
INTERPOLAZIONE POLINOMIALE ∗

A. SOMMARIVA † E M.VENTURIN ‡

1. Interpolazione polinomiale. Siano datiN + 1 puntix0, . . . , xN a due a due distinti
e in ordine crescente (cioéxi < xi+1), e i valori y0, . . . , yN ivi assunti da una funzione
y = f(x).

Il problema dell’interpolazione polinomiale(cf. [1, p.131], [8, p.289]) consiste nel
calcolare il polinomiopN di gradoN tale che

pN(xi) = yi, i = 0, . . . , N. (1.1)

Perché questo problema abbia senso, necessita garantire l’esistenza ed unicitá di tale
polinomiopN , questione che puó essere provata in vari modi (ad esempio in termini della
non singolaritá della matrice di Vandermonde [18]).

Nel casoN = 1, il problema diventa relativamente semplice. Non è altro che il calcolo
della retta che passa per due punti assegnatiP0 = (x0, y0) eP1 = (x1, y1) cioė da

y − y0

y1 − y0
=

x − x0

x1 − x0
(1.2)

abbiamo facilmente

y = y0
x − x1

x0 − x1
+ y1

x − x0

x1 − x0
. (1.3)

Notiamo subito che i polinomi

L0(x) :=
x − x1

x0 − x1
(1.4)

L1(x) :=
x − x0

x1 − x0
(1.5)

hanno la particolarità che

Li(xj) = δij

dove al solitoδi,j è il delta di Kronecker, cioè

δi,i = 1, δi,j = 0 peri 6= j.

Da (1.3), (1.4), (1.5) si ha ovviamente

pN(x) = y0L0(x) + y1L1(x). (1.6)

Vediamo il grafico dei polinomi di Lagrange nel casox0 = 1, x1 = 3. Digitiamo il codice
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‡DIPARTIMENTO DI INFORMATICA, UNIVERSITÀ DEGLI STUDI DI VERONA, STRADA LE GRAZIE

15, 37134 VERONA, ITALIA (MANOLO.VENTURIN@GMAIL.COM)

1



0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIGURA 1.1. I polinomi di LagrangeL0, L1 relativi ai puntix0 = 1, x1 = 3.

clf;

x0=1;
x1=3;
s=0.5:0.01:3.5;

caso=2; % DICE QUALE POLINOMIO DI LAGRANGE VOGLIAMO STUDIARE.

if caso == 1
lx=(s-x1)/(x0-x1);
l0=(x0-x1)/(x0-x1);
l1=(x1-x1)/(x0-x1);

else
lx=(s-x0)/(x1-x0);
l0=(x0-x0)/(x1-x0);
l1=(x1-x0)/(x1-x0);

end

hold on;

% DISEGNO PUNTI x0=1 e x1=3.
plot(x0,0,’bo’);
plot(x1,0,’bo’);

% DISEGNO VALORI x0=1 e x1=3 POLINOMI DI LAGRANGE.
plot(x0,l0,’r * ’);
plot(x1,l1,’r * ’);

% DISEGNO ASSE x.
plot(s,zeros(size(s)));

% DISEGNO POLINOMI DI LAGRANGE
plot(s,lx,’k-’);

hold off

ottenendo, rispettivamente percaso=1 ecaso=2 , i grafici in figura.
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L’idea dei polinomi di Lagrange è di estendere questa proprietà al casoN > 1. Lagrange
(cf. [12], [5]) osservò che il polinomio di gradoN

Lk(x) :=

N
∏

j=0,j 6=k

x − xj

xk − xj
=

(x − x0) . . . (x − xk−1)(x − xk+1) . . . (x − xN )

(xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xN )

(1.7)
è tale cheLk(xj) = δij . Quindi si vede facilmente che

pN (x) =

N
∑

k=0

ykLk(x). (1.8)

Infatti

pN(xj) =
N

∑

k=0

ykLk(xj) =
N

∑

k=0

ykδk,j = yj . (1.9)

Si osservi come ogni termine della sommatoria mostra separa(in qualche senso) il contributo
delle ordinateyk da quello dei polinomi di LagrangeLk essenzialmente dipendenti dai punti
{xj}j=0,...,N (si rifletta bene su questa affermazione).

1.0.1. Un esempio. Calcoliamo il polinomio di grado 2 che assume nei nodix0 = −2,
x1 = 1, x2 = 3 rispettivamente i valorif0 = −2, f1 = 11, f2 = 17. Come si vede dalla
definizione, i polinomi di Lagrange sono

L0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
=

(x − 1)(x − 3)

(−2 − 1)(−2 − 3)
=

(x − 1)(x − 3)

15

L1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
=

(x − (−2))(x − 3)

(1 − (−2))(1 − 3)
=

(x + 2)(x − 3)

−6

L2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
=

(x − (−2))(x − 1)

(3 − (−2))(3 − 1)
=

(x + 2)(x − 1)

10

Si vede subito che i polinomiL0, L1, L2 sono di secondo grado (e quindi tali le loro
combinazioni lineari), che

L0(x0) = L0(−2) = 1, L0(x1) = L0(1) = 0, L0(x2) = L0(3) = 0

L1(x1) = L1(1) = 1, L1(x0) = L1(−2) = 0, L1(x2) = L1(3) = 0

L2(x2) = L2(3) = 1, L2(x0) = L2(−2) = 0, L2(x1) = L2(1) = 0

e che il polinomio definito in (1.8)

p2(x) = −2 L0(x) + 11 L1(x) + 17 L2(x)

è tale che

p(x0) = −2 L0(x0) + 11 L1(x0) + 17 L2(x0) = −2 · 1 + 11 · 0 + 17 · 0 = −2,

p(x1) = −2 L0(x1) + 11 L1(x1) + 17 L2(x1) = −2 · 0 + 11 · 1 + 17 · 0 = 11,
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FIGURA 1.2. I polinomi di LagrangeL0, L1, L2 relativi ai puntix0 = −2, x1 = 1, x2 = 3.

p(x2) = −2 L0(x2) + 11 L1(x2) + 17 L2(x2) = −2 · 0 + 11 · 0 + 17 · 1 = 17,

e quindi è proprio il polinomio interpolante cercato.
Dal punto di vista pratico, (1.8) ha alcuni problemi. Se dopo aver calcolato il polinomio

pN interpolante inN + 1 punti (x0, y0), . . ., (xN , yN ), desideriamo ottenere il polinomio
pN+1 interpolante inN +2 punti (x0, y0), . . ., (xN , yN ), la formula (1.8) è inefficiente poichè
bisogna ricalcolare tutti i polinomi di Lagrange. Fortunatamente, esistono altre maniere di
esprimere il polinomio interpolatore, come quella di Newton (cf. [1, p.138], [8, p.294], [13],
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FIGURA 1.3.Pafnuty Lvovich Chebyshev (1821-1894) e Rehuel Lobatto (1797-1866).

[11]), che non soffrono di questo problema.
Per quanto concerne l’errore, se la funzione è di classeCN+1, si puó vedere dalteorema

del restoche

f(x) − pN (x) = f (N+1)(ξ)

∏N
i=0(x − xi)

(N + 1)!
(1.10)

doveξ ∈ I conI il più piccolo intervallo aperto contenentex0, . . . , xN .
Ma come scegliere (avendone la possibilità ) i punti in cui interpolare la funzionef :

[a, b] → R? Mostriamo due casi notevoli:

1. nodi equispaziati: fissatoN , i punti sono

xk = a + k
(b − a)

N
, k = 0, . . . , N ; (1.11)

2. nodi di Chebyshev-Gauss (scalati)[8, p.294]: fissatoN , i punti sono

xk =
(a + b)

2
+

(b − a)

2
tk, k = 0, . . . , N (1.12)

con

tk = cos

(

2k + 1

2N + 2
π

)

, k = 0, . . . , N ; (1.13)

3. nodi di Chebyshev-Gauss-Lobatto (scalati)[8, p.295]: fissatoN , i punti sono

xk =
(a + b)

2
+

(b − a)

2
tk, k = 0, . . . , N (1.14)

con

tk = − cos

(

kπ

N

)

, k = 0, . . . , N ; (1.15)

In seguito useremo i nodi di Chebyshev-Gauss-Lobatto, che adifferenza dei nodi di
Chebyshev (cf. [14], [4]) includono gli estremi dell’intervallo. Si consiglia di effettuare
gli esercizi successivi sostituendo ai nodi di Chebyshev-Gauss-Lobatto (scalati), quelli di
Chebyshev-Gauss. Si osservi che l’interpolante polinomiale in un set di nodi prefissati non
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FIGURA 1.4. Grafico che illustra l’interpolazione su nodi equispaziati(la funzione ha la linea continua, il
polinomio interpolatore è tratteggiato, i nodi di interpolazioni coi cerchietti).

converge sempre puntualmente alla funzione da approssimare. Infatti, per la funzione di
Runge

f(x) =
1

1 + x2
, x ∈ [−5, 5] (1.16)

si ha che il polinomio interpolatorepN in nodi equispaziati non converge (puntualmente) af .
Fortunatamente ciò non succede per i nodi di Chebyshev-Gauss, per cui comunque (per un
teorema dovuto a Faber) esistono funzioni continuef ma nonC1 tali che l’interpolantepN

non converge puntualmente af .

2. Interpolazione polinomiale in Matlab/Octave. Una volta nota le coppie da inter-
polare

(xk, yk), k = 0, . . . , N

e immagazzinate le componenti nei vettorix = (xk+1), y = (yk+1) ovek = 0, . . . , N (la
scelta degli indici dei vettorix ey è dovuta al fatto che un vettore in Matlab/Octave non può
avere indice0), siamo interessati a valutare il polinomio interpolatorepN nei puntisj con
j = 1, . . . , M . A tale scopo, Matlab/Octave propongono le funzionipolyfit e polyval .
Per capirne il loro utilizzo ci aiutiamo con l’help di Matlab.

2.1. Il comando polyfit . Partiamo con il descrivere il comandopolyfit .

>> help polyfit

POLYFIT Fit polynomial to data.
POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) of
degree N that fits the data, P(X(I))˜=Y(I), in a least-squar es sense.

[P,S] = POLYFIT(X,Y,N) returns the polynomial coefficient s P and a
structure S for use with POLYVAL to obtain error estimates on
predictions. If the errors in the data, Y, are independent no rmal
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with constant variance, POLYVAL will produce error bounds w hich
contain at least 50% of the predictions.

The structure S contains the Cholesky factor of the Vandermo nde
matrix (R), the degrees of freedom (df), and the norm of the
residuals (normr) as fields.

[P,S,MU] = POLYFIT(X,Y,N) finds the coefficients of a polyn omial
in XHAT = (X-MU(1))/MU(2) where MU(1) = mean(X) and MU(2) = st d(X).
This centering and scaling transformation improves the num erical
properties of both the polynomial and the fitting algorithm .

Warning messages result if N is >= length(X), if X has repeate d, or
nearly repeated, points, or if X might need centering and sca ling.

See also POLY, POLYVAL, ROOTS.

>>

Quello che non dice la routine è come venga descritto il polinomio interpolatore. Aiutiamoci
con il calcolo simbolico eseguito da Matlab, per calcolare il polinomio interpolatore in forma
usuale. Consideriamo di nuovo il polinomio di grado 2 che interpola le coppie (−2,−2),
(1, 11), (3, 17).

>> syms x
>> simplify((-2 * (x-1) * (x-3)/15)+(11 * (x+2) * (x-3)/(-6))+(17 * (x+2) * (x-1)/10))
ans =
-4/15 * xˆ2+61/15 * x+36/5
>> format long
>> -4/15
ans =

-0.26666666666667
>> 61/15
ans =

4.06666666666667
>> 36/5
ans =

7.20000000000000
>>

Testiamo l’uso di polyfit per quest’esempio

>> x=[-2 1 3];
>> y=[-2 11 17];
>> a=polyfit(x,y,2);
>> a
a =

-0.26666666666667 4.06666666666667 7.19999999999999
>>
>>

Quindi, sea = (ak)k=1,...,3, abbiamo

p2(x) = a1 x2 + a2 x + a3.
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Più in generale, sepN è il polinomio interpolatore di gradoN , ea = (ak) è il vettore ottenuto
utilizzandopolyfit , allora

pN (x) = a1 xN + a2 xN−1 + . . . + aN+1.

2.2. Il comando polyval . Descriviamo il comandopolyval . Aiutandosi con l’help
di Matlab

>> help polyval

To get started, select "MATLAB Help" from the Help menu.

POLYVAL Evaluate polynomial.
Y = POLYVAL(P,X), when P is a vector of length N+1 whose elemen ts
are the coefficients of a polynomial, is the value of the
polynomial evaluated at X.

Y = P(1) * XˆN + P(2) * X\ˆ(N-1) + ... + P(N) * X + P(N+1)

If X is a matrix or vector, the polynomial is evaluated at all
points in X. See also POLYVALM for evaluation in a matrix sens e.

Y = POLYVAL(P,X,[],MU) uses XHAT = (X-MU(1))/MU(2) in place of X.
The centering and scaling parameters MU are optional output
computed by POLYFIT.

[Y,DELTA] = POLYVAL(P,X,S) or [Y,DELTA] = POLYVAL(P,X,S,M U) uses
the optional output structure S provided by POLYFIT to gener ate
error estimates, Y +/- delta. If the errors in the data input t o
POLYFIT are independent normal with constant variance, Y +/ - DELTA
contains at least 50% of the predictions.

See also POLYFIT, POLYVALM.

>>

L’help ci suggerisce che quanto fornito dapolyfit è effettivamente un polinomio scritto
nella forma

y = P (1) · xN + P (2) · x(N−1) + · · · + P (N) · x + P (N + 1),

come notato precedentemente.
Sea = (ak)k=1,...,N+1 es = (sj)j=1,...,M , la chiamata

t=polyval(a,s);

valuta il polinomio

pN(x) = a1 xN + . . . + aN+1

nei nodis = (sj) e ponet = (tj) contj = pN (sj).
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2.3. Una funzione per il calcolo e la valutazione del polinomio interpolatore. Aven-
do a disposizione i comandipolyfit e polyval , posti

x = {xk}k=1,...,N+1, y = {yk}k=1,...,N+1, s = {sk}k=1,...,M

vediamo di valutare nei puntisj il polinomio pN tale che

pN (xk) = yk.

A tal proposito definiamo la funzioneinterpol

function t=interpol(x,y,s)

%----------------------------------------------
% Interpolazione
%
% In input:
% x: nodi.
% y: valori nei nodi.
% s: nodi su cui calcolare l’interpolante.
%
% In output:
% t: valori dell’interpolante o approssimante.
%----------------------------------------------

m=length(x)-1;
coeff=polyfit(x,y,m);
t=polyval(coeff,s);

Quale esempio torniamo di nuovo al polinomiop2 di grado 2 che interpola le coppie (−2,−2),
(1, 11), (3, 17). Usando Matlab e il calcolo simbolico abbiamo visto direttamente che

p2(x) = (−4/15) · x2 + (61/15) · x + 36/5.

In effetti si verifica numericamente che questo è il polinomio interpolante (−2,−2), (1, 11),
(3, 17)

>> format long
>> p2=inline(’-4/15 * x.ˆ2+61/15 * x+36/5’);
>> feval(p2,-2)

ans =

-1.999999999999999

>> feval(p2,1)

ans =

11

>> feval(p2,3)

ans =

9



17

>>

Vediamo per prima cosa quanto valgonop2(−1), p2(0), p2(2).

>> format long
>> p2=inline(’-4/15 * x.ˆ2+61/15 * x+36/5’);
>> feval(p2,-1)

ans =

2.866666666666667

>> feval(p2,0)

ans =

7.200000000000000

>> feval(p2,2)

ans =

14.266666666666666

>>

Verifichiamo di seguito tali risultati con la funzioneinterpol .

>> % ASCISSE "x" E ORDINATE "y" CHE DEFINISCONO
>> % IL POLINOMIO INTERPOLATORE.
>> x=[-2 1 3];
>> y=[-2 11 17];
>> % ASCISSE IN CUI VALUTARE IL POLINOMIO INTERPOLATORE.
>> s=[-1 0 2];
>> % VALUTO IL POLINOMIO INTERPOLATORE.
>> t=interpol(x,y,s);
>> t=t’

t =

2.866666666666664
7.199999999999995

14.266666666666662

>>

Di conseguenza, a meno di decimali,interpol fa quanto richiesto.

3. Un esempio sull’interpolazione polinomiale in Matlab/Octave.
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FIGURA 3.1. Grafico della funzione di Runge1/(1 + x2) nell’intervallo [−5, 5] e delle sue interpolanti di
grado8 nei nodi equispaziati e di Chebyshev-Gauss-Lobatto (rispettivamente linea continua, tratteggiata e a puntini,
come da legenda).

1. Si implementi una function che calcola i nodi di Chebyshev-Gauss per un intervallo
qualsiasi.

2. Si implementi poi una function che interpoli polinomialmente una funzione che as-
sume valoriy su un vettore di nodix che vengono forniti in input. Tale funzione
Matlab deve inoltre calcolare i valorit che l’interpolante polinomialepN assume
nei nodi tests. Si testi il codice, producendo dei grafici, sulle funzioni

• f(x) = 1
1+x2 in [−5, 5].

usandon nodi equispaziati (con alcuni valori din tra6 e11) en nodi di Chebyshev-
Gauss-Lobatto (con i medesimi valori din), calcolando gli errori in norma infinito
tra la funzione e le interpolanti. In particolare, si mostri(mediante grafici e/o va-
lori dell’errore) che per il controesempio di Runge (cf. [9], [16]) l’aumento del
numero di nodi equispaziati non migliora la ricostruzione della funzione da parte
dell’interpolante.

3.1. Implementazione. Si scrivano le functionscheb.m , interpol.m , runge.m
definite rispettivamente come

function xc=cheb(a,b,n)
for m=1:1:n

xc(m)=(a+b)/2-((b-a)/2) * cos(pi * (m-1)/(n-1));
end

function [fx]=runge(x)
fx=1./(x.ˆ2+1);

Eseguire poi da Matlab/Octave il programma principaleesperimento.m

n=11; % GRADO.
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FIGURA 3.2. Grafico della funzione di Runge1/(1 + x2) nell’intervallo [−5, 5] e della sua interpolante di
grado12 nei nodi equispaziati (rispettivamente linea continua, tratteggiata, come da legenda.

x=-5:10/n:5; % NODI INTERP. (EQUISPAZ.).
y=runge(x); % FUNZIONE NEI NODI EQUISP.
s=-5:10/(10 * n):5; % NODI TEST.
t=interpol(x,y,s); % INTERPOLANTE NEI NODI TEST.

xcheb=cheb(-5,5,n); % NODI CHEB.
ycheb=runge(xcheb); % FUNZIONE NEI NODI CHEB.
tcheb=interpol(xcheb,ycheb,s); % INTP. CHEB.
plot(s,runge(s),s,t,s,tcheb); % PLOT INTP. VS RUNGE.
err_eqs=norm(runge(s)-t,inf); % ABS. ERR. EQUISPAZ.
err_cheb=norm(runge(s)-tcheb,inf); % ABS. ERR. CHEB.
fprintf(’\n \t [ABS.ERR.][EQS]: 2.2e [CHEB]: %2.2e’,err_ eqs,err_cheb);

Provando per diversi valori din, e tralasciando i warnings di Matlab relativi a polyfit, otte-
niamo:

[N]: 2 [ABS.ERR.][EQS]: 6.46e-001 [CHEB]: 9.62e-001
[N]: 3 [ABS.ERR.][EQS]: 7.07e-001 [CHEB]: 6.46e-001
[N]: 4 [ABS.ERR.][EQS]: 4.38e-001 [CHEB]: 8.29e-001
[N]: 5 [ABS.ERR.][EQS]: 4.33e-001 [CHEB]: 4.58e-001
[N]: 6 [ABS.ERR.][EQS]: 6.09e-001 [CHEB]: 6.39e-001
[N]: 7 [ABS.ERR.][EQS]: 2.47e-001 [CHEB]: 3.11e-001
[N]: 8 [ABS.ERR.][EQS]: 1.04e+000 [CHEB]: 4.60e-001
[N]: 9 [ABS.ERR.][EQS]: 2.99e-001 [CHEB]: 2.04e-001
[N]: 10 [ABS.ERR.][EQS]: 1.92e+000 [CHEB]: 3.19e-001
[N]: 11 [ABS.ERR.][EQS]: 5.57e-001 [CHEB]: 1.32e-001
[N]: 12 [ABS.ERR.][EQS]: 3.66e+000 [CHEB]: 2.18e-001
[N]: 13 [ABS.ERR.][EQS]: 1.07e+000 [CHEB]: 8.41e-002
[N]: 14 [ABS.ERR.][EQS]: 7.15e+000 [CHEB]: 1.47e-001
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[N]: 15 [ABS.ERR.][EQS]: 2.10e+000 [CHEB]: 5.33e-002

Si nota subito che

• l’istruzionem=length(x)-1; calcola il grado dell’interpolante che è uguale al
numero di punti meno uno;

• i nodi di cheb , sono quelli di Chebyshev-Gauss-Lobatto. Infatti perm = 1

xc(1) =
(a + b)

2
−

(b − a)

2
· cos

(

π ·
1 − 1

n − 1

)

=
(a + b)

2
−

(b − a)

2
· cos(0)

=
(a + b)

2
−

(b − a)

2
= a (3.1)

mentrem = n porge

xc(n) =
(a + b)

2
−

(b − a)

2
· cos

(

π ·
n − 1

n − 1

)

=
(a + b)

2
−

(b − a)

2
· cos(π)

=
(a + b)

2
−

(b − a)

2
(−1)

= b (3.2)

Osserviamo che a prima vista la routine cheb sembra produrreun set di nodi diversi
da quelli di Chebyshev-Gauss-Lobatto (scalati) introdotti in (1.15). In realtà sono
gli stessi come si può facilmente verificare matematicamente o in Matlab

>> N=10;
>> k=0:N;
>> t=-cos(k * pi/N);
>> t=sort(t);
>> t
t =

Columns 1 through 7
-1.0000 -0.9511 -0.8090 -0.5878 -0.3090 -0.0000 0.3090

Columns 8 through 11
0.5878 0.8090 0.9511 1.0000

>> xc=cheb(-1,1,N+1)
xc =

Columns 1 through 7
-1.0000 -0.9511 -0.8090 -0.5878 -0.3090 -0.0000 0.3090

Columns 8 through 11
0.5878 0.8090 0.9511 1.0000

>>

• il caso dei nodi equispaziati è semplice da programmare. Infatti la chiamata
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>> a=-5;
>> b=5;
>> N=10;
>> h=(b-a)/N;
>> x=a:h:b
x =

-5 -4 -3 -2 -1 0 1 2 3 4 5

>> length(x)
ans = 11
>>

suggerisce come fissatoN si possa generare un set diN + 1 punti equispaziati in
[a, b] (comprendente gli estremi).

• l’errore dell’interpolante della funzione di Runge nei nodi equispaziati non con-
verge a0. Osserviamo la parziale descrescita degli errori dall’iterata2 alla 4 per
poi aumentare peggiorando da iterazione ad iterazione. Similmente osserviamo la
parziale descrescita degli errori dall’iterata3 alla5, dall’iterata5 alla7, per poi peg-
giorare sempre più . Il grafico in figura fa capire come l’errore sia particolarmente
significativo in prossimità degli estremi−5 e5.

• l’errore dell’interpolante della funzione di Runge nei nodi di Chebyshev-Gauss-
Lobatto (scalati) converge a0 (si osservi la particolare decrescita dei gradi pari e
dispari).

• Ci si può chiedere perchè i nodi di Chebyshev-Gauss-Lobatto (scalati) vadano me-
glio. Ricordiamo che la funzione di Runge èC∞([−5, 5]) e sussiste il seguente
teorema dovuto a Bernstein (cf. [3, p.136])
TEOREMA 3.1. Sef ∈ C1([a, b]) con [a, b] intervallo limitato e chiuso della retta
reale, il polinomioPn di grado n di interpolazione della funzionef nei nodi di
Chebyshev-Gauss di gradon+1 converge uniformemente af su[a, b], pern → ∞.
Se inoltref ∈ C2([a, b]) si ha la seguente stima dell’errore

‖f − Pn‖∞ = O(n−1/2).

Il comportamento dell’interpolante nei nodi di Chebyshev-Gauss-Lobatto è analogo.

4. Esercizio. Calcolare analiticamente il polinomio di terzo grado che interpola le cop-
pie (1, 0), (2, 2), (4, 12), (5, 21). Quindi valutare tale polinomio nei punti di ascissa−1, 0,
10.

5. Facoltativo e tecnico: sul calcolo dell’interpolante polinomiale. Lanciamo in Ma-
tlab 6.1 il codiceesperimento , che fa un confronto tra nodi equispaziati e di Chebyshev
pern = 12 (quindi ci sono13 punti di sampling). Il risultato è il seguente

>> esperimento
[ABS.ERR.][EQS]: 3.66e+000 [CHEB]: 2.18e-001

>>

Variamo inesperimento la variabilen, ponendola uguale a13. Matlab da’ il seguente
messaggio di warning:

14



>> esperimento
Warning: Polynomial is badly conditioned. Remove repeated data points

or try centering and scaling as described in HELP POLYFIT.
> In C:\MATLAB6p1\toolbox\matlab\polyfun\polyfit.m at l ine 74

In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\interpol.m
at line 17
In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\esperimento.m
at line 5

[ABS.ERR.][EQS]: 1.07e+000 [CHEB]: 8.41e-002
>>

Poniamo oran = 15 è il risultato è anche peggio

>> esperimento
Warning: Polynomial is badly conditioned. Remove repeated data points

or try centering and scaling as described in HELP POLYFIT.
> In C:\MATLAB6p1\toolbox\matlab\polyfun\polyfit.m at l ine 74

In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\interpol.m
at line 17
In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\esperimento.m
at line 5

Warning: Polynomial is badly conditioned. Remove repeated data points
or try centering and scaling as described in HELP POLYFIT.

> In C:\MATLAB6p1\toolbox\matlab\polyfun\polyfit.m at l ine 74
In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\interpol.m

at line 17
In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\esperimento.m

at line 9

[ABS.ERR.][EQS]: 2.10e+000 [CHEB]: 5.33e-002
>>

Diamo una spiegazione. Il codice dipolyfit risolve il sistema lineare prodotto dalla ma-
trice di VandermondeV (cf. [18]), con una fattorizzazioneQR (cf. [17]). In altre parole
seV = (Vi,j) conVi,j = xj−1

i (xi sono le ascisse dei nodi di sampling prescelti), si scri-
ve A = Q ∗ R conQ ortonormale eR triangolare superiore e quindi si risolveV c = y (c
sono i coefficenti del polinomio interpolantep(x) =

∑

k ckxk) come soluzione del sistema
Rc = Q′ ∗ y. SeR è malcondizionata in norma1, più precisamente‖R‖1‖R

−1‖1 > 1010,
Matlab/Octave segnala un warning. La cosa è più elaboratadi cosı̀ in quantopolyfit
usa la cosidettaeconomy size versiondella fattorizzazione QR, ma tralasciamo i dettagli per
chiarezza.
Per sopperire a questi problemi una delle possibili soluzioni consiste nell’usare la cosidetta
formulazione baricentricadei polinomi di Lagrange (cf. [2], [19]). Questa è implementata in
Matlab nel codicebarylag [19]. Una volta scaricato e scompattato il file zip, e digitato il
codiceesperimento bar

n=15; % GRADO.
x=(-5:10/n:5)’; % NODI INTERP. (EQUISPAZ.).
y=runge(x); % FUNZIONE NEI NODI EQUISP.
s=(-5:10/(10 * n):5)’; % NODI TEST.
data_eqs=[x y];
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t=barylag(data_eqs,s);

xcheb=(cheb(-5,5,n))’; % NODI CHEB.
ycheb=runge(xcheb); % FUNZIONE NEI NODI CHEB.
data_cheb=[xcheb ycheb];
tcheb=barylag(data_cheb,s);

% INTP. CHEB.
plot(s,runge(s),s,t,s,tcheb); % PLOT INTP. VS RUNGE.
err_eqs=norm(runge(s)-t,inf); % ABS. ERR. EQUISPAZ.
err_cheb=norm(runge(s)-tcheb,inf); % ABS. ERR. CHEB.
fprintf(’\n \t [ABS.ERR.][EQS]: %2.2e [CHEB]: %2.2e’,err _eqs,err_cheb);

abbiamo

>> esperimento_bar

[ABS.ERR.][EQS]: 2.10e+000 [CHEB]: 5.33e-002

Per curiosità paragoniamo i due codiciesperimento ed esperimento bar per n =
100, ottenendo rispettivamente

>> esperimento
Warning: Polynomial is badly conditioned. Remove repeated data points

or try centering and scaling as described in HELP POLYFIT.
> In C:\MATLAB6p1\toolbox\matlab\polyfun\polyfit.m at l ine 74

In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\interpol.m
at line 17

In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\esperimento.m
at line 5

Warning: Polynomial is badly conditioned. Remove repeated data points
or try centering and scaling as described in HELP POLYFIT.

> In C:\MATLAB6p1\toolbox\matlab\polyfun\polyfit.m at l ine 74
In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\interpol.m

at line 17
In D:\DVD_27_OTTOBRE_2007\CS_2008\INTERPOLAZIONE_200 8\MFILES\esperimento.m

at line 9

[ABS.ERR.][EQS]: 5.02e+019 [CHEB]: 2.14e+007
>>

e

>> esperimento_bar

[ABS.ERR.][EQS]: 4.57e+005 [CHEB]: 5.62e-009
>>

segno che i risultati ottenuti conpolyfit sono inaccettabili, mentre quelli dibarylag
sono perfettamente in parallelo con quanto detto nelle sezioni precedenti relativamente al
fenomeno di Runge (si osservi che nel primo caso l’interpolazione nei nodi di Chebyshev
sembra divergere, in disaccordo con la teoria!).
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6. Sulla formula del resto. Si consideri la funzione

f(x) := log (x)

e si supponga di conoscere i valori perx0 = 1, x1 = 1.1 edx2 = 1.2. Si calcoli il polinomio
di secondo gradop2 che interpola tali punti, e lo si valuti ins = 1.09. Quindi si utilizzi la
formula dell’errore per funzioni di classeCN+1 (teorema del resto)

f(x) − pN (x) = f (N+1)(ξ)

∏N
i=0(x − xi)

(N + 1)!
, ξ ∈ I(x0, . . . , xN ) (6.1)

per valutare

| log (s) − p2(s)|.

Risoluzione. Il polinomio interpolatore è per quanto visto

p(x) = log (1)L0(x) + log (1.1)L1(x) + log (1.2)L2(x),

doveLj è il j-simo polinomio di Lagrange.
Dalla formula del resto (perf(x) = log (x), x = 1.09, x0 = 1, x1 = 1.1, x2 = 1.2 ed

N = 2) otteniamo:

| log (1.09)− p2(1.09)| = |
2

ξ3

(1.09 − 1)(1.09 − 1.1)(1.09 − 1.2)

6
|,

in quanto la derivata terza dilog (x) è 2
x3 . Siccomeξ ∈ (1, 1.2), dalla decrescenza di2x3

deduciamo che

1.1574 ≈
2

1.23 <
2

ξ3
<

2

13
= 2.

Essendo

(1.09 − 1)(1.09 − 1.1)(1.09 − 1.2) ≈ 9.9 · 10−5

ricaviamo quindi che l’errore dell’interpolante è

1.9097 · 10−5 ≈ 1.1574 · 9.9 · 10−5/6 ≤ | log (s) − p2(s)| ≤ 2 · 9.9 · 10−5/6 = 3.3 · 10−5.

Utilizzando la funzioneinterpol.mprecedentemente introdotta, si verifica che

p2(1.09) ≈ 0.08615260795055

mentre

log (1.09) ≈ 0.08617769624105

e quindi

| log (1.09) − p2(1.09)| ≈ 2.51 · 10−5

perfettamente in linea con le stime fornite.

Esercizio facoltativo. Effettuare un programma Matlab che calcoli il valore assunto in 1.09
dal polinomio interpolatore della funzionelog relativamente ai punti1, 1.1, 1.2. E’ buona
l’approssimazione fornita dal polinomio interpolatore? (Suggerimento: si noti che
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1. il programma è una variante di quanto visto inesperimento.m , per una adeguata
scelta dei nodix , dei valoriy , del puntos ;

2. eliminare la parte relativa ai nodi di Chebyshev-Gauss-Lobatto;

3. il plot non è molto indicativo;

4. siccome il comandonorm(v,inf) calcola perv = {vi} la quantità

‖v‖∞ = max
i

|vi|

visto che si deve valutare l’errore su un solo punto, il comandonorm(...,inf)
in esperimento.m può essere sostituito daabs(...) (rifletterci sopra);

5. la funzionelog è predefinita in Matlab/Octave e quindi non serve ridefinirla come
funzione.

Esercizio facoltativo. Aiutandosi con Matlab/Octave eseguire un programma che calcoli
l’interpolante della funzione

f(x) := exp (x)

relativamente alle ascissex = 1, x = 1.1 ed x = 1.2. Si calcoli il polinomio di secondo
gradop2 che interpola tali punti, e lo si valuti ins = 1.09. Fornire una stima dell’errore e
verificarne la bontà rispetto al risultato esatto.

Esercizio facoltativo. Fissatia = −1, b = 1, n = 15, si plottino i nodi di Chebyshev-Gauss.
Si suggerisce di utilizzare la functioncheb.m e per il plottaggio un comando del tipo

plot(x,y,’r-o’)

Ricordiamo che

• l’opzioner-o

1. disegna un cerchietto rosso per ognuno dei punti (x1, y1), . . ., (xi, yi), . . .,
(xn, yn);

2. peri = 1, . . . , n − 1, unisce i punti (xi, yi), (xi+1, yi+1) con un segmento
rosso.

• essendo importante disegnare solo le ascisse (e non le ordinate), quali ordinate si
può porre

y=zeros(size(x));

Una volta completato l’esercizio si osservi la particolaredisposizione dei nodi di Chebyshev-
Gauss. Si accumulano verso gli estremi dell’intervallo?

7. Online. Si possono reperire online varie bibliografie dei matematici sopra citati:

1. http://en.wikipedia.org/wiki/Chebyshev

2. http://www-history.mcs.st-andrews.ac.uk/Biographies/Chebyshev.html

3. http://it.wikipedia.org/wiki/Lagrange

4. http://www-history.mcs.st-andrews.ac.uk/Biographies/Lagrange.html
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5. http://en.wikipedia.org/wiki/IsaacNewton
Per quanto riguarda l’interpolazione:

1. http://it.wikipedia.org/wiki/Interpolazione%28matematica%29

2. http://it.wikipedia.org/wiki/Interpolazionepolinomiale

3. http://en.wikipedia.org/wiki/Interpolation

4. http://en.wikipedia.org/wiki/Polynomialinterpolation

5. http://it.wikipedia.org/wiki/Fenomenodi Runge

6. http://en.wikipedia.org/wiki/Runge%27sphenomenon

7. http://en.wikipedia.org/wiki/Newtonpolynomial

8. http://it.wikipedia.org/wiki/Nodidi Chebyshev

9. http://en.wikipedia.org/wiki/QRdecomposition

10. http://en.wikipedia.org/wiki/Vandermondematrix

8. Frasi celebri.
1. To isolate mathematics from the practical demands of the sciences is to invite the

sterility of a cow shut away from the bulls. (Chebyshev)

2. God made the integers; all else is the work of man. (Kronecker).

3. Before we take to sea we walk on land. Before we create we must understand.
(Lagrange)

4. When we ask advice, we are usually looking for an accomplice. (Lagrange)

5. It took the mob only a moment to remove his head; a century will not suffice to
reproduce it. [said about the chemist Lavoisier] (Lagrange)

6. I do not know. [summarising his life’s work] (Lagrange)

7. These astronomers are queer; they won’t believe in a theory unless it agrees with
their observations. (Lagrange) item How lucky was Newton! In his time the system

of the world was still to be discovered! (Lagrange)
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