientamento", \verb"dati_ksimariga")$

nel senso dei minimi quadrati di grado 3, e siano coeffs i coefficienti di tale polinomio, diciamo $p_3^{(k)}$;

- mediante polyval e coeffs si calcoli valore_orientamento60gradi(k)= $p_3^{(k)}(60)$.
- salvi su un file dati_60gradi.txt le coppie di angoli 0°, 10°, ..., 70°, 90° e il coefficiente correttivo ottenuto con un orientamento a 60°; in particolare si usino per la variabile di *inclinazione* 2 cifre prima della virgola e nessuna dopo la virgola mentre per il coefficiente correttivo valore_orientamento60gradi si usino una cifra prima della virgola e due dopo la virgola, in formato decimale.
- si apra il file dati_60gradi.txt e si veda se i dati salvati hanno senso se paragonati con quelli indicati nella tabella.