
Calcolo di autovalori e autovettori

Alvise Sommariva
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Autovalori

Il problema del calcolo degli autovalori di una matrice quadrata A
di ordine n consiste nel trovare gli n numeri (possibilmente
complessi) λ tali che

Ax = λx , x 6= 0 (1)

Si osservi che a seconda delle esigenze

I talvolta è richiesto solamente il calcolo di alcuni autovalori (ad
esempio quelli di massimo modulo, per determinare lo spettro
della matrice),

I talvolta si vogliono determinare tutti gli n autovalori in C.
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Autovalori

Per semplicità, dopo i teoremi di localizzazione di Gershgorin,
mostreremo solo due metodi classici, uno per ognuna di queste
classi, quello delle potenze e il metodo QR, rimandando per
completezza alla monografia di Saad o a manuali di algebra lineare
[2], [13].

Nota.

Una interessante applicazione è l’algoritmo di PageRank [11],
utilizzato da Google per fornire i risultati migliori tra i siti web
relativamente a certe parole chiave ed in prima approssimazione
basato sul calcolo di un autovettore relativo all’autovalore 1 (ad
esempio via metodo delle potenze) di una matrice stocastica di
dimensioni enormi.
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Teoremi di Gershgorin

In questo paragrafo mostriamo tre teoremi di localizzazione di
autovalori dovuti a Gershgorin (cf. [2, p.76], [15]).

Teorema (Primo teorema di Gershgorin)

Gli autovalori di una matrice A di ordine n sono tutti contenuti
nell’unione dei cerchi di Gershgorin

Ki = {z ∈ C : |z − ai ,i | ≤
n∑

j=1,j 6=i

|ai ,j |}
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Teoremi di Gershgorin

Esempio

Vediamo quale esempio la matrice

A =

 15 −2 2
1 10 −3
−2 1 0

 (2)

Il primo teorema di Gershgorin stabilisce che gli autovalori stanno
nell’unione dei cerchi di Gershgorin

K1 = {z ∈ C : |z − 15| ≤ | − 2|+ |2| = 4}
K2 = {z ∈ C : |z − 10| ≤ |1|+ | − 3| = 4}
K3 = {z ∈ C : |z − 0| ≤ | − 2|+ |1| = 3}
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Teoremi di Gershgorin

Figura : Cerchi di Gershgorin della matrice A definita in (5)
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Teoremi di Gershgorin

Teorema (Secondo teorema di Gershgorin)

Se l’unione M1 di k cerchi di Gershgorin è disgiunta dall’unione M2

dei rimanenti n− k, allora k autovalori appartengono a M1 e n− k
appartengono a M2.

Esempio

Relativamente a

A =

 15 −2 2
1 10 −3
−2 1 0

 (3)

applicando il secondo teorema di Gershgorin, dal confronto con la
figura abbiamo che un autovalore sta nel cerchio K3 mentre due
stanno nell’unione dei cerchi K1, K2.
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Teoremi di Gershgorin

Definizione

Una matrice di ordine n ≥ 2 è riducibile se esiste una matrice di
permutazione Π e un intero k, 0 < k < n, tale che

B = ΠAΠT =

(
A1,1 A1,2

0 A2,2

)
in cui A1,1 ∈ Ck×k , A2,2 ∈ C(n−k)×(n−k).

Definizione

Una matrice si dice irriducibile se non è riducibile.
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Teoremi di Gershgorin

Nota.

Per verificare se una matrice A = (ai ,j ) sia irriducibile (cf. [8]),
ricordiamo che data una qualsiasi matrice, è possibile costruire un
grafo avente come nodi gli indici della matrice. In particolare, il
nodo i-esimo è connesso al nodo j-esimo se l’elemento ai ,j è
diverso da 0.

Il grafo associato si dice fortemente connesso se per ogni coppia
(i , j) posso raggiungere j a partire da i .

Una matrice è irriducibile se e solo se il grafo ad essa associata
(detto di adiacenza) è fortemente connesso.

In altre parole, una matrice riducibile se e solo se il grafo di
adiacenza ad esso associato non è fortemente connesso.
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Teoremi di Gershgorin

Teorema (Terzo teorema di Gershgorin)

Se la matrice di ordine n è irriducibile e un autovalore λ sta sulla
frontiera dell’unione dei cerchi di Gershgorin, allora sta sulla
frontiera di ogni cerchio di Gershgorin.

Esempio

La matrice

B =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


è irriducibile, in quanto il grafico di adiacenza è fortemente
connesso. Gli autovalori stanno nella disco centrato in (2, 0) e
raggio 2 (primo teorema di Gershgorin), ma non sulla frontiera
(terzo teorema di Gershgorin). Quindi è non singolare.
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Teoremi di Gershgorin

Vediamo ora in Matlab quali sono effettivamente gli autovalori. si
ha

>> A=[15 −2 2 ; 1 10 −3; −2 1 0 ]
A =

15 −2 2
1 10 −3
−2 1 0

>> e i g ( A )
ans =

0.5121
14.1026
10.3854

>>

a conferma di quanto stabilito dai primi due teoremi di Gershgorin.
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Teoremi di Gershgorin

Nota.

I Ricordiamo che A è una matrice a coefficienti reali, allora A e
AT hanno gli stessi autovalori (cf. [2, p.47]) e quindi
applicando i teoremi di Gershgorin alla matrice trasposta
possiamo ottenere nuove localizzazioni degli autovalori.

I Nel caso A sia a coefficienti complessi, se λ è un autovalore di
A allora il suo coniugato λ è autovalore della sua trasposta
coniugata A. Da qui si possono fare nuove stime degli
autovalori di A.

Esercizio

Cosa possiamo dire relativamente agli autovalori di A se
applichiamo i teoremi di Gershgorin ad AT invece che ad A?
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Metodo delle potenze

Il metodo delle potenze è stato suggerito nel 1913 da Muntz ed è
particolarmente indicato per il calcolo dell’autovalore di massimo
modulo di una matrice.

Sia A una matrice quadrata di ordine n con

I n autovettori x1, . . ., xn linearmente indipendenti,

I autovalori λ1, . . ., λn tali che

|λ1| > |λ2| ≥ . . . ≥ |λn|. (4)
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Metodo delle potenze

A tal proposito ricordiamo (cf. [3], p. 951) i seguenti risultati.

I Una matrice A è diagonalizzabile se e solo se possiede n
autovettori linearmente indipendenti.

I Se tutti gli autovalori di A sono distinti la matrice è
diagonalizzabile; l’opposto è ovviamente falso (si pensi alla
matrice identica).

I Una matrice simmetrica (hermitiana) è diagonalizzabile.
L’opposto è ovviamente falso, visto che la matrice

A =

(
15 0
1 10

)
(5)

è diagonalizzabile visto che ha tutti gli autovalori distinti ma
non è simmetrica.
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Metodo delle potenze

Metodo. (Potenze)

Sia t0 ∈ Rn definito da

t0 =
n∑

i=1

αi xi , α1 6= 0

Il metodo delle potenze genera la successione

y0 = t0

yk = Ayk−1, k = 1, 2, . . .
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Metodo delle potenze

Teorema

Sia A è una matrice quadrata diagonalizzabile avente autovalori λk

tali che

|λ1| > |λ2| ≥ . . . ≥ |λn|.
Siano uk 6= 0 autovettori relativi all’autovalore λk , cioè

Auk = λk uk .

Sia
y0 =

∑
k

αk uk , α1 6= 0.

La successione {ys} definita da ys+1 = Ays converge ad un vettore
parallelo a x1 e che il coefficiente di Rayleigh (relativo al prodotto
scalare euclideo)

ρ(ys ,A) :=
(ys ,Ays)

(ys , ys)
→ λ1. (6)
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Metodo delle potenze

Dimostrazione.

Per la dimostrazione si confronti [7, p.171]. Essendo la matrice A
diagonalizzabile, esistono n autovettori uk (relativi rispettivamente
agli autovalori λk ) che sono linearmente indipendenti e quindi
formano una base di Rn. Sia

y0 =
∑

k

αk uk , α1 6= 0.

Essendo Auk = λk uk abbiamo

y1 = Ay0 = A(
∑

k

αk uk ) =
∑

k

αk Auk =
∑

k

αkλk uk

y2 = Ay1 = A(
∑

k

αkλk uk ) =
∑

k

αkλk Auk =
∑

k

αkλ
2
k uk

e più in generale

ys+1 = Ays = A(
∑

k

αkλ
s
k uk ) =

∑
k

αkλ
s
k Auk =

∑
k

αkλ
s+1
k uk .
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Metodo delle potenze

Osserviamo ora che

ys+1

λs+1
1

=
∑

k

αk
λs+1

k

λs+1
1

uk (7)

per cui essendo per k > 1 ∣∣∣∣∣λs+1
k

λs+1
1

∣∣∣∣∣ < 1,

si ha

lim
s→+∞

(
λk

λ1

)s

= 0

e quindi la direzione di ys

λs
1
, che è la stessa di ys , tende a quella

dell’autovettore u1.
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Metodo delle potenze

Si osservi che il coefficiente di Rayleigh ρ(·,A) = (x ,Ax)/(x , x) è
continuo in ogni x 6= 0, x ∈ Rn in quanto tanto il numeratore
quanto il denominatore sono funzioni (multivariate) polinomiali
(quadratiche) delle componenti xk di x = (xk )k ∈ Rn, che sono
appunto continue.

Per continuità , se ys/λ
s → α1u1 allora, essendo λ1 6= 0, da

lim
s
ρ(ys ,A) := lim

s

(ys ,Ays)

(ys , ys)
= lim

s

(ys/λ
s
1,A(ys/λ

s
1))

(ys/λs
1, ys/λs

1)

=
(α1u1,A(α1u1))

(α1u1, α1u1)
=

(u1,Au1)

(u1u1)
= λ1, (8)

ricaviamo che il coefficiente di Rayleigh ρ(ys ,A) converge a λ1.
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Metodo delle potenze

Nota.

Il metodo converge anche nel caso in cui

λ1 = . . . = λr

per r > 1, tuttavia non è da applicarsi quando l’autovalore di
modulo massimo non è unico.

Nota.

In virtú di possibili underflow e underflow si preferisce normalizzare
il vettore yk precedente definito. Cos̀ı l’algoritmo diventa

uk = Atk−1

tk = uk
βk
, βk = ‖uk‖2

lk = ρ(tk ,A)

(9)

dove ρ(tk ,A) è il coefficiente di Rayleigh definito in (6).
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Metodo delle potenze inverse

Una variante particolarmente interessante del metodo delle potenze
è stata scoperta da Wielandt nel 1944 [9] ed e’ particolarmente
utile nel caso in cui A sia una matrice quadrata con n autovettori
linearmente indipendenti,

|λ1| ≥ |λ2| ≥ . . . > |λn| > 0. (10)

e si desideri calcolare il piú piccolo autovalore in modulo, cioè
λn, applicando il metodo delle potenze ad A−1.
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Metodo delle potenze inverse

Si ottiene cośı la successione {tk} definita da

Auk = tk−1

tk = uk
βk
,

βk = ‖uk‖2

e convergente ad un vettore parallelo a xn. La successione di
coefficienti di Rayleigh è tale che

ρ(tk ,A
−1) :=

(tk ,A
−1tk )

(tk , tk )
=

(tk , uk+1)

(tk , tk )
→ 1/λn. (11)

da cui è immediato calcolare λn.
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Metodo delle potenze inverse

Vediamo in dettaglio questo punto. Se {ξi} sono gli autovalori di
A−1 con

|ξ1| > |ξ2| ≥ |ξ3| ≥ . . . ≥ |ξn|

allora il metodo delle potenze inverse calcola un’approssimazione di
ξ1 e di un suo autoversore x .

Si osserva subito che se A−1x = ξi x (con ξi 6= 0) allora
x = A−1x/ξi e

Ax = A(A−1x/ξi ) =
1

ξi
x

cioè ξ−1
i è un autovalore di A e x è non solo autovettore di A−1

relativo all’autovalore ξi , ma pure autovettore di A relativo
all’autovalore ξ−1

i .
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Metodo delle potenze inverse

Conseguentemente se ξ1 è l’autovalore di massimo modulo di A−1

e λn è l’autovalore di minimo modulo di A si ha λn = ξ−1
i e che

A−1x = ξ1x ⇒ Ax = ξ−1
1 x = λnx

Notiamo che il metodo delle potenze inverse, calcola ξ1 = λ−1
n e il

relativo autovettore x .

Nota.

Per ottenere λn viene naturale calcolare ξ−1
1 , ma usualmente

essendo x autovettore di A relativo a λn si preferisce calcolare λn

via il coefficente di Rayleigh

ρ(x ,A) :=
(x ,Ax)

(x , x)
.
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Metodo delle potenze inverse con shift

Metodo. (Potenze inverse con shift)

In generale, fissato µ ∈ C è possibile calcolare, se esiste unico,
l’autovalore λ più vicino a µ considerando il seguente pseudocodice
[6, p.181]:

(A− µI ) zk = qk−1

qk = zk/‖zk‖2

σk = qH
k Aqk .

(12)
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Metodo delle potenze inverse

I Ricordiamo che se λ è autovalore di A allora

Ax = λx ⇒ (A− µI )x = λx − µx = (λ− µ)x

e quindi λ− µ è autovalore di A− µI .

I Il metodo delle potenze inverse applicato a A− µI calcola il
minimo autovalore σ = λ− µ in modulo di A− µI cioè il σ
che rende minimo il valore di |σ| = |λi − µ|, dove λi sono gli
autovalori di A.

Quindi essendo λi = σi − µ si ottiene pure il λi più vicino a µ.

I Per versioni piú sofisticate di questa tecnica detta di shift (o in
norma infinito invece che in norma 2) si confronti [2, p.379].

Problema. Si può applicare il metodo delle potenze inverse con
shift µ nel caso µ sia proprio un autovalore di A?
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Metodo QR

Il metodo QR, considerato tra i 10 algoritmi più rilevanti del
ventesimo secolo, cerca di calcolare tutti gli autovalori di una
matrice A.

Lemma (Fattorizzazione QR)

Sia A una matrice quadrata di ordine n. Esistono

I Q unitaria (cioè QT ∗ Q = Q ∗ QT = I ),

I R triangolare superiore

tali che
A = QR.
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Metodo QR

Citiamo alcune cose:

I La matrice A ha quale sola particolarità di essere quadrata.
Nel caso generale però la sua fattorizzazione QR in generale
non è unica bens̀ı determinata a meno di una matrice di fase
(cf. [2, p.149]) .

I Nel caso sia non singolare, allora tale fattorizzazione è unica
qualora si chieda che i coefficienti diagonali di R siano
positivi.

I La routine Matlab qr effettua tale fattorizzazione. Si consiglia
di consultare l’help di Matlab, per consultare le particolarità
di tale routine.
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Metodo QR

I Se la matrice H è simile a K (cioè esiste una matrice non
singolare S tale che H = S−1KS) allora H e K hanno gli
stessi autovalori.

I Si può vedere facilmente che la relazione di similitudine è
transitiva, cioè se H1 è simile ad H2 e H2 è simile ad H3 allora
H1 è simile ad H3.

Il metodo QR venne pubblicato indipendemente nel 1961 da
Francis e da Kublanovskaya e successivamente implementato in
EISPACK. Ci limiteremo a considerare versioni di base del metodo.
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Metodo QR

Lemma

Sia
A0 = A = Q0R0

e
A1 := R0Q0.

Le matrici A0 e A1 sono simili e quindi hanno gli stessi autovalori.

Dimostrazione.

Basta notare che

Q0A1QT
0 = Q0A1QT

0 = Q0R0Q0QT
0 = A0

e quindi la matrice A1 è simile ad A0 (si ponga S = Q−1
0 = QT

0 )
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Metodo QR

Definiamo il seguente

Metodo. (QR)

Ak = Qk Rk

Ak+1 = Rk Qk

Per un lemma precedente Ak+1 è simile ad Ak , che è simile ad
Ak−1, . . ., A0. Quindi Ak+1 essendo per transitività simile ad A0

ha gli stessi autovalori di A0.
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Metodo QR

Per la convergenza del metodo esistono vari risultati (cf. [3,
p.393], [4, p.352], [7, p.180]). Da [6, p.169]

Teorema

Se A ∈ Rn×n ha autovalori tutti distinti in modulo, con

|λ1| > . . . > |λn| (13)

allora l’alg. QR converge a A∞ = (a∞i ,j ) triangolare sup., cioè

lim
k

Ak =



a∞1,1 a∞1,2 . . . . . . a∞1,n
0 a∞2,2 a∞2,3 . . . a∞2,n
0 0 a∞3,3 . . . a∞3,n
0 0 . . . . . . . . .
...

...
...

...
...

0 0 0 a∞n−1,n−1 a∞n−1,n

0 0 0 0 a∞n,n


(14)

con λk = a∞k,k .
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Metodo QR

Inoltre

I Se la condizione (13) non è verificata si può dimostrare che la
successione {Ak} tende a una forma triangolare a blocchi.

I se Ak = (a
(k)
i ,j ), e λi−1 6= 0

|a(k)
i ,i−1| = O

(
|λi |
|λi−1|

)k

, i = 2, . . . , n, k →∞. (15)

I se la matrice è simmetrica, allora

A∞ = diag(λ1, . . . , λ1).

I se A è una matrice Hessenberg superiore allora l’algoritmo QR
converge ad A∞ triangolare a blocchi, simile ad A e con gli
autovalori di ogni blocco diagonale tutti uguali in modulo.
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Implementazione del metodo QR

Nelle implementazioni si calcola con un metodo scoperto da
Householder (ma esiste un metodo alternativo dovuto a Givens)
una matrice di Hessenberg T

T =



a1,1 a1,2 a1,3 . . . a1,n

a2,1 a2,2 a2,3 . . . a2,n

0 a3,2 a3,3 . . . a3,n

0 0 a4,3 . . . a4,n

. . . . . . . . . . . . . . .
0 0 0 an,n−1 an,n


simile ad A ed in seguito si applica il metodo QR relativamente alla
matrice T . Se A è simmetrica la matrice T risulta tridiagonale
simmetrica.
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Implementazione del metodo QR

Si può mostrare che

I se A è una matrice di Hessenberg superiore, allora A = QR
con Q di Hessenberg superiore.

I se A è tridiagonale allora A = QR con Q di Hessenberg e R
triangolare superiore con ri ,j = 0 qualora j − i ≥ 2.

I le iterazioni mantengono la struttura, cioè
I se A0 = T è di Hessenberg, allora Ak è di Hessenberg,
I se A0 = T è tridiagonale allora Ak è tridiagonale.
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Implementazione del metodo QR

Il numero di moltiplicazioni necessarie

I all’algoritmo di Givens per calcolare tale matrice T a partire
da A è approssimativamente 10n3/3;

I all’algoritmo di Householder per calcolare tale matrice T a
partire da A è approssimativamente 5n3/3.

Il metodo QR applicato ad una matrice A in forma di Hessenberg
superiore ha ad ogni passo un costo di 2n2 operazioni
moltiplicative.

Per versioni piú sofisticate come il metodo QR con shift, si veda
[3], p. 394.
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