
Matlab: complessità e stabilità degli algoritmi.
Alcuni esempi.

Ángeles Mart́ınez Calomardo e Alvise Sommariva

Università degli Studi di Padova

30 ottobre 2012

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 1/ 26

Esempio di algoritmo instabile
Formula risolutiva dell’equazione di secondo grado

Dato x2 + 2 px − q, con p2 + q ≥ 0 eseguiamo un primo algoritmo
Matlab che valuta la radice via:

y = −p +
√
p2 + q. (1)

I p2 + q ≥ 0 implica radici reali.

I Potenzialmente instabile per p � q a causa della sottrazione
tra p e

√
p2 + q (cancellazione).

Valutiamo la radice con un secondo algoritmo stabile via
razionalizzazione di (1):

y = −p +
√

p2 + q =
(−p +

√
p2 + q)(p +

√
p2 + q)

(p +
√
p2 + q)

=
q

(p +
√

p2 + q)
(2)

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 2/ 26

Codice stabilità : algoritmo 1

Salviamo il seguente codice in radicesecgrado.m.

p=1000; q=0.018000000081; sol=0.9∗10ˆ(−5) ;

% ALGORITMO 1
s=p ˆ2 ;
t=s+q ;
i f t >=0

u=sq r t (t) ;
e l s e

f p r i n t f (’ \n \ t [RADICI COMPLESSE] ’) ;
end
s1=−p+u ;

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 3/ 26

Codice stabilità : algoritmo 2

% ALGORITMO 2
s=p ˆ2 ;
t=s+q ;
i f t >=0

u=sq r t (t) ;
e l s e

f p r i n t f (’ \n \ t [RADICI COMPLESSE] ’) ;
end
v=p+u ;
t1=q/v ;

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 4/ 26

Codice stabilità : stampa risultati

f p r i n t f (’ \n \ t [ALG . 1] : %10.19 f ’ , s1) ;
f p r i n t f (’ \n \ t [ALG . 2] : %10.19 f ’ , t1) ;
i f l e n g t h (sol) > 0 & (sol ˜= 0)

rerr1 =abs (s1−sol) / abs (sol) ;
rerr2=abs (t1−sol) / abs (sol) ;
f p r i n t f (’ \n \ t [REL .ERR .ALG . 1] : %2.2 e ’ , rerr1) ;
f p r i n t f (’ \n \ t [REL .ERR .ALG . 2] : %2.2 e ’ , rerr2) ;

end

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 5/ 26

Test.

Come previsto, il secondo algoritmo si comporta notevolmente
meglio del primo, che compie un errore relativo dell’ordine di circa
10−9. Infatti:

>> radicesecgrado

[ALG . 1] [1] : 0 .0000089999999772772
[ALG . 2] [1] : 0 .0000090000000000000
[REL . ERR .] [ALG . 1] : 2 .52 e−009
[REL . ERR .] [ALG . 2] : 0 .00 e+000

>>

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 6/ 26

Calcolo π

Eseguiamo un codice Matlab che valuti le successioni {un}, {zn},
definite rispettivamente come

s1 = 1, s2 = 1 + 1
4

u1 = 1, u2 = 1 + 1
4

sn+1 = sn + 1
(n+1)2

un+1 =
√

6 sn+1

e {
z1 = 1, z2 = 2

zn+1 = 2n−
1
2

√
1−

√
1− 41−n · z2

n

(3)

che teoricamente convergono a π.

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 7/ 26

Calcolo π

Implementiamo poi la successione, diciamo {yn}, che si ottiene
razionalizzando (3), cioè moltiplicando numeratore e denominatore
di

zn+1 = 2n−
1
2

√
1−

√
1− 41−n · z2

n

per √
1 +

√
1− 41−n · z2

n

e calcoliamo um, zm e ym per m = 2, 3, . . . , 40 (che teoricamente
dovrebbero approssimare π).
Infine disegniamo in un unico grafico l’andamento dell’errore
relativo di un, zn e yn rispetto a π aiutandoci con l’help di Matlab
relativo al comando semilogy.

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 8/ 26

Calcolo π: metodo 1

In seguito scriviamo un’implementazione di quanto richiesto
commentando i risultati. Si salvi in un file pigreco.m il codice

% SEQUENZE CONVERGENTI ”PI GRECO” .

% METODO 1 .
s (1) =1; u (1) =1;
s (2) =1.25; u (2)=s (2) ;
f o r n=2:40

s (n+1)=s (n)+(n+1)ˆ(−2) ;
u (n+1)=s q r t (6∗s (n+1)) ;

end
rel_err_u=abs (u−p i) / p i ;

f p r i n t f (’ \n ’) ;

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 9/ 26

Calcolo π: metodo 2

% METODO 2 .
format long

z (1) =1;
z (2) =2;
f o r n=2:40

c=(4ˆ(1−n)) ∗ (z (n)) ˆ2 ; inner_sqrt=sq r t (1−c) ;
z (n+1)=(2ˆ(n−0.5)) ∗ s q r t (1−inner_sqrt) ;

end
rel_err_z=abs (z−p i) / p i ;

f p r i n t f (’ \n ’) ;

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 10/ 26

Calcolo π: metodo 3

% METODO 3 .
y (1) =1;
y (2) =2;
f o r n=2:40

num=(2ˆ(1/2)) ∗ abs (y (n)) ;
c=(4ˆ(1−n)) ∗ (z (n)) ˆ2 ;
inner_sqrt=sq r t (1−c) ;
den=sq r t (1+inner_sqrt) ;
y (n+1)=num/den ;

end
rel_err_y=abs (y−p i) / p i ;

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 11/ 26

Calcolo π: plots

% SEMILOGY PLOT.
ho ld on ;
s em i l o g y (1 : l e n g t h (u) , rel_err_u , ’ k . ’) ;
s em i l o g y (1 : l e n g t h (z) , rel_err_z , ’m+’) ;
s em i l o g y (1 : l e n g t h (y) , rel_err_y , ’ ro ’) ;
ho ld off ;

Di seguito digitiamo sulla shell di Matlab/Octave

>> pigreco

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 12/ 26

Plot risultati

0 5 10 15 20 25 30 35 40 45
10

−15

10
−10

10
−5

10
0

Figura : Errore relativo commesso con le 3 successioni, rappresentate
rispettivamente da ., + e o.

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 13/ 26

Discussione risultati.

I La prima successione converge molto lentamente a π, la
seconda diverge mentre la terza converge velocemente a π.

I Per alcuni valori {zn} e {yn} coincidono per alcune iterazioni
per poi rispettivamente divergere e convergere a π. Tutto ciò
è naturale poichè le due sequenze sono analiticamente (ma
non numericamente) equivalenti.

I Dal grafico dell’errore relativo, la terza successione, dopo aver
raggiunto errori relativi prossimi alla precisione di macchina, si
assesta ad un errore relativo di circa 10−15 (probabilmente per
questioni di arrotondamento).

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 14/ 26

L’algoritmo 2 in dettaglio
Successione approssimante π

Nell’approssimare il valore di π con la seguente formula ricorsiva

z2 = 2

zn+1 = 2n−0.5
√

1 −
√

1 − 41−nz2
n , n = 2, 3, . . . ,

si ottiene la seguente successione di valori (dove si è posto c = 41−nz2
n).

n + 1 c 1−
√

1− c zn+1
|zn+1−π|

π
· · · · · · · · · · · · · · ·
10 1.505e-04 7.529e-05 3.14157294036 6.27e-06
11 3.764e-05 1.882e-05 3.14158772527 1.57e-06
12 9.412e-06 4.706e-06 3.14159142150 3.92e-07
13 2.353e-06 1.176e-06 3.14159234561 9.80e-08
14 5.882e-07 2.941e-07 3.14159257654 2.45e-08
15 1.470e-07 7.353e-08 3.14159263346 6.41e-09
16 3.676e-08 1.838e-08 3.14159265480 3.88e-10
17 9.191e-09 4.595e-09 3.14159264532 2.63e-09
18 2.297e-09 1.148e-09 3.14159260737 1.47e-08
19 5.744e-10 2.872e-10 3.14159291093 8.19e-08
· · · · · · · · · · · · · · ·
28 2.220e-15 1.110e-15 3.16227766016 6.58e-03
29 5.551e-16 3.330e-16 3.46410161513 1.03e-01
30 1.665e-16 1.110e-16 4.00000000000 2.73e-01
31 5.551e-17 0.000e+00 0.00000000000 1.00e+00
32 0.000e+00 0.000e+00 0.00000000000 1.00e+00

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 15/ 26

Una successione ricorrente.

Consideriamo la successione {In} definita da

(4)

I n = 0: I0 = e−1
∫ 1

0 ex dx = e−1(e1 − 1).

I integrando per parti

In+1 = e−1

(
xn+1 ex |10 −(n + 1)

∫ 1

0
xn ex dx

)
= 1− (n + 1) In.

I In > 0, decrescente e si prova che In → 0 come 1/n.

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 16/ 26

Problema.

Calcoliamo In per n = 1, . . . , 99:

I mediante la successione in avanti{
I0 = e−1(e1 − 1)
In+1 = 1− (n + 1) In.

(5)

I mediante la successione all’indietro{
t1000 = 0
tn−1 = (1− tn)/n.

Si noti che se In+1 = 1− (n + 1) In allora In = (1− In+1)/(n + 1) e
quindi In−1 = (1− In)/n.

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 17/ 26

Successione ricorrente in Matlab

Scriviamo il codice in un file succricorrente.m.

% SUCCESSIONE RICORRENTE .
c l e a r a l l ;
% SUCCESSIONE ” s n ” .
s (1)=exp (−1) ;
f o r n=1:99

s (n+1)=1−(n+1)∗s (n) ;
end
% SUCCESSIONE ” t n ” .
M=1000;
t=ze r o s (M , 1) ; % INIZIALIZZAZIONE ” t ” .
f o r n=M :−1:2

j=n−1;
t (j)=(1−t (n)) /n ;

end

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 18/ 26

Successioni ricorrente in Matlab

% PLOT SEMI−LOGARITMICO .
c l f ;
ho ld on ;
s em i l o g y (1 : l e n g t h (s) , abs (s) , ’ k− ’) ;
s em i l o g y (1 : l e n g t h (s) , abs (t (1 : l e n g t h (s))) , ’m− ’) ;
ho ld off ;

Di seguito digitiamo sulla shell di Matlab/Octave

>> succricorrente

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 19/ 26

Plot risultati

0 20 40 60 80 100
10

−50

10
0

10
50

10
100

10
150

Figura : Grafico che illustra i valori assoluti assunti dalla successione in
avanti (in nero) e all’indietro (in rosa magenta).

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 20/ 26

Instabilità della formula ricorsiva

La formula In = 1− n In−1 è instabile, quindi amplifica l’errore ad
ogni passo.

Infatti, nel calcolatore

(In + εn) = 1− n(In−1 + εn−1).

Sottraendo dalla precedente equazione la relazione In = 1− nIn−1

si può quantificare l’errore:

εn = −n εn−1, e per induzione |εn| = n! |ε0.|

Il fattore n! amplifica l’errore di rappresentazione iniziale (su I0), ε0.

I Esempio. Nel calcolo di I20 l’errore è ε20 = 20! ε0 ≈ 2.7 · 102.

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 21/ 26

Formula alternativa stabile
La formula all’indietro smorza l’errore

Per l’errore al passo n − 1 si trova

εn−1 =
−1

n
εn.

Partendo da m

|εm−1| =
|εm|
m

, |εm−2| =
|εm|

m(m − 1)
, . . . , |εm−k | =

|εm|
m(m − 1) · · · (m − k + 1)

.

I La produttoria al denominatore abbatte rapidamente l’errore
iniziale!

I Per esempio, per calcolare I25 partendo da I40 = 0.5, l’errore
iniziale |ε40| < 0.5 verrebbe abbattuto di un fattore

40 · 39 · · · 27 · 26 = 5.2602 · 1022

.
Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 22/ 26

Facoltativo. Complessità : algoritmo di Horner.

Ci poniamo il problema di valutare il polinomio

p(x) = a0 + a1 · x + . . .+ an · xn (6)

in un punto x .
Osserviamo che

p(x) = a0 + x · (a1 + x · (a2 + . . .+ x · (an−1 + x · an))) (7)

Supponiamo sia a = (a0, . . . , an) il vettore di dimensione n + 1
delle componenti del polinomio. Possiamo valutare il polinomio
tramite i seguenti due algoritmi, il primo che valuta direttamente il
polinomio secondo quanto descritto in (6), il secondo che effettua
la stessa operazione come descritto in (7) calcolando dapprima
s1 = an−1 + x · an, poi s2 = an−2 + x · s1 e cos̀ı via.

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 23/ 26

Complessità : algoritmo di Horner.

In Matlab avremo allora

f u n c t i o n s=algoritmo1 (a , x)
xk=1; s=a (1) ;
f o r i=2: l e n g t h (a)

xk=xk∗x ;
s=s+a (i) ∗xk ;

end

e

f u n c t i o n s=algoritmo2 (a , x)
L=l eng t h (a) ;
s=a (L) ; % COMPONENTE a n IMMAGAZZINATA IN a (n+1) .
f o r i=L−1:−1:1

s=a (i)+x∗s ;
end

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 24/ 26

Complessità : algoritmo di Horner.

Se lanciamo il codice demo horner per la valutazione di
p(x) = 1 + 2 · x + 3 · x2 + 4 · x3 in x = π

c l e a r a l l ;
a=[1 2 3 4] ;
x=p i ;
y1=algoritmo1 (a , x) ;
y2=algoritmo2 (a , x) ;
fo rmat long ;
y1

y2

otteniamo

>> demo_horner

ans = 1.609171052316469e+02
y1 = 1.609171052316469e+02
y2 =1.609171052316469e+02
>>

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 25/ 26

Complessità : algoritmo di Horner.

La differenza sta nella complessità computazionale e non nel
risultato numerico. Il primo codice richiede 2n moltiplicazioni e n
somme, mentre il secondo algoritmo n moltiplicazioni e n somme.

Ángeles Mart́ınez Calomardo e Alvise Sommariva Matlab: complessità e stabilità degli algoritmi. 26/ 26

