Matlab: complessita e stabilita degli algoritmi.

Alcuni esempi.

Angeles Martinez Calomardo e Alvise Sommariva

Universita degli Studi di Padova

6 novembre 2012

Angeles Martinez Calomardo e Alvise Sommariva Matlab: complessita e stabilita degli algoritmi. 1/ 35



Esempio di algoritmo instabile

Formula risolutiva dell’equazione di secondo grado

Dato x2 + 2 px — g, con p?> 4+ g > 0 eseguiamo un primo algoritmo
Matlab che valuta la radice via:

y=-p+vp*+aq (1)

e p? + g > 0 implica radici reali.
o Potenzialmente instabile per p > g a causa della sottrazione

tra p e \/p? + g (cancellazione).

Valutiamo la radice con un secondo algoritmo stabile via
razionalizzazione di (1):

o m (VPP +alpt VP +4)
yoT PR (b + Vi 1 a)

9 (2)
(p+VpP?+q)
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Codice stabilita : algoritmo 1

Salviamo il seguente codice in radicesecgrado.m.
p=1000; 9q=0.018000000081; s01=0.9%10"(—5);

% ALGORITMO 1
s=p"2;
t=s+q;
if t >=0
u=sqrt(t);
else
fprintf('\n \t [RADICI COMPLESSE]");
end
sl=—p+u;
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Codice stabilita : algoritmo 2

% ALGORITMO 2
s=p"2;
t=s+q;
if t >=0
u=sqrt(t);
else
fprintf('\n \t [RADICI COMPLESSE]");
end
v=p+u;
tl=q/v;
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Codice stabilita : stampa risultati

fprintf('\n \t [ALG.1]: %10.19f" ,6s1);

fprintf('\n \t [ALG.2]: %10.19f" ,t1);

if length(sol) > 0 & (sol "= 0)
rerrl =abs(sl—sol)/abs(sol);
rerr2=abs(tl—sol)/abs(sol);
fprintf('\n \t [REL.ERR.ALG.1]: %?2.2e’ ,rerrl);

fprintf('\n \t [REL.ERR.ALG.2]: %2.2e’ ,rerr2);
end
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Come previsto, il secondo algoritmo si comporta notevolmente
meglio del primo, che compie un errore relativo dell'ordine di circa
10~°. Infatti:

>> radicesecgrado

[ALG.1] [1]: 0.0000089999999772772
[ALG.2] [1]: 0.0000090000000000000
[REL.ERR.][ALG.1]: 2.52e—009
[REL.ERR.]|[ALG.2]: 0.00e+000

>>
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Calcolo

Eseguiamo un codice Matlab che valuti le successioni {u,}, {z,},
definite rispettivamente come

s1=1, 52:14-%

un =1, u2:1—|—%
1

Sn+1 = Sp +

Upt1 = /0 Spt1

(n+1)?

3
zn+1:2”7%\/1— 1—41-n.z2 (3)

che teoricamente convergono a .
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Calcolo

Implementiamo poi la successione, diciamo {y,}, che si ottiene
razionalizzando (3), cioé moltiplicando numeratore e denominatore

di
zn+1_2"—§\/1—,/1—41—n.z§
\/1+\/1—41_”-z,%

e calcoliamo up,, zy € ym per m=2,3,...,40 (che teoricamente
dovrebbero approssimare 7).

Infine disegniamo in un unico grafico I'andamento dell’errore
relativo di up, z, e y, rispetto a 7 aiutandoci con I'help di Matlab
relativo al comando semilogy.

per
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Calcolo 7 metodo 1

In seguito scriviamo un'implementazione di quanto richiesto
commentando i risultati. Si salvi in un file pigreco.m il codice

% SEQUENZE CONVERGENTI " Pl GRECO".

% METODO 1.

s(1)=1; u(1l)=1,;

s(2)=1.25; u(2)=s(2);

for n=2:40
s(n+1l)=s(n)+(n+1)"(-2);
u(n+1)=sqrt(6*s(n+1));

end

rel_err_u=abs(u—pi)/pi;

fprintf('\n");
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Calcolo 7: metodo 2

% METODO 2.
format long
z(1)=1;
z(2)=2;
for n=2:40
c=(4"(1-n)) * (z(n))"2; inner_sqrt=sqrt(l—c);

z(n+1)=(2"(n—0.5))*sqrt( l—inner_sqrt );
end

rel_err_z=abs(z—pi)/pi;

fprintf('\n’");
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Calcolo 7: metodo 3

% METODO 3.
y(1)=1,
y(2)=

for n=2:40

num=(2"(1/2)) * abs(y(n));
c=(4"(1-n)) * (2(n))"2;
inner_sqrt=sqrt(l—c);
den=sqrt( l4+inner_sqrt );
y(n+1)=num/den;

end

rel_err_y=abs(y—pi)/pi;
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Calcolo 7: plots

% SEMILOGY PLOT.

hold on;

semilogy (1:length(u) ,rel_err_u, 'k.

semilogy (1:length(z) ,rel_err_z, 'mt’
semilogy (l:length(y) rel_err_y, 'ro’
hold off;

’

i

~— — —

1

Di seguito digitiamo sulla shell di Matlab/Octave
‘>> pigreco
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Plot risultati

5

10

Figura : Errore relativo commesso con le 3 successioni, rappresentate
rispettivamente da
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Discussione risultati.

@ La prima successione converge molto lentamente a 7, la
seconda diverge mentre la terza converge velocemente a 7.

@ Per alcuni valori {z,} e {y,} coincidono per alcune iterazioni
per poi rispettivamente divergere e convergere a w. Tutto cio
& naturale poiche le due sequenze sono analiticamente (ma
non numericamente) equivalenti.

o Dal grafico dell’errore relativo, la terza successione, dopo aver
raggiunto errori relativi prossimi alla precisione di macchina, si
assesta ad un errore relativo di circa 1075 (probabilmente per
questioni di arrotondamento).
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L'algoritmo 2 in dettaglio

Successione approssimante 7

Nell'approssimare il valore di 7 con la seguente formula ricorsiva
z = 2
Zpy1 = 277051\ /1-4l=-nz2 p=23 ...,

si ottiene la seguente successione di valori (dove si & posto ¢ = 417"22).

|Zn+1*""\
s

n+1 c 1-+V1—-c¢c Znt1

10 1.505e-04  7.529e-05  3.14157294036 6.27e-06
11 3.764e-05 1.882e-05  3.14158772527 1.57e-06

12 9.412e-06  4.706e-06  3.14159142150 3.92e-07 0

13 2.353e-06 1.176e-06  3.14159234561 9.80e-08

14  5.882e-07 2.941e-07 3.14159257654 2.45e-08 w0t B
15 1.470e-07  7.353e-08  3.14159263346 6.41e-09

16  3.676e-08 1.838e-08  3.14159265480 3.88e-10 ot 1
17 9.191e-09  4.595e-09  3.14159264532 2.63e-09

18 2.297e-09 1.148e-09  3.14159260737 1.47e-08 w 1
19 5.744e-10 2.872e-10 3.14159291093 8.19e-08

28  2.220e-15 1.110e-15  3.16227766016 6.58e-03 ) ) ) ) )

29  5.55le-16  3.330e-16  3.46410161513 1.03e-01 o7 s B s » B3 E)
30 1.665e-16 1.110e-16  4.00000000000 2.73e-01
31 5.551e-17  0.000e+00 0.00000000000 1.00e+00
32 0.000e+00 0.000e+00 0.00000000000 1.00e+00
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Una successione ricorrente.

Consideriamo la successione {/,} definita da
1
I, = el/ x" e* dx (4)
0

on=0 lh=e! fol e dx = e (el —1).

@ integrando per parti

lhyr = et <X”+1 e |5 —(n+ 1)/
0
= 1—(n+1)1,

1
x" e* dx)

e I, > 0, decrescente e si prova che [, — 0 come 1/n.
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Calcoliamo [, per n=1,...,99:
@ mediante la successione in avanti
lo=e (el — 1) (5)
Ihy1=1—(n+1) I,

@ mediante la successione all’indietro

t1000 = 0
th—1 = (1 — t,,)/n.

Si noti che se Ipy1 =1—(n+1)/,allora I, = (1 —Ihy1)/(n+1) e
quindi l,—1 = (1 —1,)/n.
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Successione ricorrente in Matlab

Scriviamo il codice in un file succricorrente.m.

% SUCCESSIONE RICORRENTE.
clear all;
% SUCCESSIONE "s_n”
s (1)=exp(—1);
for n=1:99
s(n+1)=1—(n+1)*s(n);
end
% SUCCESSIONE "t_n"
M=1000;
t=zeros(M,1); % INIZIALIZZAZIONE "t”
for n=M:—-1:2
j=n-—1;

t(3)=(1-t(n))/n;

end
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Successione ricorrente in Matlab

% PLOT SEMI-LOGARITMICO.

clf;

hold on;

semilogy (1:length(s),abs(s), k=");

semilogy (1l:length(s),abs(t(1:length(s))), m-");
hold off;

Di seguito digitiamo sulla shell di Matlab/Octave

‘>> succricorrente

19/ 35
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Plot risultati

0 20 40 60 80 100

Figura : Grafico che illustra i valori assoluti assunti dalla successione in
avanti (in nero) e all'indietro (in rosa magenta).
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Instabilita della formula ricorsiva

La formula /, =1 — n l,_1 € instabile, quindi amplifica |'errore ad
ogni passo.

Infatti, nel calcolatore

(lh+en)=1—=n(lh—1+en-1).

Sottraendo dalla precedente equazione la relazione I, =1 — nl,_1
si pud quantificare |'errore:

€n = —nep_1, e perinduzione |g,] = n!|eg]

I fattore n! amplifica I'errore di rappresentazione iniziale (su lp), €o.

@ Esempio. Nel calcolo di kg I'errore & g0 = 20l eg ~ 2.7 - 10°.
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Formula alternativa stabile

La formula all'indietro smorza |'errore

Per I'errore al passo n — 1 si trova

Partendo da m

lem|
mm—1)---(m—k+1)

@ La produttoria al denominatore abbatte rapidamente I'errore
iniziale!

@ Per esempio, per calcolare s partendo da /40 = 0.5, 'errore
iniziale |e49| < 0.5 verrebbe abbattuto di un fattore

40-39...27-26 = 5.2602 - 10%2
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Complessita : potenza di matrice.

Problema: calcolare la potenza p-esima di una matrice quadrata A
di ordine n cioe
AP = Ax ... %A
—
p volte

senza usare |'operatore di elevamento a potenza A.

Primo algoritmo. Si pud implementare il seguente pseudocodice

B=I;

for i=1l:p
B=BxA ;

end

in cui | € la matrice identica di ordine n e x & il classico prodotto
tra matrici.
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Complessita : potenza di matrice.

Secondo algoritmo. Alternativamente (in maniera piu stabile ed
efficiente) si pud decomporre p come

M
p= Z 2!
i=0

ove M = |log, p| e c; = 0 oppure ¢; = 1. Si osserva facilmente
che questa & la classica rappresentazione di p in base 2. Usando la
proprieta della potenze

B = AP = Azi’\io a2 _ AZiAio 2/¢;
M

= )W =T[(#) @

i=0

. . i N i—1 . ni—1
ove ogni termine A% pud essere calcolato come A2 A2,
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Complessita : potenza di matrice.

Confrontiamo i due metodi per p = 6. Nel primo si calcola A®

come
AP — AxAxAxAxAx A

e quindi sono necessari 5 prodotti tra matrici. Nel secondo caso
essendo 6 =0% 20 + 1% 21 + 1% 22 sj ha

A% = (A?) x (A%).

Calcolati A? = A x A ed in seguito A* = (A?) x (A?), abbiamo
finalmente A® con solo 3 prodotti tra matrici ma con lo storage
addizionale di alcune matrici in memoria.
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Complessita : potenza di matrice.

Un codice che produce la decomposizione in potenze di 2 di un
numero p ¢ il seguente:

9=p;

M=floor (log2(p))+1;

c=[l

for i=1:1:M
c(i)=mod(q,2);
g=floor(q/2);

end
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Complessita : potenza di matrice.

Uno pseudocodice che implementa il secondo algoritmo &

p=100; n=200;
c=trasforma_in_binario(p);
A=rand(n);
B=eye(n);
C=A;
M=floor (log2(p));
% B contiene la potenza di A finora calcolata.
% C contiene la potenza A"(2"index)) finora calcolata.
for index=0:M

j=index+1;

if c(j) =1

B=Bx*C;

end

C=Cx*C;
end
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Complessita : potenza di matrice.

Esercizio 1

Si implementino i due algoritmi proposti per il calcolo della
potenza di matrice tramite due functions (senza usare |'operatore
N) e si calcoli I'errore relativo in norma infinito rispetto
all'elevamento a potenza di MATLAB/OCTAVE per diverse matrici
e potenze (n = 25,50 e p = 20,40).

Esercizio 2

Si confrontino poi i tempi di esecuzione delle due functions per il
calcolo di A% con A matrice di numeri casuali di dimensione
200 x 200.
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Norme matriciali

@ Nell'introduzione a MATLAB/OCTAVE abbiamo visto che il
comando norm(v) calcola la norma del vettore v.

@ Analogamente, per calcolare in MATLAB/OCTAVE la norma di una
matrice A si usa il comando norm(A).

@ Se nessun ulteriore parametro viene specificato tale comando
restituisce la norma 2 della matrice ovvero:

[All2 = /(AT A)

dove p(A) ¢ il raggio spettrale della matrice A. Altre possibilita
sono:
e norma 1
|All1 = max; 37, |aj|, in MATLAB/OCTAVE norm(A,1);
e norma infinito
[Alloc = max; 37, |aj;|, in MATLAB/OCTAVE norm(A, inf);
e norma di Frobenius
[AlF = /271 27y a2, in MATLAB/OCTAVE
norm(A,’fro’);
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Norme matriciali

>>> A =[5 —-42;,17 -6, 11 9]

A =
5 —4 2
1 7 —6
1 1 9

>>> norm(A,1)
ans = 17

>>> norm (A, inf)
ans = 14

>>> norm (A, 'fro ")
ans = 14.6287388383278

>>> norm(4)
ans = 12.0560586095913
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Come misurare la durata di un programma

@ Per confrontare due programmi che risolvono lo stesso
problema & utile misurare il tempo di CPU (wallclock time)
impiegato per eseguirli.

@ In MATLAB/OCTAVE questo tempo si misura in secondi con
il comando: cputime.

Esempio:

>> A = rand (5000);
t = cputime;
det(4);
tfin=cputime;
cpu—tfin—t

>> cpu = 32.500
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Facoltativo. Complessita : algoritmo di Horner.

Ci poniamo il problema di valutare il polinomio
p(x)=a+ai-x+...+ap-x" (7)

in un punto x.
Osserviamo che

p(x)=ao+x-(a1+x-(ax+...+x-(an-1+x-an))) (8)

Supponiamo sia a = (ap, . .., an) il vettore di dimensione n+ 1
delle componenti del polinomio. Possiamo valutare il polinomio
tramite i seguenti due algoritmi, il primo che valuta direttamente il
polinomio secondo quanto descritto in (7), il secondo che effettua
la stessa operazione come descritto in (8) calcolando dapprima

S1 = ap_1+ X-ap, Poi S» = a,_2+ X -5 € cosi via.
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Complessita : algoritmo di Horner.

In Matlab avremo allora

function s=algoritmol(a,x)
xk=1; s=a(l);
for i=2:length (a)
xk=xk*Xx ;
s=sta(i)*xk;
end

(S

function s=algoritmo2(a,x)
L=length (a);
s=a(L); % COMPONENTE a_n IMMAGAZZINATA IN a(n+1).
for i=L—-1:-1:1
s=a(1i)+x*s;
end
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Complessita : algoritmo di Horner.

Se lanciamo il codice demo_horner per la valutazione di
p(x)=14+2-x+3-x>+4-xBinx=n

clear all;

a=[1 2 3 4];

x=pi;

yl=algoritmol(a,x);

y2=algoritmo2(a,x);

format long;

y1

y2

otteniamo

>> demo_horner

ans = 1.609171052316469e+02
yl1 = 1.609171052316469e+02
y2 =1.609171052316469e+02
>>
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Complessita : algoritmo di Horner.

La differenza sta nella complessita computazionale e non nel
risultato numerico. Il primo codice richiede 2n moltiplicazioni e n
somme, mentre il secondo algoritmo n moltiplicazioni e n somme.
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