Integrazione numerica¹

A. Sommariva²

Keywords: Integrazione numerica: stabilita' e convergenza uniforme (con dimostrazione). Formule interpolatorie. Grado di precisione. Grado di precisione delle formule interpolatorie. Regole del rettangolo: definizione ed errore. Regola midpoint: definizione ed errore. Formule di Newton-Cotes chiuse. Regola del trapezio ed errore. Regola di Cavalieri-Simpson ed errore. Formule composte e interpolanti a tratti. Formula composta midpoint, errore, grado di precisione, esempio. Formula composta trapezi, errore, grado di precisione, esempio. Formula composta Cavalieri-Simpson, errore, grado di precisione, esempio. Formule composte: esempi e rapporti di convergenza. Stabilita' formule di quadratura (con dimostrazione). Convergenza di alcune formule di quadratura (legame con la convergenza uniforme). Il caso delle formule di Newton-Cotes, di quelle basate sull'integrazione di interpolanti in nodi di Chebyshev e delle formule composte. Esempi.

Revisione: 11 maggio 2021

1. Integrazione numerica

Teorema 1.1. L'operazione funzionale di integrazione (nel continuo) è stabile, ovvero se $\tilde{f}, f \in C([a, b])$, con [a, b] intervallo limitato,

$$\left| \int_a^b f(x) dx - \int_a^b \tilde{f}(x) dx \right| \le (b-a) \max_{x \in [a,b]} |f(x) - \tilde{f}(x)|.$$

Ь

Dimostrazione 1.2. L'asserto segue dal fatto che, come noto,

1.
$$g(x) \le h(x), x \in [a, b], g, h \in C([a, b]) \Rightarrow \int_{a}^{b} g(x) dx \le \int_{a}^{b} h(x) dx$$

2. $|\int_{a}^{b} g(x) dx| \le \int_{a}^{b} |g(x)| dx$,
3. $\int_{a}^{b} g(x) dx - \int_{a}^{b} h(x) dx = \int_{a}^{b} (g(x) - h(x)) dx$

e quindi

$$\begin{aligned} \left| \int_{a}^{b} f(x) dx - \int_{a}^{b} \tilde{f}(x) dx \right| &\stackrel{(3)}{=} \quad \left| \int_{a}^{b} (f(x) - \tilde{f}(x)) dx \right| \stackrel{(2)}{\leq} \int_{a}^{b} \left| f(x) - \tilde{f}(x) \right| dx \\ \stackrel{(1)}{\leq} \quad \int_{a}^{b} \max_{x \in [a,b]} |f(x) - \tilde{f}(x)| dx \\ &= \quad \max_{x \in [a,b]} |f(x) - \tilde{f}(x)| \int_{a}^{b} 1 \cdot dx \\ &= \quad (b-a) \max_{x \in [a,b]} |f(x) - \tilde{f}(x)|. \end{aligned}$$

Commento 1.3. L'asserto dice che se \tilde{f} è vicina a f relativamente alla distanza dist $(f, \tilde{f}) := \|f - \tilde{f}\|_{\infty} = \max_{x \in [a,b]} |f(x)dx - \tilde{f}(x)|$, allora $\int_{a}^{b} \tilde{f}(x)dx$ non può essere arbitrariamente distante da $\int_{a}^{b} f(x)dx$, concetto che viene descritto come stabilità del funzionale di integrazione.

Corollario 1.4. Sia $\{f_n\}$ una successione di funzioni continue che converge uniformemente a $f \in C([a,b])$, con [a,b] intervallo limitato, ovvero

$$\lim_{n} ||f_{n} - f||_{\infty} := \lim_{n} \max_{x \in [a,b]} |f_{n}(x) - f(x)| = 0$$

allora

$$\lim_{n} \left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = 0,$$

ovvero $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

Dimostrazione 1.5 (Facoltativa). *L'asserto segue dal fatto che dal teorema precedente abbiamo*

$$0 \le \left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| \le (b-a) \max_{x \in [a,b]} |f_{n}(x) - f(x)|$$

e quindi visto che b - a è finito e $\lim_{n \to \infty} \max_{x \in [a,b]} |f_n(x) - f(x)| = 0$, per il teorema del confronto abbiamo pure che

$$\lim_{n} \left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = 0$$

Commento 1.6. L'asserto implica che se f_n è una successione che converge uniformemente alla integranda $f \in C([a, b])$ (ovvero $\lim_n \max_{x \in [a, b]} |f_n(x) - f(x)| = 0$), $-\infty < a < b < +\infty$, allora qualsiasi sia la tolleranza prestabilita ϵ esiste "n" tale che $|\int_a^b f(x) dx - \int_a^b f_n(x) dx| < \epsilon$. • Sfruttando la *stabilitá dell'operatore di integrazione*, l'idea di base delle formule di integrazione approssimata (formule di quadratura) è che se f_n é una opportuna funzione polinomiale tale che $f_n \approx f$, necessariamente

$$\int_{a}^{b} f_{n}(x) dx \approx \int_{a}^{b} f(x) dx.$$

• In particolare, in questa sezione si considerano i casi

(a) $f_n \equiv p_n$ polinomio di grado *n* che interpola *f* nei nodi $x_k, k = 0, ..., n$ oppure

(b) $f_n \equiv s_m$ interpolante polinomiale a tratti di grado *m* che interpola *f* nei nodi $x_k, k = 0, ..., n$.

Le formule di quadratura algebriche, a volte dette interpolatorie, sono ottenute integrando il polinomio $p_n \in \mathbb{P}_n$ interpolante le coppie $(x_i, f(x_i))_{i=0,...,n}$.

Se L_k il k-simo polinomio di Lagrange relativamente ai nodi $\{x_i\}_{i=0,...,n}$, ovvero

$$L_k(x) = \frac{(x-x_0)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)},$$

abbiamo da

1. $p_n(x) = \sum_{k=0}^n f(x_k) L_k(x),$ 2. $\int_a^b \sum_{k=0}^n g_k(x) dx = \sum_{k=0}^n \int_a^b g_k(x) dx, g_k \in C([a, b]), \text{ con } a, b \text{ finiti,}$ 3. posto $w_k := \int_a^b L_k(x) dx,$

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{n}(x)dx \stackrel{(1)}{=} \int_{a}^{b} \sum_{k=0}^{n} f(x_{k})L_{k}(x)dx$$
$$\stackrel{(2)}{=} \sum_{k=0}^{n} f(x_{k}) \int_{a}^{b} L_{k}(x)dx \stackrel{(3)}{=} \sum_{k=0}^{n} w_{k}f(x_{k}).$$
(1)

Le quantità w_k , k = 0, ..., n sono detti pesi, mentre i punti x_k , k = 0, ..., n sono detti nodi.

Risulterà utile la seguente definizione

Definizione 1.7. Una formula

$$\int_{a}^{b} f(x) dx \approx \sum_{i=0}^{M} w_{i} f(x_{i})$$

- ha grado di precisione almeno N se e solo se è esatta per tutti i polinomi f di grado inferiore o uguale a N;
- ha grado di precisione esattamente N se e solo se ha grado di precisione almeno N ed esiste un polinomio di grado N + 1 per cui non lo sia.

Di seguito indicheremo con \mathbb{P}_m i polinomi di grado minore o uguale a m. Vale il seguente teorema,

Teorema 1.8 (Caratterizzazione delle formule interpolatorie). Se una formula a "n+1" nodi è interpolatoria allora ha grado di precisione almeno "n".

Se una formula a "m" nodi, con "m $\leq n+1$ " ha grado di precisione almeno "n" allora è interpolatoria.

Di seguito vedremo alcune formule interpolatorie di grado n a n+1 nodi $\{x_k\}_{k=0,...,n}$, che sono quindi caratterizzate da avere pesi

$$w_i = \int_a^b L_i(x) dx, \ i = 0, \dots, n$$

dove L_i è l'*i*-simo polinomio di Lagrange (relativamente a $\{x_k\}_{k=0,...,n}$). Se

- $f \in C([a, b]), -\infty < a < b < +\infty,$
- $x_0 \in [a, b]$,

ricaviamo $L_0(x) = 1$ (si osservi che l'unico polinomio costante che vale 1 in x_0 è proprio L_0) ed essendo

$$w_0 = \int_a^b L_0(x) dx = b - a,$$
 (2)

deduciamo la regola detta del rettangolo (cf. [5])

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{0} w_{k}f(x_{k}) = w_{0}f(x_{0}) = (b-a)f(x_{0}).$$
(3)

Dal punto di vista geometrico, visto il grafico dell'interpolante p_0 in un solo punto, si ottiene che l'integrale di p_0 è pari a calcolare l'area di un rettangolo con lati di lunghezza f(a) e b - a, da cui riotteniamo il risultato in (3).

Per costruzione, se

- *f* è un polinomio di grado 0,
- $p_0 \in \mathbb{P}_0$ è il polinomio di grado 0, ovvero costante, che interpola il dato (x_0, y_0) ,

per l'unicità del polinomio interpolatore abbiamo $f = p_0$ e quindi

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} p_{0}(x)dx = (b-a)f(x_{0}).$$

Di conseguenza il grado di precisione è almeno 0.

• Se in particolare si sceglie quale $x_0 = (a + b)/2$, otteniamo la regola del punto medio, che denoteremo con S_0 .

Figura 1: Regola del rettangolo con nodo $x_0 = (a + b)/2$, $a = 0, b = 2\pi$, per il calcolo di $\int_0^{2\pi} (3 + \sin(2x) + \cos(x) + x) dx$ (la regola calcola il volume dell'area in celeste).

• In questo caso, se $f \in C^{(2)}(a, b)$ l'errore risulta

$$E_0(f) := I(f) - S_0(f) = \frac{(b-a)^3}{24} f^{(2)}(\xi), \ \xi \in (a,b).$$

- Visto che un polinomio q₁ ∈ P₁ è tale che q₁⁽²⁾ ≡ 0, deduciamo che E₀(q₁) = I(q₁) S₀(q₁) = 0, cioé I(q₁) = S₀(q₁) ovvero che il grado di precisione è almeno 1.
- Per il polinomio $x^2 \in \mathbb{P}_2$, l'errore risulta uguale a

$$\frac{(b-a)^3}{24} f^{(2)}(\xi) \cdot 2 = \frac{(b-a)^3}{12} \neq 0$$

e quindi il grado di precisione della formula del punto medio è esattamente 1.

Definizione 1.9 (Formule di Newton-Cotes chiuse, (Newton 1676, Cotes 1722)). *Sia* [a,b] *un intervallo compatto di* \mathbb{R} *. Una formula*

$$S_n(f) = \sum_{i=0}^n w_i f(x_i) \approx \int_a^b f(x) dx$$

si dice di tipo Newton-Cotes chiusa se

• i nodi sono equispaziati, e comprendono gli estremi, cioè

$$x_i = a + \frac{i(b-a)}{n}, \ i = 0, \dots, n,$$

• i pesi sono

$$w_i = \int_a^b L_i(x) dx, \ i = 0, \dots, n, \ L_i(x) = \prod_{j=0, \ j \neq i}^n \frac{(x - x_i)}{x_j - x_i}.$$

Nota 1.10 (Grado di precisione Formule di Newton-Cotes chiuse). Tale formula è interpolatoria a n+1 punti (attenzione alla sommatoria) e ha grado di precisione almeno n.

Nota 1.11 (Facoltativa). • *Gli estremi a, b, sono nodi quadratura.*

- Esistono formule dette di Newton-Cotes aperte i cui nodi sono equidistanti, ma non comprendono gli estremi. Alcuni esempi sono, posto $x_i = a + ih$, h = (b-a)/n (cf.[3])
 - 1. regola del rettangolo,
 - 2. regola a due punti: $(3h/2) \cdot (f_0 + f_1)$, con errore $(3h^3/4)f^{(2)}\xi$, con $\xi \in (a, b)$,
 - 3. regola di Masina: $(4h/3) \cdot (2f_0 f_1 + 2f_2)$, con errore $(28h^5/90)f^{(4)}\xi$, con $\xi \in (a, b)$,
 - 4. regola a quattro punti: $(5h/24) \cdot (11f_0 + f_1 + f_2 + 11f_3)$, con errore $(95h^5/144)f^{(4)}\xi$, con $\xi \in (a, b)$.

Nota 1.12. *Queste formule furono introdotte da Newton nel 1676 e perfezionate da Cotes nel 1722, che le calcolò fino a quelle con 11 nodi.*

Di seguito introduciamo le formule di tipo Newton-Cotes chiuse, per n = 0, 1, 2. Se $f \in C([a, b])$, a, b finiti e $x_0 = a$ e $x_1 = b$, da $w_k = \int_a^b L_k(x) dx$, k = 0, 1 e

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} = \frac{b - x}{b - a}, \ L_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x - a}{b - a}$$

deduciamo

$$\begin{aligned} \mathbf{w}_0 &:= \int_a^b L_0(x) dx &= \int_a^b \frac{b-x}{b-a} dx = \frac{1}{b-a} \int_a^b (b-x) dx \\ &= \frac{1}{b-a} \cdot \frac{-1}{2} \left((b-b)^2 - (b-a)^2 \right) = \frac{b-a}{2} \end{aligned}$$

$$\begin{aligned} \mathbf{w}_1 &:= \int_a^b L_1(x) dx &= \int_a^b \frac{x-a}{b-a} dx = \frac{1}{b-a} \int_a^b (x-a) dx \\ &= \frac{1}{b-a} \cdot \frac{1}{2} \left((b-a)^2 - (a-a)^2 \right) = \frac{b-a}{2} \end{aligned}$$

deduciamo la regola detta del trapezio (cf. [6])

$$\int_{a}^{b} f(x)dx \approx S_{1}(f) := \frac{b-a}{2} \cdot (f(a) + f(b)).$$
(4)

Visto che corrisponde a unire i dati (x_0, y_0) , (x_1, y_1) mediante un segmento, in effetti se y_0 , y_1 hanno lo stesso segno, ci si riconduce a calcolare l'area di un trapezio, la cui base ha lunghezza b-a e le altezze sono f(a) e f(b) da cui riotteniamo il risultato in (4).

Per costruzione, se

Figura 2: Regola del trapezio per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la regola calcola il volume dell'area in celeste).

- *f* è un polinomio di grado al più 1,
- p_1 è il polinomio che interpola i dati (x_0, y_0) , (x_1, y_1) ,

per l'unicità del polinomio interpolatore abbiamo $f = p_1$ e quindi

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} p_{1}(x)dx = \frac{b-a}{2}(f(a)+f(b)).$$

e di conseguenza il grado di precisione è almeno 1.

• Si dimostra che se $f \in C^2([a, b])$ allora l'errore compiuto è (cf. [1, p.252-253])

$$E_1(f) := I(f) - S_1(f) = \frac{-(b-a)^3}{12} f^{(2)}(\xi), \ \xi \in (a,b).$$

- Visto che un polinomio p_1 di grado minore o uguale a 1 ha derivata seconda nulla, deduciamo che $E_1(p_1) = I(p_1) S_1(p_1) = 0$, ovvero $I(p_1) = S_1(p_1)$, quindi il grado di precisione è almeno 1.
- Per $p_2(x) = x^2 \in \mathbb{P}_2$, risulta

$$E_1(p_2) = I(p_2) - S_1(p_2) = -(b-a)^3/6 \neq 0 \Rightarrow I(p_2) \neq S_1(p_2)$$

per cui il grado di precisione è esattamente 1.

Qualora i nodi di quadratura siano

$$x_0 = a, \ x_1 = (b+a)/2, \ x_2 = b$$

Figura 3: Regola di Cavalieri-Simpson per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la regola calcola il volume dell'area in celeste).

integrando il polinomio $p_2(x) = \sum_{k=0}^2 f(x_k) L_k(x) \in \mathbb{P}_2$ che interpola i dati $(x_k, f(x_k))_{k=0,1,2}$, con la stessa tecnica, ma con calcoli dei pesi un po' più tediosi, otteniamo la formula detta di Cavalieri-Simpson (cf. [7]), $\int_a^b f(x) dx \approx S_2(f)$ con

$$S_2(f) := \frac{b-a}{6} \cdot f(a) + \frac{2(b-a)}{3} \cdot f\left(\frac{a+b}{2}\right) + \frac{b-a}{6} \cdot f(b).$$

ovvero

•
$$w_0 = w_2 = \frac{b-a}{6}$$
,

•
$$w_1 = \frac{2(b-a)}{3} = \frac{4(b-a)}{6}$$
.

Talvolta viene scritta la formulazione compatta

$$S_2(f) := \frac{b-a}{6} \left(f(a) + 4 \cdot f((a+b)/2) + \cdot f(b) \right).$$

Visto che la formula è ottenuta integrando esattamente ogni polinomio di grado 2, abbiamo che il grado di precisione è almeno 2. In realtà si mostra sorprendentemente che è esattamente 3.

• Se $f \in C^4([a, b])$ allora l'errore compiuto è (cf. [1, p.256-257])

$$E_2(f) := I(f) - S_2(f) = \frac{-h^5}{90} f^{(4)}(\xi),$$

dove $h = \frac{b-a}{2}$ e $\xi \in (a, b)$.

visto che un polinomio p₃ ∈ P₃ di grado minore o uguale a 3 ha derivata quarta nulla, deduciamo che E₂(p₃) = I(p₃) - S₂(p₃) = 0, ovvero I(p₃) = S₂(p₃) e quindi che il grado di precisione è almeno 3.

• per $p_4(x) = x^4 \in \mathbb{P}_4$, si ha $E_2(p_4) = I(p_4) - S_2(p_4) = \frac{-h^5}{90} 24 \neq 0$ e quindi $I(p_4) \neq S_2(p_4)$ per cui il grado di precisione è esattamente 3.

Ció equivale, dopo aver approssimato f con il polinomio interpolatore $p_2 \in \mathbb{P}_2$ relativo alle coppie $\{(x_k, f(x_k))\}_{k=0,1,2}$, a valutare $S_2(f) = \int_a^b p_2(x) dx \approx \int_a^b f(x) dx = I(f)$.

Nota 1.13 (Nota storica). Le formule di Cavalieri-Simpson furono sviluppate da Cavalieri nel 1635, erano note tanto a Gregory che a Cotes, e riscoperte da Simpson nel 1743 [2, p.271].

Facoltativo 1.14. In generale uno può applicare la tecnica vista in precedenza per ottenere formule di quadratura di tipo Newton-Cotes con grado di precisione g.d.p maggiore.

Posto $f_k = f(x_k)$, $e x_k = a + k \cdot (b - a)/n$, con k = 0, ..., n, (cf. [8])

- Regola di Simpson 3/8, n = 3: $\frac{3h}{8}(f_0 + 3f_1 + 3f_2 + f_4)$, con g.d.p= 3,
- Regola di Milne-Boole, n = 4: $\frac{2h}{45}(7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$, con g.d.p= 5,
- Regola a sei punti, n = 5: $\frac{5h}{288}(19f_0 + 75f_1 + 50f_2 + 50f_3 + 75f_4 + 19f_5)$, g.d.p= 5,
- Regola di Weddle-Hardy, n = 6: $\frac{h}{140}(41f_0 + 216f_1 + 27f_2 + 272f_3 + 27f_4 + 216f_5 + 41f_6)$, con g.d.p= 7,
- Regola a otto punti n = 7: $\frac{7h}{17280}(751f_0 + 3577f_1 + 1323f_2 + 2989f_3 + 2989f_4 + 1323f_5 + 3577f_6 + 751f_7)$, con g.d.p= 7.
- Regola a nove punti, n = 8: $\frac{4h}{14175}(989f_0 + 5888f_1 928f_2 + 10496f_3 4540f_4 + 10496f_5 928f_6 + 5888f_7 + 989f_8)$, con g.d.p= 9,
- Regola a dieci punti, n = 9: $\frac{9h}{89600}(2857(f_0 + f_9) + 15741(f_1 + f_8) + 1080(f_2 + f_7) + 19344(f_3 + f_6) + 5778(f_4 + f_5))$, con g.d.p= 9,
- Regola a undici punti, n = 10: $\frac{5h}{299376}(16067(f_0 + f_{10}) + 106300(f_1 + f_9) 48525(f_2 + f_8) + 272400(f_3 + f_7) 260550(f_4 + f_6) + 427368f_5), con g.d.p = 11.$

Si osserva che fino n = 8 hanno tutti i pesi positivi mentre per n = 9, 11 ciò non succede. Ognuna di queste regole, con ragionamenti analoghi a quelli effettuati per quelle del trapezio e di Cavalieri-Simpson, ha grado di precisione almeno a n (si osservi che i punti sono n + 1).

Osserviamo che se

$$f(x) = \frac{1}{1+x^2}, \quad x \in [-5,5]$$

è la funzione di Runge e $p_n \in \mathbb{P}_n$ il polinomio interpolante le coppie $(x_j, f(x_j))$ con $\{x_j\}_{j=0,\dots,n}$, si ha che

$$\max_{x \in [-5,5]} |f(x) - p_n(x)| \stackrel{n}{\not\to} 0$$

e quindi ci si aspetta che $I(f) = \int_a^b f(x) dx$ sia molto diverso $I(p_n) = \int_a^b p_n(x) dx$, specialmente per *n* grande, viste le forti differenze agli in prossimitá degli estremi -5, 5, tra *f* e p_n .

D'altro canto abbiamo visto che ció non è un problema per interpolanti polinomiali a tratti di grado M, diciamo s_M e quindi si intuisce che sia bene approssimare I(f)con $I(s_M)$. Esploriamo questo ambito nell'argomento delle formule composte.

Le formule composte sono ottenute integrando un interpolante polinomiale a tratti di grado locale fissato s che sono localmente algebriche, cioè ottenute integrando un singolo polinomio interpolatore di grado s, in $[x_{ks}, x_{(k+1)s}]$, con k = 0, ..., (n/s) - 1, con n multiplo di s.

Definizione 1.15 (Formula composta). Sia

- 1. [a, b] un intervallo chiuso e limitato,
- 2. $t_j = a + jh \operatorname{con} h = (b a)/N, j = 0, \dots, N,$
- 3. $S(f, \alpha, \beta)$) una regola di quadratura nel generico intervallo limitato $[\alpha, \beta]$.

La formula di quadratura

$$S^{(c)}(f, a, b, N) = \sum_{j=0}^{N-1} S(f, t_j, t_{j+1})$$
(5)

è detta formula composta di S.

Nota 1.16. In questa trattazione i punti x_j , j = 0, ..., N, sono equispaziati, ma con qualche fatica si può effettuare nel caso generale di punti arbitrari.

Per introdurre la formula composta del punto medio, supponiamo di aver suddiviso [a,b] in N subintervalli equispaziati $[t_k, t_{k+1}]$, $K = 0, \ldots, N - 1$ con $t_j = a + jh$, $j = 0, \ldots, N$, h = (b - a)/N.

Il punto medio x_k dell'intervallo $[t_k, t_{k+1}]$ risulta

$$x_k = \frac{t_k + t_{k+1}}{2} = \frac{a + kh + a + (k+1)h}{2} = a + \frac{(2k+1)h}{2}$$

e visto che il peso w_k della formula $S(f, t_k, t_{k+1})$ risulta $w_k = t_{k+1} - t_k = a + (k + 1)h - (a + kh) = h = (b - a)/N$ otteniamo

$$S_0^{(c)}(f, a, b, N) := \frac{b-a}{N} \sum_{k=0}^{N-1} f(x_k).$$

La formula composta del punto medio è cosí definita da

$$S_0^{(c)}(f, a, b, N) := \frac{b-a}{N} \sum_{k=0}^{N-1} f(x_k),$$
(6)

dove

$$x_k = a + \frac{2k+1}{2} \cdot \frac{b-a}{N},$$

Figura 4: Formula del punto medio composta per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la formula composta calcola il volume dell'area in celeste).

 $\operatorname{con} k = 0, \dots, N - 1.$

Si vede immediatamente che x_k é il punto medi dell'intervallo $[t_k, t_{k+1}]$, per $k = 0, \ldots, N-1$, dove $t_k = a + k \frac{b-a}{N}, k = 0, \ldots, N$.

• Si mostra che l'errore compiuto è per un certo $\xi \in (a, b)$

$$E_0^{(c)}(f) := I(f) - S_0^{(c)}(f, a, b, N) = \frac{(b-a)}{24} h^2 f^{(2)}(\xi)$$

dove $h = \frac{b-a}{N}, \xi \in (a, b).$

 II grado di precisione è 1, come la regola del punto medio, ma se N > 1 allora il passo h è minore. In effetti, relativamente alla regola del punto medio avevamo

$$E_0(f) := I(f) - S_0(f) = \frac{(b-a)^3}{24} f^{(2)}(\xi), \ \xi \in (a,b).$$

Per introdurre la formula composta dei trapezi, supponiamo di aver suddiviso [a, b]in N = 4 subintervalli equispaziati $[t_k, t_{k+1}], K = 0, ..., N - 1 = 3 \operatorname{con} t_j = a + jh, j = 0, ..., N = 4, h = (b - a)/N = (b - a)/4.$

Indicata con $S_1(f, \alpha, \beta)$ l'applicazione della regola del trapezio relativamente a f e all'intervallo $[\alpha, \beta]$,

- $S_1(f, t_0, t_1) = \frac{h}{2}(f(t_0) + f(t_1)),$
- $S_1(f, t_1, t_2) = \frac{h}{2}(f(t_1) + f(t_2)),$
- $S_1(f, t_2, t_3) = \frac{h}{2}(f(t_2) + f(t_3)),$
- $S_1(f, t_3, t_4) = \frac{h}{2}(f(t_3) + f(t_4)),$

ricaviamo che essendo N = 4

$$S_{1}^{(c)}(f, a, b, 4) = \frac{h}{2}(f(t_{0}) + f(t_{1})) + \frac{h}{2}(f(t_{1}) + f(t_{2})) + \frac{h}{2}(f(t_{2}) + f(t_{3})) + \frac{h}{2}(f(t_{3}) + f(t_{4}))$$

$$= \frac{h}{2}(f(t_{0}) + 2f(t_{1}) + 2f(t_{2}) + 2f(t_{3}) + f(t_{4}))$$

$$= \frac{b-a}{N} \left(\frac{1}{2}f(t_{0}) + f(t_{1}) + f(t_{2}) + f(t_{3}) + \frac{1}{2}f(t_{4})\right)$$

Posti $x_k = a + kh$, k = 0, ..., N, h = (b - a)/N, la formula composta dei trapezi è definita da

$$S_1^{(c)}(f,a,b,N) := \frac{b-a}{N} \left[\frac{f(x_0)}{2} + f(x_1) + \ldots + f(x_{N-1}) + \frac{f(x_N)}{2} \right],$$

• Si mostra che l'errore compiuto è per un certo $\xi \in (a, b)$

$$E_1^{(c)}(f) := I(f) - S_1^{(c)}(f, a, b, N) = \frac{-(b-a)}{12} h^2 f^{(2)}(\xi), \ h = \frac{(b-a)}{N}.$$

• II grado di precisione è 1, come la regola del trapezio, ma se N > 1 allora il passo h è minore.

Nota 1.17. In virtù della formula di Eulero-Mac Laurin, si mostra che la formula composta dei trapezi è particolarmente indicata per integrare funzioni periodiche con derivati che sono tali, ed è utilizzata nella ben nota FFT.

Per introdurre la formula composta di Cavalieri-Simpson, supponiamo di aver suddiviso [a, b] in N = 4 subintervalli equispaziati $[t_k, t_{k+1}], K = 0, ..., N - 1 = 3$ con $t_j = a + jh, j = 0, ..., N = 4, h = (b - a)/N.$

Indicata con $S_2(f, t_k, t_{k+1})$ l'applicazione della regola di Cavalieri-Simpson relativamente a f e all'intervallo $[t_k, t_{k+1}]$, indicato con $c_k = \frac{t_k + t_{k+1}}{2} = a + \frac{2k+1}{2} \cdot \frac{b-a}{N}$ il punto medio dell'intervallo $[t_k, t_{k+1}]$

- $S_2(f, t_0, t_1) = \frac{h}{6}(f(t_0) + 4 \cdot f(c_0) + f(t_1)),$
- $S_2(f,t_1,t_2) = \frac{h}{6}(f(t_1) + 4 \cdot f(c_1) + f(t_2)),$
- $S_2(f, t_2, t_3) = \frac{h}{6}(f(t_2) + 4 \cdot f(c_2) + f(t_3)),$
- $S_2(f, t_3, t_4) = \frac{h}{6}(f(t_3) + 4 \cdot f(c_3) + f(t_4)),$

Figura 5: Formula dei trapezi composta per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la formula composta calcola il volume dell'area in celeste). In particolare si vede il grafico delll'interpolante a tratti, avente quali punti di discontinuità $2\pi/3$, $4\pi/3$.

ricaviamo che essendo N = 4

$$\begin{split} S_1^{(c)}(f,a,b,4) &= \frac{h}{6}(f(t_0) + 4 \cdot f(c_0) + f(t_1)) + \frac{h}{6}(f(t_1) + 4 \cdot f(c_1) + f(t_2)) \\ &+ \frac{h}{6}(f(t_2) + 4 \cdot f(c_2) + f(t_3)) + \frac{h}{6}(f(t_3) + 4 \cdot f(c_3) + f(t_4)) \\ &= \frac{h}{6}(f(t_0) + 4 \cdot f(c_0) + 2f(t_1) + 4 \cdot f(c_1) + 2f(t_2) + 4 \cdot f(c_3) \\ &+ 2f(t_3) + 4 \cdot f(c_4) + f(t_4)) \\ &= \frac{h}{6}(f(t_0) + 2f(t_1) + 2f(t_2) + 2f(t_3) + f(t_4) + 4f(c_0) + 4f(c_1) + 4f(c_2) + 4f(c_3)). \end{split}$$

Posti $x_k = a + kh/2$, k = 0, ..., 2N, h = (b - a)/N, la formula composta di Cavalieri-Simpson è definita da

$$S_2^{(c)}(f,a,b,N) = \frac{h}{6} \left[f(x_0) + 2\sum_{r=1}^{N-1} f(x_{2r}) + 4\sum_{s=0}^{N-1} f(x_{2s+1}) + f(x_{2N}) \right]$$
(7)

• Si mostra che l'errore compiuto è per un certo $\xi \in (a, b)$

$$E_2^{(c)}(f) := I(f) - S_2^{(c)}(f, a, b, N) = \frac{-(b-a)}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\xi)$$

• II grado di precisione è quindi 3, come la regola di Cavalieri-Simpson, ma se N > 1 allora il passo h è minore.

Figura 6: Formula di Cavalieri-Simpson composta per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la formula composta calcola il volume dell'area in celeste).

In questa sezione forniamo alcuni esempi in cui applichiamo le formule composte per integrare alcune funzioni $f \in C([a, b])$.

Esempio. Approssimare l'integrale definito

$$I = \int_0^{\pi} \exp(x) \cos(x) dx = -(\exp(\pi) + 1)/2.$$

mediante le formule composte note, $N = 1, 2, 4, \ldots, 512$.

Λ	T	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	$\#_N^{\mathbf{R}}$	$\#_N^{T}$	$\#_N^{\mathbf{CS}}$
1		1.2e + 01	2.3e + 01	4.8e - 01	1	2	3
2		2.8e + 00	5.3e + 00	8.5e - 02	2	3	5
4		6.4e - 01	1.3e + 00	6.1e - 03	4	5	9
8		1.6e - 01	3.1e - 01	3.9e - 04	8	9	17
10	6	3.9e - 02	7.8e - 02	2.5e - 05	16	17	33
32	2	9.7e - 03	1.9e - 02	1.6e - 06	32	33	65
64	4	2.4e - 03	4.8e - 03	9.7e - 08	64	65	129
12	8	6.1e - 04	1.2e - 03	6.1e - 09	128	129	257
25	6	1.5e - 04	3.0e - 04	3.8e - 10	256	257	513
51	2	3.8e - 05	7.6e - 05	2.4e - 11	512	513	1025

Tabella 1: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_0^{\pi} f(x) dx$ con $f(x) = \exp(x) \cos(x) dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f), E_1^{(c)}(f), E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^{\mathsf{R}}, \#_N^{\mathsf{T}}, \#_N^{\mathsf{CS}}$.

Nella seconda tabella, mostriamo il rapporto tra 2 errori successivi per ogni formula ovvero se $(E_k^{(c)}(f))_N$, k = 0, 1, 2, è l'errore compiuto dalla formula S_k , relativamente

al calcolo di $\int_a^b f(x) dx,$ utilizzando N suddivisioni, mostriamo

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}}$$

per k = 0, 1, 2 (ossia per le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson).

N	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_2^{(c)}(f))_N$
1	4.33	4.27	5.59
2	4.34	4.20	13.92
4	4.10	4.06	15.54
8	4.03	4.02	15.89
16	4.01	4.00	15.97
32	4.00	4.00	15.99
64	4.00	4.00	16.00
128	4.00	4.00	16.00
256	4.00	4.00	16.00

Tabella 2: Decadimento degli errori delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_0^{\pi} f(x) dx \operatorname{con} f(x) = \exp(x) \cos(x) dx$, in cui si descrivono i rapporti tra 2 errori successivi per ogni formula.

Osserviamo che i valori relativi alle formule composte

- del punto medio e dei trapezi tende a 4,
- di Cavalieri-Simpson tende a 16.

Qualitativamente, e l'errore è, per qualche costante C indipendente da N,

$$(E_k^{(c)}(f))_N \approx \frac{C}{N^p} = C^* h^p$$

allora

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}} \approx \frac{\frac{C}{N^p}}{\frac{C}{(2N)^p}} = \frac{C}{N^p} \frac{2^p N^p}{C} = 2^p.$$

• Visto che per le formule composte del punto medio e dei trapezi $(r_k^{(c)}(f))_N \rightarrow 4 = 2^2$, abbiamo che p = 2 e quindi $(E_k^{(c)}(f))_N \approx C^* h^2$.

In effetti l'errore delle formule composte del punto medio è

$$E_0^{(c)}(f) := I(f) - S_0^{(c)}(f, a, b, N) = \frac{(b-a)}{24} h^2 f^{(2)}(\xi_N^{(0)}), \ h = \frac{(b-a)}{N}$$

mentre quelle composte dei trapezi è

$$E_1^{(c)}(f) := I(f) - S_1^{(c)}(f, a, b, N) = \frac{-(b-a)}{12} h^2 f^{(2)}(\xi_N^{(1)}), \ h = \frac{(b-a)}{N}.$$

• Visto che per le formule composte di Cavalieri-Simpson $(r_2^{(c)}(f))_N \to 16 = 2^4$, abbiamo che p = 4 e quindi $(E_2^{(c)}(f))_N \approx C^*h^4$.

In effetti l'errore delle formule composte di Cavalieri-Simpson è

$$E_2^{(c)}(f) := I(f) - S_2^{(c)}(f, a, b, N) = \frac{-(b-a)}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\xi_N^{(2)}) \approx C^* h^4.$$

Esempio. Approssimare l'integrale definito

$$I = \int_0^1 x^3 \sqrt{x} dx = 2/9.$$

mediante le formule composte note, $N = 1, 2, 4, \ldots, 1024$.

N	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	$\#_N^{\mathbf{R}}$	$\#_N^{\mathbf{T}}$	$\#_N^{\mathbf{CS}}$
1	1.3e - 01	2.8e - 01	3.4e - 03	1	2	3
2	3.6e - 02	7.2e - 02	2.3e - 04	2	3	5
4	9.1e - 03	1.8e - 02	1.5e - 05	4	5	9
8	2.3e - 03	4.6e - 03	1.0e - 06	8	9	17
16	5.7e - 04	1.1e - 03	6.5e - 08	16	17	33
32	1.4e - 04	2.8e - 04	4.1e - 09	32	33	65
64	3.6e - 05	7.1e - 05	2.6e - 10	64	65	129
128	8.9e - 06	1.8e - 05	1.7e - 11	128	129	257
256	2.2e - 06	4.5e - 06	1.0e - 12	256	257	513
512	5.6e - 07	1.1e - 06	6.6e - 14	512	513	1025
1024	1.4e - 07	2.8e - 07	4.1e - 15	1024	1025	2049

Tabella 3: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_0^1 f(x) dx$ con $f(x) = x^3 \sqrt{x} dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f), E_1^{(c)}(f), E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^{\mathbf{R}}, \#_N^{\mathbf{T}}, \#_N^{\mathbf{CS}}$.

Nella seconda tabella, mostriamo il rapporto tra 2 errori successivi per ogni formula ovvero se $(E_k^{(c)}(f))_N$, k = 0, 1, 2, è l'errore compiuto dalla formula S_k , relativamente al calcolo di $\int_a^b f(x) dx$, utilizzando N suddivisioni, valutiamo

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}}$$

per k = 0, 1, 2 (ossia per le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson).

Dalle tabelle vedremo che i valori relativi

- alle formule composte del punto medio e dei trapezi tendono a 4,
- alla formula composta di Cavalieri-Simpson tendono a 16,

N	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_2^{(c)}(f))_N$
1	3.76	3.86	14.56
2	3.93	3.96	15.00
4	3.98	3.99	15.31
8	4.00	4.00	15.53
16	4.00	4.00	15.67
32	4.00	4.00	15.77
64	4.00	4.00	15.84
128	4.00	4.00	15.89
256	4.00	4.00	15.92
512	4.00	4.00	16.06

Tabella 4: Decadimento degli errori delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_0^1 f(x) dx \cos f(x) = x^3 \sqrt{x} dx$, in cui si descrivono i rapporti tra 2 errori successivi per ogni formula.

e quindi con errori rispettivamente del tipo C^*h^2 e C^*h^4 .

Esempio. Approssimare l'integrale definito

$$I = \int_0^1 \sqrt{x} dx = 2/3.$$

mediante le formule composte note, $N = 1, 2, 4, \ldots, 2048$.

A differenza del caso precedente, la convergenza delle tre famiglie di formule è molto lenta, ed è principalmente dovuto al fatto che la funzione pur essendo continua in [a, b], non appartiene nemmeno a $C^1[0, 1]$, visto che non è derivabile in 0.

Ciò nonostante risultano convergenti.

Nella seconda tabella, mostriamo il rapporto tra 2 errori successivi per ogni formula ovvero se $(E_k^{(c)}(f))_N$, k = 0, 1, 2, è l'errore compiuto dalla formula S_k , relativamente al calcolo di $\int_a^b f(x) dx$, utilizzando N suddivisioni, mostriamo

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}}$$

per k = 0, 1, 2 (ossia per le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson).

In particolare si vede che i valori relativi alle tre formule composte del punto medio e dei trapezi tendono a $2.83 \approx 2^{1.5}$ e quindi la convergenza è del tipo $C^*h^{1.5}$ (cf. [1, p262 e p.291]).

Esempio. Approssimare l'integrale definito

$$I = \int_0^{100} \exp(-x^2) \, dx = \frac{\sqrt{\pi}}{2} \cdot \operatorname{erf}(100)$$

dove erf(x) è la funzione di errore. mediante le formule composte note, $N = 1, 2, 4, \dots, 2048$.

N	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	$\#_N^{\mathbf{R}}$	$\#_N^{\mathrm{T}}$	$\#_N^{\mathbf{CS}}$
1	4.0e - 02	1.7e - 01	2.9e - 02	1	2	3
2	1.6e - 02	6.3e - 02	1.0e - 02	2	3	5
4	6.3e - 03	2.3e - 02	3.6e - 03	4	5	9
8	2.4e - 03	8.5e - 03	1.3e - 03	8	9	17
16	8.7e - 04	3.1e - 03	4.5e - 04	16	17	33
32	3.2e - 04	1.1e - 03	1.6e - 04	32	33	65
64	1.1e - 04	4.0e - 04	5.6e - 05	64	65	129
128	4.1e - 05	1.4e - 04	2.0e - 05	128	129	257
256	1.5e - 05	5.0e - 05	7.0e - 06	256	257	513
512	5.2e - 06	1.8e - 05	2.5e - 06	512	513	1025
1024	1.8e - 06	6.3e - 06	8.8e - 07	1024	1025	2049
2048	6.5e - 07	2.2e - 06	3.1e - 07	2048	2049	4097

Tabella 5: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_0^1 f(x) dx \mod f(x) = \sqrt{x} dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f), E_1^{(c)}(f), E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^{\mathbf{R}}, \#_N^{\mathbf{T}}, \#_N^{\mathbf{CS}}$.

N	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_2^{(c)}(f))_N$
1	2.47	2.64	2.82
2	2.59	2.70	2.83
4	2.67	2.74	2.83
8	2.72	2.77	2.83
16	2.75	2.79	2.83
32	2.78	2.80	2.83
64	2.79	2.81	2.83
128	2.80	2.81	2.83
256	2.81	2.82	2.83
512	2.82	2.82	2.83
1024	2.82	2.82	2.83

Tabella 6: Decadimento degli errori delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_0^1 f(x) dx \operatorname{con} f(x) = \sqrt{x} dx$, in cui si descrivono i rapporti tra 2 errori successivi per ogni formula.

Nella prima tabella che segue esponiamo gli errori compiuti dalle regole composte per $N = 1, 2, 4, \ldots, 512$.

Per $n \le 64$ l'errore decresce lentamente, ed è comprensibile visto che l'intervallo ha ampiezza 100 e quindi il numero di campionamenti delle formule composte sono troppo pochi, ossia il valore di h troppo grande.

Nella seconda tabella, mostriamo il rapporto tra 2 errori successivi per ogni formula ovvero se $(E_k^{(c)}(f))_N$, k = 0, 1, 2, è l'errore compiuto dalla formula S_k , relativamente

N	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	$\#_N^{\mathbf{R}}$	$\#_N^{\mathbf{T}}$	$\#_N^{\mathbf{CS}}$
1	8.9e - 01	4.9e + 01	1.6e + 01	1	2	3
2	8.9e - 01	2.4e + 01	7.4e + 00	2	3	5
4	8.9e - 01	1.2e + 01	3.3e + 00	4	5	9
8	8.9e - 01	5.4e + 00	1.2e + 00	8	9	17
16	8.9e - 01	2.2e + 00	1.6e - 01	16	17	33
32	6.1e - 01	6.8e - 01	1.8e - 01	32	33	65
64	3.1e - 02	3.1e - 02	1.0e - 02	64	65	129
128	1.7e - 07	1.7e - 07	5.6e - 08	128	129	257
256	1.1e - 16	1.1e - 16	2.2e - 16	256	257	513

Tabella 7: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_0^{100} f(x) dx \operatorname{con} f(x) = \exp(-x^2) dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f), E_1^{(c)}(f), E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^{\mathsf{R}}, \#_N^{\mathsf{T}}, \#_N^{\mathsf{CS}}$.

al calcolo di $\int_a^b f(x) dx,$ utilizzando N suddivisioni, valutiamo

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}}$$

per k = 0, 1, 2 (ossia per le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson).

N	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_2^{(c)}(f))_N$
1	1.00	2.04	2.12
2	1.00	2.08	2.27
4	1.00	2.17	2.74
8	1.00	2.40	7.69
16	1.44	3.31	0.85
32	19.74	21.74	17.74
64	184935.89	184937.89	184933.89
128	1515188455.00	1515188459.00	252531408.50

Tabella 8: Decadimento degli errori delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_0^{100} f(x) dx \operatorname{con} f(x) = \exp(-x^2) dx$, in cui si descrivono i rapporti tra 2 errori successivi per ogni formula.

Osserviamo che dal caso precedente i valori relativi alle formule composte del punto medio e dei trapezi non tendono a 4, e quelli della formula composta di Cavalieri-Simpson non tendono a 16.

Sia [a, b] un intervallo limitato e consideriamo la formula di quadratura

$$S_M(f) := \sum_{j=0}^M w_j f_j \approx \int_a^b f(x) \, dx \tag{8}$$

dove $f_j = f(x_j)$, con $\{x_j\}_{j=0,...,N}$ nodi di quadratura.

Si supponga che invece di $\{f_j\}_j$ si disponga di una loro approssimazione $\{\tilde{f}_j\}_j$.

Ci si chiede come cambia il valore dell'integrale, valutando

$$\tilde{S}_M(f) := \sum_{j=0}^M w_j \tilde{f}_j \tag{9}$$

invece di $S_M(f)$.

Da (8), (9), ricaviamo per la disuguaglianza triangolare

$$\begin{aligned} |S_M(f) - \tilde{S}_M(f)| &= |\sum_{j=0}^M w_j f_j - \sum_{j=0}^M \tilde{f}_j| = |\sum_{j=0}^M w_j (f_j - \tilde{f}_j)| \\ &\leq \sum_{j=0}^M |w_j| |f_j - \tilde{f}_j| \le \left(\sum_{j=0}^M |w_j|\right) \cdot \max_j |f_j - \tilde{f}_j|. \end{aligned}$$

Quindi la quantità

$$\mathcal{I}(S_M) = \sum_{j=0}^M |w_j| \tag{10}$$

è un indice di stabilità della formula di quadratura S_M , in quanto se $\mathcal{I}(S_M)$ è grande, a piccole perturbazioni $\max_j |f_j - \tilde{f}_j|$ possono corrispondere valori degli integrali $S_M(f)$, $\tilde{S}_M(f)$ molto diversi.

Se la formula ha grado di precisione almeno 0 allora

$$\int_{a}^{b} 1 \, dx = \sum_{j=0}^{M} w_j. \tag{11}$$

e si ha $\sum_{j=0}^{M} w_j \leq \sum_{j=0}^{M} |w_j|$ con la disuguaglianza stretta se e solo se qualche peso w_j è negativo.

Di conseguenza, da (10), (11),

$$b - a = \int_{a}^{b} 1 \, dx = \sum_{j=0}^{M} w_j \le \sum_{j=0}^{M} |w_j| = \mathcal{I}(S_M)$$

con la disuguaglianza stretta se qualche peso w_j è negativo.

Quindi la presenza di pesi negativi peggiora l'indice di stabilità $\sum_{j=0}^{M} |w_j|$, mentre se sono tutti positivi e la formula ha grado di precisione almeno 0

$$\mathcal{I}(S_M) = b - a$$

e quindi piccoli errori nel valutare la funzione f nei nodi di quadratura non comporta che $S_M(f)$ e $\tilde{S}_M(f)$ possano essere arbitrariamente distanti.

Nella tabella relativa agli indici di stabilità valutiamo la somma dei moduli dei pesi delle regole di Newton-Cotes an + 1 nodi.

n	\mathcal{I}
0	2.00000e + 00
1	2.00000e + 00
2	2.00000e + 00
3	2.00000e + 00
4	2.00000e + 00
5	2.00000e + 00
6	2.00000e + 00
7	2.00000e + 00
8	2.90243e + 00
9	2.00000e + 00
10	6.12959e + 00

Tabella 9: Indice di stabilità $\mathcal{I}(S_n)$ delle formule di Newton Cotes chiuse aventi n + 1 nodi.

Come si vede le formule pur avendo grado di precisione almeno n, cominciano a essere meno stabili al crescere di n.

Definita la famiglia di formule di quadratura $\{S_n\}_{n\in\mathbb{N}}$ (con grado di precisione non necessariamente n), ognuna del tipo

$$S_n(f) := \sum_{i=0}^{\eta_n} w_{i,n} f(x_{i,n}) \approx I(f) := \int_a^b f(x) dx$$
(12)

introduciamo l'errore della formula n-sima

$$\mathcal{E}_n(f) := \int_a^b f(x) dx - \sum_{i=0}^{\eta_n} w_{i,n} f(x_{i,n}).$$

Qualora $\mathcal{E}_n(f) \to 0$ la famiglia di formule $\{S_n(f)\}_{n \in \mathbb{N}}$ converge a $\int_a^b f(x) dx$. In altri termini, la famiglia di formule $\{S_n(f)\}_{n \in \mathbb{N}}$ risulta convergente all'integrale definito $\int_a^b f(x) dx$ se

$$S_n(f) := \sum_{i=0}^{\eta_n} w_{i,n} f(x_{i,n}) \to \int_a^b f(x) dx$$

La convergenza delle formule algebriche, ottenute integrando il polinomio interpolatore, dipende dalla famiglia di nodi prescelti.

Se consideriamo i nodi di Chebyshev $\{x_k^{(ch)}\}_{k=0,...,n}$, per quanto visto nell'in-terpolazione polinomiale, abbiamo che se $f \in C^1([a,b])$ con [a,b] limitato e p_n il polinomio di grado al più n che interpola le coppie $(x_k, f(x_k))$ allora

$$\lim_{n} \max_{x \in [a,b]} |f(x) - p_n(x)| = 0,$$

e per un corollario precedente, deduciamo che

$$\lim_{a \to +\infty} \int_{a}^{b} p_{n}(x) dx = \int_{a}^{b} f(x) dx.$$
(13)

La formula basata sui nodi di Chebyshev

r

$$\sum_{k=0}^{n} w_k^{(\mathbf{ch})} f(x_k^{(\mathbf{ch})})$$

essendo interpolatoria, ha grado di precisione almeno n e di conseguenza

$$\int_{a}^{b} p_{n}(x)dx = \sum_{k=0}^{n} w_{k}^{(\mathbf{ch})} f(x_{k}^{(\mathbf{ch})}), \ \forall p_{n} \in \mathbb{P}_{n}.$$
(14)

Da (13), (14) deduciamo

$$\lim_{n \to +\infty} \sum_{k=0}^{n} w_k^{(\mathbf{ch})} f(x_k^{(\mathbf{ch})}) = \int_a^b f(x) dx,$$

ovvero la famiglia di formule $\{S_n\}_{n \in \mathbb{N}}$, applicata a f, converge all'integrale definito $\int_a^b f(x) dx$.

In generale, altre scelte di nodi non godono sempre di qualità, anche per funzioni $f \in C^{\infty}([a, b])$.

A tal proposito, se consideriamo i nodi di equispaziati $\{x_k^{(e)}\}_{k=0,\ldots,n}$, per quanto visto nell'interpolazione polinomiale, abbiamo che se $f \in C^{\infty}([a, b])$ con [a, b] limitato e p_n il polinomio di grado al più n che interpola le coppie $(x_k, f(x_k)), k = 0, \ldots, n$ allora non si può affermare

$$\lim_{n} \max_{x \in [a,b]} |f(x) - p_n(x)| = 0,$$

come si può verificare per $f(x) = 1/(1 + x^2)$, ovvero la funzione di Runge.

A partire da questo fatto si può dimostrare (non immediato) che se consideriamo la famiglia di formule di quadratura di Newton-Cotes $\{S_n\}$ (cioè S_n è la formula di quadratura interpolatoria avente n + 1 nodi equispaziati), applicata alla funzione di Runge

$$\lim S_n(f) \neq \int_{-5}^5 f(x) dx.$$

Nella tabella 1 tali risultati risultano ancora più evidenti. Le famiglia di regole di Newton-Cotes non converge all'integrale richiesto, a differenza di quanto succede utilizzando formule interpolatorie nei nodi di Chebyshev (come previsto dalla teoria).

Nel caso dell'interpolazione polinomiale a tratti, si può mostrare che se

- 1. $f \in C^{m+1}([a, b]) \operatorname{con} [a, b]$ limitato,
- 2. Δ_N è una suddivisione di [a, b] in N intervalli $[x_{mk}, x_{m(k+1)}]$ con $k = 0, \ldots, N-1$, aventi la stessa ampiezza h,

n	$E_n^{\mathbf{e}}$	E_n^{ch}
10	1.9e + 00	1.7e - 01
20	3.0e + 01	3.3e - 03
30	7.7e + 02	6.2e - 05
40	2.5e + 04	1.2e - 06
50	8.9e + 05	2.1e - 08
60	7.3e + 09	4.7e - 10
70	1.0e + 07	2.7e - 12
80	6.3e + 05	6.1e - 13
90	1.4e + 05	4.1e - 14
100	1.9e + 03	4.4e - 15

Tabella 10: Nella prima colonna il parametro n pari al grado dell'interpolante polinomiale, nella seconda e terza colonna gli errori assoluti di quadratura ottenuti integrando le interpolanti in n+1 nodi rispettivamente equispaziati e di Chebyshev (in [-5, 5]).

3. $s_{m,N}$ è l'interpolante polinomiale a tratti di grado m di f relativamente ai nodi x_0, x_1, \ldots, x_{mN} ,

allora per $C^* = \max_{x \in [a,b]} |f^{(m+1)}(x)|$ si ha

$$0 \le \max_{x \in [a,b]} |f(x) - s_{m,N}(x)| \le \frac{C^*}{(m+1)!} h^{m+1} = \frac{C^*}{(m+1)!} \left(\frac{b-a}{N}\right)^{m+1}$$

e quindi per il teorema del confronto

$$\lim_{N \to +\infty} |f(x) - s_{m,N}(x)| = 0.$$

Di conseguenza,

$$\int_{a}^{b} s_{m,N}(x) dx \to \int_{a}^{b} f(x) dx$$

e siccome, per costruzione, la formula composta $S_m^{(c)}(f, a, b, N)$ basata su una regola a m nodi, corrisponde a calcolare $\int_a^b s_{m,N}(x) dx$ otteniamo

$$\lim_{N \to +\infty} S_m^{(c)}(f, a, b, N) = \int_a^b f(x) dx,$$

ovvero che le formule composte $S_m^{(c)}(f, a, b, N)$ sono convergenti al crescere di N.

Questo implica che sotto opportune ipotesi di regolarità di f, le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson, risultano convergenti all'aumentare del numero N di sottointervalli.

Ripetiamo quale esempio la determinazione dell'integrale definito

$$\int_{-5}^{5} \frac{1}{1+x^2} \, dx$$

e dalla sua tabulazione si evince la convergenza delle formule composte del punto medio, dei trapezi e di Cavalieri-Simpson, all'aumentare del numero N di sottointervalli.

Osserviamo che per un numero alto di nodi, la formula $E_2^{(c)}(f)$ propone errori molto piccoli, seppur non decrescenti al crescere di N, cosa naturale, perchè gli $E_2^{(c)}(f)$ sono prossimi alla precisione di macchina.

N	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	$\#_N^{\mathbf{R}}$	$\#_N^{\mathbf{T}}$	$\#_N^{\mathbf{CS}}$
1	7.3e + 00	2.4e + 00	4.0e + 00	1	2	3
2	1.4e + 00	2.4e + 00	9.6e - 02	2	3	5
4	4.6e - 01	5.4e - 01	1.3e - 01	4	5	9
8	3.9e - 02	3.8e - 02	1.3e - 02	8	9	17
16	2.1e - 04	6.9e - 04	9.1e - 05	16	17	33
32	1.2e - 04	2.4e - 04	4.5e - 08	32	33	65
64	3.0e - 05	6.0e - 05	2.6e - 09	64	65	129
128	7.5e - 06	1.5e - 05	1.6e - 10	128	129	257
256	1.9e - 06	3.8e - 06	1.0e - 11	256	257	513
512	4.7e - 07	9.4e - 07	6.4e - 13	512	513	1025
1024	1.2e - 07	2.4e - 07	4.0e - 14	1024	1025	2049
2048	2.9e - 08	5.9e - 08	2.7e - 15	2048	2049	4097
4096	7.3e - 09	1.5e - 08	4.4e - 16	4096	4097	8193
8192	1.8e - 09	3.7e - 09	0.0e + 00	8192	8193	16385
16384	4.6e - 10	9.2e - 10	4.4e - 16	16384	16385	32769
32768	1.1e - 10	2.3e - 10	4.4e - 16	32768	32769	65537
65536	2.9e - 11	5.7e - 11	0.0e + 00	65536	65537	131073
131072	7.2e - 12	1.4e - 11	4.4e - 16	131072	131073	262145
262144	1.8e - 12	3.6e - 12	8.9e - 16	262144	262145	524289
524288	4.5e - 13	9.0e - 13	1.8e - 15	524288	524289	1048577
1048576	1.1e - 13	2.2e - 13	0.0e + 00	1048576	1048577	2097153

Tabella 11: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I = \int_{-5}^{5} 1/(1+x^2) dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f)$, $E_1^{(c)}(f)$, $E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^{\mathbf{R}}, \#_N^{\mathbf{T}}, \#_N^{\mathbf{CS}}$.

2. Bibliografia

- [1] K. Atkinson, Introduction to Numerical Analysis, Wiley, 1989.
- [2] J.F.Epperson, An introduction to Numerical Methods and Analysis, 2nd Edition, Wiley, 2013.
- [3] Wikipedia, Formule di Newton-Cotes.
- [4] Wikipedia, Numerical Integration
- [5] Wikipedia, Regola del Rettangolo

- [6] Wikipedia, Regola del Trapezio
- [7] Wikipedia, Regola di Cavalieri-Simpson
- [8] Wolfram MathWorld, Formule di Newton-Cotes.