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Esempio di algoritmo instabile
Formula risolutiva dell’equazione di secondo grado

Dato x2 + 2 px − q, con p2 + q ≥ 0 eseguiamo un primo algoritmo
Matlab che valuta la radice via:

y = −p +
√
p2 + q. (1)

p2 + q ≥ 0 implica radici reali.

Potenzialmente instabile per p � q a causa della sottrazione
tra p e

√
p2 + q (cancellazione).

Valutiamo la radice con un secondo algoritmo stabile via
razionalizzazione di (1):

y = −p +
√

p2 + q =
(−p +

√
p2 + q)(p +

√
p2 + q)

(p +
√
p2 + q)

=
q

(p +
√

p2 + q)
(2)
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Codice stabilità : algoritmo 1

Salviamo il seguente codice in radicesecgrado.m.

p=1000; q=0.018000000081; sol=0.9∗10ˆ(−5) ;

% ALGORITMO 1
s=p ˆ2 ;
t=s+q ;
i f t >=0

u=sq r t (t ) ;
e l s e

f p r i n t f ( ’ \n \ t [ RADICI COMPLESSE] ’ ) ;
end
s1=−p+u ;
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Codice stabilità : algoritmo 2

% ALGORITMO 2
s=p ˆ2 ;
t=s+q ;
i f t >=0

u=sq r t (t ) ;
e l s e

f p r i n t f ( ’ \n \ t [ RADICI COMPLESSE] ’ ) ;
end
v=p+u ;
t1=q/v ;
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Codice stabilità : stampa risultati

f p r i n t f ( ’ \n \ t [ALG . 1 ] : %10.19 f ’ , s1 ) ;
f p r i n t f ( ’ \n \ t [ALG . 2 ] : %10.19 f ’ , t1 ) ;
i f l e n g t h ( sol ) > 0 & ( sol ˜= 0)

rerr1 =abs (s1−sol ) / abs ( sol ) ;
rerr2=abs (t1−sol ) / abs ( sol ) ;
f p r i n t f ( ’ \n \ t [ REL .ERR .ALG . 1 ] : %2.2 e ’ , rerr1 ) ;
f p r i n t f ( ’ \n \ t [ REL .ERR .ALG . 2 ] : %2.2 e ’ , rerr2 ) ;

end
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Test.

Come previsto, il secondo algoritmo si comporta notevolmente
meglio del primo, che compie un errore relativo dell’ordine di circa
10−9. Infatti:

>> radicesecgrado

[ ALG . 1 ] [ 1 ] : 0 .0000089999999772772
[ ALG . 2 ] [ 1 ] : 0 .0000090000000000000
[ REL . ERR . ] [ ALG . 1 ] : 2 .52 e−009
[ REL . ERR . ] [ ALG . 2 ] : 0 .00 e+000

>>
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Calcolo π

Eseguiamo un codice Matlab che valuti le successioni {un}, {zn},
definite rispettivamente come

s1 = 1, s2 = 1 + 1
4

u1 = 1, u2 = 1 + 1
4

sn+1 = sn + 1
(n+1)2

un+1 =
√

6 sn+1

e {
z1 = 1, z2 = 2

zn+1 = 2n−
1
2

√
1−

√
1− 41−n · z2

n

(3)

che teoricamente convergono a π.
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Calcolo π

Implementiamo poi la successione, diciamo {yn}, che si ottiene
razionalizzando (3), cioè moltiplicando numeratore e denominatore
di

zn+1 = 2n−
1
2

√
1−

√
1− 41−n · z2

n

per √
1 +

√
1− 41−n · z2

n

e calcoliamo um, zm e ym per m = 2, 3, . . . , 40 (che teoricamente
dovrebbero approssimare π).
Infine disegniamo in un unico grafico l’andamento dell’errore
relativo di un, zn e yn rispetto a π aiutandoci con l’help di Matlab
relativo al comando semilogy.
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Calcolo π: metodo 1

In seguito scriviamo un’implementazione di quanto richiesto
commentando i risultati. Si salvi in un file pigreco.m il codice

% SEQUENZE CONVERGENTI ”PI GRECO” .

% METODO 1 .
s (1 ) =1; u (1 ) =1;
s (2 ) =1.25; u (2 )=s (2 ) ;
f o r n=2:40

s (n+1)=s (n )+(n+1)ˆ(−2) ;
u (n+1)=s q r t (6∗s (n+1) ) ;

end
rel_err_u=abs (u−p i ) / p i ;

f p r i n t f ( ’ \n ’ ) ;
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Calcolo π: metodo 2

% METODO 2 .
format long

z (1 ) =1;
z (2 ) =2;
f o r n=2:40

c=(4ˆ(1−n ) ) ∗ (z (n ) ) ˆ2 ; inner_sqrt=sq r t (1−c ) ;
z (n+1)=(2ˆ(n−0.5) ) ∗ s q r t ( 1−inner_sqrt ) ;

end
rel_err_z=abs (z−p i ) / p i ;

f p r i n t f ( ’ \n ’ ) ;
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Calcolo π: metodo 3

% METODO 3 .
y (1 ) =1;
y (2 ) =2;
f o r n=2:40

num=(2ˆ(1/2) ) ∗ abs (y (n ) ) ;
c=(4ˆ(1−n ) ) ∗ (z (n ) ) ˆ2 ;
inner_sqrt=sq r t (1−c ) ;
den=sq r t ( 1+inner_sqrt ) ;
y (n+1)=num/den ;

end
rel_err_y=abs (y−p i ) / p i ;
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Calcolo π: plots

% SEMILOGY PLOT.
ho ld on ;
s em i l o g y ( 1 : l e n g t h (u ) , rel_err_u , ’ k . ’ ) ;
s em i l o g y ( 1 : l e n g t h (z ) , rel_err_z , ’m+’ ) ;
s em i l o g y ( 1 : l e n g t h (y ) , rel_err_y , ’ ro ’ ) ;
ho ld off ;

Di seguito digitiamo sulla shell di Matlab/Octave

>> pigreco
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Plot risultati
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Figura : Errore relativo commesso con le 3 successioni, rappresentate
rispettivamente da ., + e o.
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Discussione risultati.

La prima successione converge molto lentamente a π, la
seconda diverge mentre la terza converge velocemente a π.

Per alcuni valori {zn} e {yn} coincidono per alcune iterazioni
per poi rispettivamente divergere e convergere a π. Tutto ciò
è naturale poichè le due sequenze sono analiticamente (ma
non numericamente) equivalenti.

Dal grafico dell’errore relativo, la terza successione, dopo aver
raggiunto errori relativi prossimi alla precisione di macchina, si
assesta ad un errore relativo di circa 10−15 (probabilmente per
questioni di arrotondamento).
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L’algoritmo 2 in dettaglio
Successione approssimante π

Nell’approssimare il valore di π con la seguente formula ricorsiva

z2 = 2

zn+1 = 2n−0.5
√

1 −
√

1 − 41−nz2
n , n = 2, 3, . . . ,

si ottiene la seguente successione di valori (dove si è posto c = 41−nz2
n ).

n + 1 c 1−
√

1− c zn+1
|zn+1−π|

π
· · · · · · · · · · · · · · ·
10 1.505e-04 7.529e-05 3.14157294036 6.27e-06
11 3.764e-05 1.882e-05 3.14158772527 1.57e-06
12 9.412e-06 4.706e-06 3.14159142150 3.92e-07
13 2.353e-06 1.176e-06 3.14159234561 9.80e-08
14 5.882e-07 2.941e-07 3.14159257654 2.45e-08
15 1.470e-07 7.353e-08 3.14159263346 6.41e-09
16 3.676e-08 1.838e-08 3.14159265480 3.88e-10
17 9.191e-09 4.595e-09 3.14159264532 2.63e-09
18 2.297e-09 1.148e-09 3.14159260737 1.47e-08
19 5.744e-10 2.872e-10 3.14159291093 8.19e-08
· · · · · · · · · · · · · · ·
28 2.220e-15 1.110e-15 3.16227766016 6.58e-03
29 5.551e-16 3.330e-16 3.46410161513 1.03e-01
30 1.665e-16 1.110e-16 4.00000000000 2.73e-01
31 5.551e-17 0.000e+00 0.00000000000 1.00e+00
32 0.000e+00 0.000e+00 0.00000000000 1.00e+00
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Una successione ricorrente.

Consideriamo la successione {In} definita da

In = e−1

∫ 1

0
xn ex dx (4)

n = 0: I0 = e−1
∫ 1

0 ex dx = e−1(e1 − 1).

integrando per parti

In+1 = e−1

(
xn+1 ex |10 −(n + 1)

∫ 1

0
xn ex dx

)
= 1− (n + 1) In.

In > 0, decrescente e si prova che In → 0 come 1/n.
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Problema.

Calcoliamo In per n = 1, . . . , 99:

mediante la successione in avanti{
I0 = e−1(e1 − 1)
In+1 = 1− (n + 1) In.

(5)

mediante la successione all’indietro{
t1000 = 0
tn−1 = (1− tn)/n.

Si noti che se In+1 = 1− (n + 1) In allora In = (1− In+1)/(n + 1) e
quindi In−1 = (1− In)/n.
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Successione ricorrente in Matlab

Scriviamo il codice in un file succricorrente.m.

% SUCCESSIONE RICORRENTE .
c l e a r a l l ;
% SUCCESSIONE ” s n ” .
s (1 )=exp (−1) ;
f o r n=1:99

s (n+1)=1−(n+1)∗s (n ) ;
end
% SUCCESSIONE ” t n ” .
M=1000;
t=ze r o s (M , 1 ) ; % INIZIALIZZAZIONE ” t ” .
f o r n=M :−1:2

j=n−1;
t (j )=(1−t (n ) ) /n ;

end
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Successione ricorrente in Matlab

% PLOT SEMI−LOGARITMICO .
c l f ;
ho ld on ;
s em i l o g y ( 1 : l e n g t h (s ) , abs (s ) , ’ k− ’ ) ;
s em i l o g y ( 1 : l e n g t h (s ) , abs (t ( 1 : l e n g t h (s ) ) ) , ’m− ’ ) ;
ho ld off ;

Di seguito digitiamo sulla shell di Matlab/Octave

>> succricorrente
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Plot risultati
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Figura : Grafico che illustra i valori assoluti assunti dalla successione in
avanti (in nero) e all’indietro (in rosa magenta).
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Instabilità della formula ricorsiva

La formula In = 1− n In−1 è instabile, quindi amplifica l’errore ad
ogni passo.

Infatti, nel calcolatore

(In + εn) = 1− n(In−1 + εn−1).

Sottraendo dalla precedente equazione la relazione In = 1− nIn−1

si può quantificare l’errore:

εn = −n εn−1, e per induzione |εn| = n! |ε0.|

Il fattore n! amplifica l’errore di rappresentazione iniziale (su I0), ε0.

Esempio. Nel calcolo di I20 l’errore è ε20 = 20! ε0 ≈ 2.7 · 102.
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Formula alternativa stabile
La formula all’indietro smorza l’errore

Per l’errore al passo n − 1 si trova

εn−1 =
−1

n
εn.

Partendo da m

|εm−1| =
|εm|
m

, |εm−2| =
|εm|

m(m − 1)
, . . . , |εm−k | =

|εm|
m(m − 1) · · · (m − k + 1)

.

La produttoria al denominatore abbatte rapidamente l’errore
iniziale!

Per esempio, per calcolare I25 partendo da I40 = 0.5, l’errore
iniziale |ε40| < 0.5 verrebbe abbattuto di un fattore

40 · 39 · · · 27 · 26 = 5.2602 · 1022

.
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Complessità : potenza di matrice.

Problema: calcolare la potenza p-esima di una matrice quadrata A
di ordine n cioè

Ap := A ∗ . . . ∗ A︸ ︷︷ ︸
p volte

senza usare l’operatore di elevamento a potenza ∧.

Primo algoritmo. Si può implementare il seguente pseudocodice

B=I ;
f o r i=1:p

B=B∗A ;
end

in cui I è la matrice identica di ordine n e ∗ è il classico prodotto
tra matrici.
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Complessità : potenza di matrice.

Secondo algoritmo. Alternativamente (in maniera più stabile ed
efficiente) si può decomporre p come

p =
M∑
i=0

ci2
i

ove M = blog2 pc e ci = 0 oppure ci = 1. Si osserva facilmente
che questa è la classica rappresentazione di p in base 2. Usando la
proprietà della potenze

B = Ap = A
∑M

i=0 ci2
i

= A
∑M

i=0 2ici

= (A20
)c0 ∗ . . . ∗ (A2M )cM =

M∏
i=0

(
A2i
)ci

(6)

ove ogni termine A2i può essere calcolato come A2i−1
A2i−1

.
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Complessità : potenza di matrice.

Confrontiamo i due metodi per p = 6. Nel primo si calcola A6

come
A6 = A ∗ A ∗ A ∗ A ∗ A ∗ A

e quindi sono necessari 5 prodotti tra matrici. Nel secondo caso
essendo 6 = 0 ∗ 20 + 1 ∗ 21 + 1 ∗ 22 si ha

A6 = (A2) ∗ (A4).

Calcolati A2 = A ∗ A ed in seguito A4 = (A2) ∗ (A2), abbiamo
finalmente A6 con solo 3 prodotti tra matrici ma con lo storage
addizionale di alcune matrici in memoria.
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Complessità : potenza di matrice.

Un codice che produce la decomposizione in potenze di 2 di un
numero p è il seguente:

q=p ;
M=f l o o r ( l og2 (p ) )+1;
c=[ ] ;
f o r i=1:1: M

c (i )=mod (q , 2 ) ;
q=f l o o r (q/2) ;

end

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 26/ 35



Complessità : potenza di matrice.

Uno pseudocodice che implementa il secondo algoritmo è

p=100; n=200;
c=trasforma_in_binario (p ) ;
A=rand (n ) ;
B=eye (n ) ;
C=A ;
M=f l o o r ( l og2 (p ) ) ;
% B con t i e n e l a potenza d i A f i n o r a c a l c o l a t a .
% C con t i e n e l a potenza Aˆ(2ˆ i ndex ) ) f i n o r a c a l c o l a t a .
f o r index=0:M

j=index+1;
i f c (j ) == 1

B=B∗C ;
end
C=C∗C ;

end
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Complessità : potenza di matrice.

Esercizio 1

Si implementino i due algoritmi proposti per il calcolo della
potenza di matrice tramite due functions (senza usare l’operatore
∧) e si calcoli l’errore relativo in norma infinito rispetto
all’elevamento a potenza di Matlab/Octave per diverse matrici
e potenze (n = 25, 50 e p = 20, 40).

Esercizio 2

Si confrontino poi i tempi di esecuzione delle due functions per il
calcolo di A100, con A matrice di numeri casuali di dimensione
200× 200.
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Norme matriciali

Nell’introduzione a Matlab/Octave abbiamo visto che il
comando norm(v) calcola la norma del vettore v .

Analogamente, per calcolare in Matlab/Octave la norma di una
matrice A si usa il comando norm(A).

Se nessun ulteriore parametro viene specificato tale comando
restituisce la norma 2 della matrice ovvero:

‖A‖2 =
√
ρ(ATA)

dove ρ(A) è il raggio spettrale della matrice A. Altre possibilità
sono:

norma 1
‖A‖1 = maxj

∑n
i=1 |aij |, in Matlab/Octave norm(A,1);

norma infinito
‖A‖∞ = maxi

∑n
j=1 |aij |, in Matlab/Octave norm(A,inf);

norma di Frobenius
‖A‖F =

√∑n
i=1

∑n
j=1 |aij |2, in Matlab/Octave

norm(A,’fro’);
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Norme matriciali
Esempi

>>> A = [5 −4 2 ; 1 7 −6; 1 1 9 ]
A =

5 −4 2
1 7 −6
1 1 9

>>> norm (A , 1 )
ans = 17

>>> norm (A , inf )
ans = 14

>>> norm (A , ’ f r o ’ )
ans = 14.6287388383278

>>> norm (A )
ans = 12.0560586095913
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Come misurare la durata di un programma

Per confrontare due programmi che risolvono lo stesso
problema è utile misurare il tempo di CPU (wallclock time)
impiegato per eseguirli.

In Matlab/Octave questo tempo si misura in secondi con
il comando: cputime.

Esempio:

>> A = rand (5000) ;
t = cput ime ;
det (A ) ;
tfin=cput ime ;
cpu=tfin−t

>> cpu = 32.500
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Facoltativo. Complessità : algoritmo di Horner.

Ci poniamo il problema di valutare il polinomio

p(x) = a0 + a1 · x + . . .+ an · xn (7)

in un punto x .
Osserviamo che

p(x) = a0 + x · (a1 + x · (a2 + . . .+ x · (an−1 + x · an))) (8)

Supponiamo sia a = (a0, . . . , an) il vettore di dimensione n + 1
delle componenti del polinomio. Possiamo valutare il polinomio
tramite i seguenti due algoritmi, il primo che valuta direttamente il
polinomio secondo quanto descritto in (7), il secondo che effettua
la stessa operazione come descritto in (8) calcolando dapprima
s1 = an−1 + x · an, poi s2 = an−2 + x · s1 e cos̀ı via.
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Complessità : algoritmo di Horner.

In Matlab avremo allora

f u n c t i o n s=algoritmo1 (a , x )
xk=1; s=a (1 ) ;
f o r i=2: l e n g t h (a )

xk=xk∗x ;
s=s+a (i ) ∗xk ;

end

e

f u n c t i o n s=algoritmo2 (a , x )
L=l eng t h (a ) ;
s=a (L ) ; % COMPONENTE a n IMMAGAZZINATA IN a ( n+1) .
f o r i=L−1:−1:1

s=a (i )+x∗s ;
end
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Complessità : algoritmo di Horner.

Se lanciamo il codice demo horner per la valutazione di
p(x) = 1 + 2 · x + 3 · x2 + 4 · x3 in x = π

c l e a r a l l ;
a=[1 2 3 4 ] ;
x=p i ;
y1=algoritmo1 (a , x ) ;
y2=algoritmo2 (a , x ) ;
fo rmat long ;
y1

y2

otteniamo

>> demo_horner

ans = 1.609171052316469e+02
y1 = 1.609171052316469e+02
y2 =1.609171052316469e+02
>>
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Complessità : algoritmo di Horner.

La differenza sta nella complessità computazionale e non nel
risultato numerico. Il primo codice richiede 2n moltiplicazioni e n
somme, mentre il secondo algoritmo n moltiplicazioni e n somme.
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