Alvise Sommariva

Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata

28 aprile 2019

In questa sezione mostriamo come sia possibile calcolare numericamente integrali definiti di funzioni $f \in C([a,b])$, con [a,b] intervallo limitato.

Valgono i seguenti risultati.

Teorema

L'operazione funzionale di integrazione (nel continuo) è stabile, ovvero se \tilde{f} approssima una funzione $f \in C([a,b])$, con [a,b] intervallo limitato,

$$\left| \int_a^b f(x) dx - \int_a^b \tilde{f}(x) dx \right| \leq (b-a) \max_{x \in [a,b]} |f(x) - \tilde{f}(x)|.$$

Dimostrazione.

L'asserto segue dal fatto che

$$\left| \int_{a}^{b} f(x)dx - \int_{a}^{b} \tilde{f}(x)dx \right| \leq \max_{x \in [a,b]} |f(x)dx - \tilde{f}(x)| \int_{a}^{b} 1 \cdot dx$$
$$= (b-a) \max_{x \in [a,b]} |f(x)dx - \tilde{f}(x)|.$$

Commento

L'asserto dice che se \tilde{f} è vicina a f relativamente alla distanza dist $(f,\tilde{f}):=\max_{x\in[a,b]}|f(x)dx-\tilde{f}(x)|$, allora $\int_a^b \tilde{f}(x)dx$ non può essere arbitrariamente distante da $\int_a^b f(x)dx$, concetto che viene descritto come stabilità del funzionale di integrazione.

Corollario

Sia $\{f_n\}$ una successione di funzioni continue che converge uniformemente a $f \in C([a,b])$, con [a,b] intervallo limitato, ovvero

$$\lim_{n} dist(f_n, f) := \lim_{n} \max_{x \in [a, b]} |f_n(x) - f(x)| = 0$$

allora

$$\lim_{n}\left|\int_{a}^{b}f_{n}(x)dx-\int_{a}^{b}f(x)dx\right|=0,$$

ovvero $\int_a^b f_n(x)dx \to \int_a^b f(x)dx$.

Dimostrazione.

L'asserto segue dal fatto che dal teorema precedente abbiamo

$$0 \le \left| \int_a^b f_n(x) dx - \int_a^b f(x) dx \right| \le (b-a) \max_{x \in [a,b]} |f_n(x) dx - f(x)|$$

e quindi visto che b-a è finito e $\lim_n \max_{x \in [a,b]} |f_n(x)-f(x)| = 0$, per il teorema del confronto abbiamo pure che

$$\lim_{n} \left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = 0.$$

Commento

L'asserto implica che se f_n è una successione che converge uniformemente alla integranda $f \in C([a,b])$ (ovvero $\lim_n \max_{x \in [a,b]} |f_n(x) - f(x)| = 0$), $-\infty < a < b < +\infty$, allora qualsiasi sia la tolleranza prestabilita ϵ esiste "n" tale che $\int_a^b f(x) dx - \int_a^b f_n(x) dx| < \epsilon$.

L'idea di base delle formule di integrazione approssimata (formule di quadratura) è di sostituire ad un f un'opportuna interpolante f_n e integrare esattamente quest'ultima.

Le formule di quadratura algebriche, a volte dette interpolatorie, sono ottenute integrando l'unico polinomio interpolatore su tutti i dati $(x_i, y_i)_{i=0,...,n}$.

Di conseguenza, se p_n è tale polinomio, e L_k il k-simo polinomio di Lagrange relativamente ai nodi $\{x_i\}_{i=0,\dots,n}$, ovvero

$$L_k(x) = \frac{(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)},$$

abbiamo da $p_n(x) = \sum_{k=0}^n f(x_k) L_k(x)$, posto $w_k := \int_a^b L_k(x) dx$,

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{n}(x)dx = \int_{a}^{b} \sum_{k=0}^{n} f(x_{k})L_{k}(x)dx$$
$$= \sum_{k=0}^{n} f(x_{k}) \int_{a}^{b} L_{k}(x)dx = \sum_{k=0}^{n} w_{k}f(x_{k}). \tag{1}$$

Le quantità w_k , $k=0,\ldots,n$ sono detti pesi, mentre i punti x_k , $k=0,\ldots,n$ sono detti nodi.

Alcune formule di quadratura

Il proposito di questa sezione è di calcolare integrali definiti di funzioni $f \in C([a,b])$, con [a,b] limitato, dove $f \approx f_n$ con

- f_n polinomio di grado n che interpola f nei nodi x_k , $k=0,\ldots,n$ oppure
- **s**_m spline polinomiale di grado m che interpola f nei nodi x_k , $k=0,\ldots,n$.

Risulterà utile la seguente definizione

Definizione

Una formula

$$\int_a^b f(x)w(x)dx \approx \sum_{i=1}^M w_i f(x_i)$$

- ha grado di precisione almeno N se e solo se è esatta per tutti i polinomi f di grado inferiore o uguale a N;
- ha grado di precisione esattamente N se e solo se ha grado di precisione almeno N ed esiste un polinomio di grado N+1 per cui non lo sia.

Alcune formule di quadratura

Di seguito indicheremo con \mathbb{P}_m i polinomi di grado minore o uguale a m. Vale il seguente teorema,

Teorema

Una formula a "n" nodi è interpolatoria se e solo se ha grado di precisione "n".

Di seguito vedremo alcune formule interpolatorie di grado n a n nodi $\{x_k\}_{k=1,\ldots,n}$, che sono quindi caratterizzate da avere pesi

$$w_i = \int_a^b L_i(x) dx$$

dove L_i è l'*i*-simo polinomio di Lagrange (relativamente a $\{x_k\}_{k=1,\ldots,n}$).

Regola del rettangolo

Se $f \in C([a,b])$, $-\infty < a < b < +\infty$ e $x_0 \in [a,b]$, ricaviamo $L_0(x) = 1$ ed essendo

$$\int_{a}^{b} L_0(x)dx = b - a, \tag{2}$$

deduciamo la regola detta del rettangolo (cf. [6])

$$\int_{a}^{b} f(x) \approx \sum_{k=0}^{0} w_{k} f(x_{k}) = (b-a)f(a).$$
 (3)

Regola del rettangolo

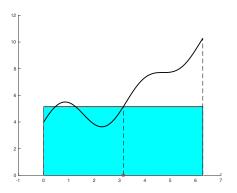


Figura: Regola del rettangolo con nodo $x_0 = (a+b)/2$ per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la regola calcola il volume dell'area in celeste).

Regola del rettangolo

Dal punto di vista geometrico, visto il grafico dell'interpolante p_0 in un solo punto, si ottiene che l'integrale di p_0 è pari a calcolare l'area di un rettangolo con lati di lunghezza f(a) e b-a, da cui riotteniamo il risultato in (3).

Per costruzione, se

- f è un polinomio di grado 0,
- p_0 è il polinomio che interpola il dato (x_0, y_0) ,

per l'unicità del polinomio interpolatore abbiamo $f=p_0$ e quindi

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} p_{0}(x) dx = (b - a) f(a).$$

Di conseguenza il grado di precisione è almeno 0.

Regola del punto medio

Se in particolare si sceglie quale $x_0 = (a+b)/2$, otteniamo la regola del punto medio, che denoteremo con S_0 . In questo caso, se $f \in C^{(2)}(a,b)$ l'errore risulta

$$E_0(f) := I(f) - S_0(f) = \frac{-(b-a)^3}{24} f^{(2)}(\xi), \ \xi \in (a,b).$$

Visto che un polinomio $q_1 \in \mathbb{P}_1$ ha derivata seconda nulla, deduciamo che $E_0(q_1) = 0$, ovvero che il grado di precisione è almeno 1.

Per il polinomio $x^2 \in \mathbb{P}_2$, l'errore risulta uguale a

$$\frac{-(b-a)^3}{24} f^{(2)}(\xi) \cdot 2 = \frac{-(b-a)^3}{12} \neq 0$$

e quindi il grado di precisione della formula del punto medio è esattamente 1.

Formule di tipo Newton-Cotes (chiuse)

Definizione (Formule di Newton-Cotes chiuse, (Newton 1676, Cotes 1722))

Sia [a,b] un intervallo compatto di \mathbb{R} . Una formula

$$S_n(f) = \sum_{i=1}^n w_i f(x_i) \approx \int_a^b f(x) dx$$

si dice di tipo Newton-Cotes chiusa (cf. [3, p.336]) se

i nodi sono equispaziati, e comprendono gli estremi, cioè

$$x_i = a + \frac{(i-1)(b-a)}{n-1}, i = 1, ..., n,$$

■ i pesi sono

$$w_i = \int_a^b L_i(x) dx, \ i = 1, \ldots, n, \ L_i(x) = \prod_{j=1, j \neq i}^n \frac{(x - x_i)}{x_j - x_i}.$$

Nota.

Tale formula è interpolatoria e ha grado di precisione almeno n-1.

Formule di tipo Newton-Cotes (chiuse)

Nota.

- Gli estremi a, b, sono nodi quadratura.
- Esistono formule dette di Newton-Cotes aperte i cui nodi sono equidistanti, ma non comprendono gli estremi. Alcuni esempi sono, posto $x_i = a + ih$, h = (b a)/n (cf.[4])
 - 1 regola del rettangolo,
 - **2** regola a due punti: $(3h/2) \cdot (f_1 + f_2)$, con errore $(3h^3/4)f^{(2)}\xi$, con $\xi \in (a,b)$,
 - **3** regola di Masina: $(4h/3) \cdot (2f_1 f_2 + 2f_3)$, con errore $(28h^5/90)f^{(4)}\xi$, con $\xi \in (a, b)$,
 - **4** regola a quattro punti: $(5h/24) \cdot (11f_1 + f_2 + f_3 + 11f_4)$, con errore $(95h^5/144)f^{(4)}\xi$, con $\xi \in (a,b)$.

Nota.

Queste formule furono introdotte da Newton nel 1676 e perfezionate da Cotes nel 1722, che le calcolò fino a quelle con 11 nodi.

Formule di tipo Newton-Cotes (chiuse). Regola del trapezio.

Di seguito introduciamo le formule di tipo Newton-Cotes chiuse, per n=0,1,2. Se $f \in C([a,b]), -\infty < a < b < +\infty$ e $x_0=a$ e $x_1=b$ ricaviamo

$$L_0(x) = \frac{x - x_1}{x_0 - x_1} = \frac{b - x}{b - a}, \ L_1(x) = \frac{x - x_0}{x_1 - x_0} = \frac{x - a}{b - a}$$

ed essendo

$$\int_{a}^{b} L_{0}(x)dx = \int_{a}^{b} \frac{b-x}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} (b-x) dx$$
$$= \frac{1}{b-a} \cdot \frac{-1}{2} \left((b-b)^{2} - (b-a)^{2} \right) = \frac{b-a}{2}$$

$$\int_{a}^{b} L_{1}(x)dx = \int_{a}^{b} \frac{x-a}{b-a} dx = \frac{1}{b-a} \int_{a}^{b} (x-a) dx$$
$$= \frac{1}{b-a} \cdot \frac{1}{2} \left((b-a)^{2} - (a-a)^{2} \right) = \frac{b-a}{2}$$

deduciamo la regola detta del trapezio (cf. [7])

$$\int_a^b f(x) \approx S_1(f) := \frac{b-a}{2} \cdot (f(a) + f(b)). \tag{4}$$

Alvise Sommariva

Regola del trapezio

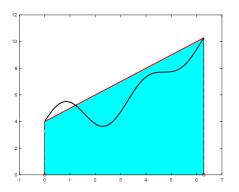


Figura: Regola del trapezio per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la regola calcola il volume dell'area in celeste).

Regola del trapezio

Visto che corrisponde a unire i dati (x_0, y_0) , (x_1, y_1) mediante un segmento, in effetti se y_0 , y_1 hanno lo stesso segno, ci si riconduce a calcolare l'area di un trapezio, la cui base ha lunghezza b-a e le altezze sono f(a) e f(b) da cui riotteniamo il risultato in (4).

Per costruzione, se

- f è un polinomio di grado al più 1,
- ho_1 è il polinomio che interpola i dati (x_0, y_0) , (x_1, y_1) ,

per l'unicità del polinomio interpolatore abbiamo $f=p_1$ e quindi

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} p_{1}(x)dx = \frac{b-a}{2}(f(a)+f(b)).$$

Regola del trapezio

Di conseguenza il grado di precisione è almeno 1 e con facili controesempi, si mostra che il grado di precisione è esattamente 1. Si dimostra che se $f \in C^2([a,b])$ allora l'errore compiuto è (cf. [1, p.252-253])

$$E_1(f) := I(f) - S_1(f) = \frac{-(b-a)^3}{12} f^{(2)}(\xi), \ \xi \in (a,b).$$

Nota.

- Visto che un polinomio p_1 di grado minore o uguale a 1 ha derivata seconda nulla, deduciamo che $E_1(p_1) = 0$, ovvero che il grado di precisione è almeno 1.
- Per $f(x) = x^2 \in \mathbb{P}_2$, l'errore risulta uguale a $-(b-a)^3/6$ da cui abbiamo una dimostrazione alternativa che il grado di precisione è è esattamente 1.

Qualora i nodi di quadratura siano

$$x_0 = a$$
, $x_1 = (b + a)/2$, $x_2 = b$

con la stessa tecnica, integrando il polinomio p_2 di grado 2 che interpola i dati $(x_k, y_k)_{k=0,1,2}$, ma con calcoli dei pesi un po' più tediosi, otteniamo la formula detta di Cavalieri-Simpson (cf. [8]), $\int_a^b f(x) \approx S_2(f)$ con

$$S_2(f) := \frac{b-a}{6} \cdot f(a) + \frac{2(b-a)}{3} \cdot f\left(\frac{a+b}{2}\right) + \frac{b-a}{6} \cdot f(b).$$

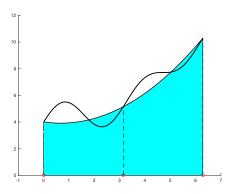


Figura: Regola di Cavalieri-Simpson per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la regola calcola il volume dell'area in celeste).

Alvise Sommariva

Visto che la formula è ottenuta integrando esattamente ogni polinomio di grado 2, abbiamo che il grado di precisione è almeno 2. In realtà si mostra sorprendentemente che è esattamente 3.

Infatti se $f \in C^4([a,b])$ allora l'errore compiuto è (cf. [1, p.256-257])

$$E_2(f) := I(f) - S_2(f) = \frac{-h^5}{90} f^{(4)}(\xi),.$$

dove $h = \frac{b-a}{2}$ e $\xi \in (a, b)$.

Nota.

Da

$$E_2(f) := I(f) - S_2(f) = \frac{-h^5}{90} f^{(4)}(\xi), \ h = \frac{b-a}{2}, \ \xi \in (a,b)$$

- visto che un polinomio p_3 di grado minore o uguale a 3 ha derivata quarta nulla, deduciamo che $E_2(p_3) = 0$, ovvero che il grado di precisione è almeno 3.
- per $f(x) = x^4 \in \mathbb{P}_4$, l'errore risulta uguale a $\frac{-h^5}{90}$ 4! $\neq 0$ da cui abbiamo una dimostrazione alternativa che il grado di precisione della regola di Cavalieri-Simpson è esattamente 3.

Nota.

Le formule di Cavalieri-Simpson furono sviluppate da Cavalieri nel 1635, erano note tanto a Gregory che a Cotes, e riscoperte da Simpson nel 1743 in Mathematical Dissertations on a Variety of physical and analytical aspect [2, p.271].

Altre formule di Newton-Cotes chiuse. Facoltativo.

Facoltativo.

In generale uno può applicare la tecnica vista in precedenza per ottenere formule di quadratura di tipo Newton-Cotes con grado di precisione g.d.p maggiore.

Posto
$$f_k = f(x_k)$$
, $e x_k = a + k \cdot (b - a)/n$, con $k = 0, ..., n$, (cf. [9])

- Regola di Simpson 3/8, n = 3: $\frac{3h}{8}(f_0 + 3f_1 + 3f_2 + f_4)$, con g.d.p= 3,
- Regola di Milne-Boole, n = 4: $\frac{2h}{45}(7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$, con g.d.p= 5,
- Regola a sei punti, n = 5: $\frac{5h}{288}(19f_0 + 75f_1 + 50f_2 + 50f_3 + 75f_4 + 19f_5)$, g.d.p = 5,
- Regola di Weddle-Hardy, n = 6: $\frac{h}{140}(41f_0 + 216f_1 + 27f_2 + 272f_3 + 27f_4 + 216f_5 + 41f_6)$, con g.d.p= 7,
- **Regola a otto punti** n = 7: $\frac{7h}{17280}(751f_0 + 3577f_1 + 1323f_2 + 2989f_3 + 2989f_4 + 1323f_5 + 3577f_6 + 751f_7)$, con g.d.p= 7.

Altre formule di Newton-Cotes chiuse. Facoltativo.

- **Regola a nove punti**, n = 8: $\frac{4h}{14175}(989f_0 + 5888f_1 928f_2 + 10496f_3 4540f_4 + 10496f_5 928f_6 + 5888f_7 + 989f_8)$, con g.d.p= 9,
- Regola a dieci punti, n = 9: $\frac{9h}{89600}(2857(f_0 + f_9) + 15741(f_1 + f_8) + 1080(f_2 + f_7) + 19344(f_3 + f_6) + 5778(f_4 + f_5))$, con g.d.p= 9,
- Regola a undici punti, n = 10: $\frac{5h}{299376}(16067(f_0 + f_{10}) + 106300(f_1 + f_9) - 48525(f_2 + f_8) + 272400(f_3 + f_7) - 260550(f_4 + f_6) + 427368f_5)$, con g.d.p= 11.

Si osserva che fino n=8 hanno tutti i pesi positivi mentre per n=9,11 ciò non succede.

Ognuna di queste regole, con ragionamenti analoghi a quelli effettuati per quelle del trapezio e di Cavalieri-Simpson, ha grado di precisione almeno a n (si osservi che i punti sono n+1).

Formule composte

Le formule composte sono ottenute integrando un interpolante polinomiale a tratti di grado locale fissato s che sono localmente algebriche, cioè ottenute integrando un singolo polinomio interpolatore di grado s, in $[x_{ks}, x_{(k+1)s}]$, con $k = 0, \ldots, (n/s) - 1$, con n multiplo di s.

Definizione (Formula composta)

Sia

- 1 [a, b] un intervallo chiuso e limitato,
- 2 $x_j = a + jh \ con \ h = (b a)/N, \ j = 0, ..., N,$
- **3** $S(f, \alpha, \beta)$) una regola di quadratura nel generico intervallo limitato $[\alpha, \beta]$.

La formula di quadratura

$$S^{(c)}(f, a, b, N) = \sum_{j=0}^{N-1} S(f, x_j, x_{j+1})$$
 (5)

è detta formula composta di S.

Nota.

In questa trattazione i punti x_j , j = 0, ..., N, sono equispaziati, ma con qualche fatica si può effettuare nel caso generale di punti arbitrari.

Formula composta del punto medio

La formula composta del punto medio è definita da

$$S_0^{(c)}(f,a,b,N) := \frac{b-a}{N} \sum_{k=1}^{N} f(x_k),$$
 (6)

dove

$$x_k = a + (2k+1) \cdot \frac{b-a}{N},$$

 $con k = 0, \dots, N-1.$

Formula composta del punto medio

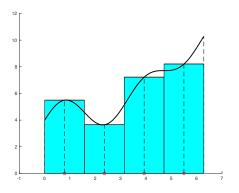


Figura: Formula del punto medio composta per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la formula composta calcola il volume dell'area in celeste).

Alvise Sommariya

Integrazione numerica

26/65

Formula composta del punto medio

Si mostra che l'errore compiuto è per un certo $\xi \in (a,b)$

$$E_0^{(c)}(f) := I(f) - S_0^{(c)}(f, a, b, N) = \frac{(b-a)}{24} h^2 f^{(2)}(\xi)$$

dove

- $h = \frac{b-a}{N}$
- $\xi \in (a,b)$

Nota.

Il grado di precisione è 1, come la regola del punto medio, ma se N > 1 allora il passo h è minore.

Formula composta dei trapezi

La formula composta dei trapezi, definita da

$$S_1^{(c)}(f,a,b,N) := \frac{b-a}{N} \left[\frac{f(x_0)}{2} + f(x_1) + \ldots + f(x_{N-1}) + \frac{f(x_N)}{2} \right],$$

Si mostra che l'errore compiuto è per un certo $\xi \in (a,b)$

$$E_1^{(c)}(f) := I(f) - S_1^{(c)}(f, a, b, N) = \frac{-(b-a)}{12}h^2f^{(2)}(\xi), \ h = \frac{(b-a)}{N}.$$

Nota.

Il grado di precisione è 1, come la regola del trapezio, ma se N > 1 allora il passo h è minore.

Nota.

In virtù della formula di Eulero-Mac Laurin, si mostra che la formula composta dei trapezi è particolarmente indicata per integrare funzioni periodiche con derivati che sono tali, ed è utilizzata nella ben nota FFT.

Formula composta dei trapezi

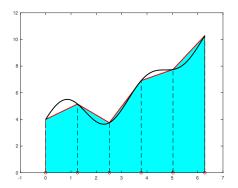


Figura: Formula dei trapezi composta per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la formula composta calcola il volume dell'area in celeste). In particolare si vede il grafico delll'interpolante a tratti, avente quali punti di discontinuità $2\pi/3$, $4\pi/3$.

Alvise Sommariya

Formula composta di Cavalieri-Simpson

La formula composta di Cavalieri-Simpson è definita da

$$S_2^{(c)}(f,a,b,N) = \frac{h}{6} \left[f(x_0) + 2 \sum_{r=1}^{N-1} f(x_{2r}) + 4 \sum_{s=0}^{N-1} f(x_{2s+1}) + f(x_{2N}) \right]$$
(7)

Si mostra che l'errore compiuto è per un certo $\xi \in (a,b)$

$$E_2^{(c)}(f) := I(f) - S_2^{(c)}(f, a, b, N) = \frac{-(b-a)}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\xi)$$

Nota.

Il grado di precisione è quindi 3, come la regola di Cavalieri-Simpson, ma se ${\sf N}>1$ allora il passo ${\sf h}$ è minore.

Formula composta di Cavalieri-Simpson

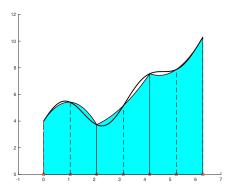


Figura: Formula di Cavalieri-Simpson composta per il calcolo di $\int_0^{2\pi} 3 + \sin(2x) + \cos(x) + x \, dx$ (la formula composta calcola il volume dell'area in celeste).

In questa sezione forniamo alcuni esempi in cui applichiamo le formule composte per integrare alcune funzioni $f \in C([a,b])$.

Esempio.

Approssimare l'integrale definito

$$I = \int_0^{\pi} \exp(x) \cos(x) dx = -(\exp(\pi) + 1)/2.$$

mediante le formule composte note, $N = 1, 2, 4, \dots, 512$.

Ν	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	#R	# T	#CS
1	1.2e + 01	2.3e + 01	4.8e - 01	1	2	3
2	2.8e + 00	5.3e+00	8.5e-02	2	3	5
4	6.4e - 01	1.3e+00	6.1e-03	4	5	9
8	1.6e - 01	3.1e-01	3.9e - 04	8	9	17
16	3.9e - 02	7.8e - 02	2.5e-05	16	17	33
32	9.7e - 03	1.9e - 02	1.6e-06	32	33	65
64	2.4e - 03	4.8e - 03	9.7e - 08	64	65	129
128	6.1e - 04	1.2e - 03	6.1e-09	128	129	257
256	1.5e - 04	3.0e - 04	3.8e - 10	256	257	513
512	3.8 <i>e</i> – 05	7.6 <i>e</i> – 05	2.4 <i>e</i> – 11	512	513	1025

Tabella: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_0^\pi \exp(x)\cos(x)dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f)$, $E_1^{(c)}(f)$, $E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^R$, $\#_N^T$, $\#_N^{CS}$.

Nella seconda tabella, mostriamo il rapporto tra 2 errori successivi per ogni formula ovvero se $(E_k^{(c)}(f))_N$, k=0,1,3, è l'errore compiuto dalla formula S_k , relativamente al calcolo di $\int_a^b f(x) dx$, utilizzando N suddivisioni, mostriamo

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}}$$

per k = 0, 1, 3 (ossia per le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson).

N	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_3^{(c)}(f))_N$
1	4.33	4.27	5.59
2	4.34	4.20	13.92
4	4.10	4.06	15.54
8	4.03	4.02	15.89
16	4.01	4.00	15.97
32	4.00	4.00	15.99
64	4.00	4.00	16.00
128	4.00	4.00	16.00
256	4.00	4.00	16.00

Tabella: Decadimento degli errori delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_0^\pi \exp(x)\cos(x)dx$, in cui si descrivono i rapporti tra 2 errori successivi per ogni formula.

Osserviamo che i valori relativi alle formule composte del punto medio e dei trapezi tende a 4, mentre quelli della formula composta di Cavalieri-Simpson tende a 16.

Diamo una spiegazione qualitativa. Se l'errore è per qualche costante ${\cal C}$ indipendente da ${\cal N}$

$$(E_k^{(c)}(f))_N \approx \frac{C}{N^p} = C^*h^p$$

allora

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}} \approx \frac{\frac{C}{N^p}}{\frac{C}{(2N)^p}} = 2^p.$$

Visto che per le formule composte del punto medio e dei trapezi $(r_k^{(c)}(f))_N \to 4 = 2^2$, abbiamo che p = 2 e quindi $(E_k^{(c)}(f))_N \approx C^*h^2$.

In effetti l'errore delle formule composte del punto medio è

$$E_0^{(c)}(f) := I(f) - S_0^{(c)}(f, a, b, N) = \frac{(b-a)}{24}h^2 f^{(2)}(\xi), \ h = \frac{(b-a)}{N}.$$

mentre quella dei composti è

$$E_1^{(c)}(f) := I(f) - S_1^{(c)}(f, a, b, N) = \frac{-(b-a)}{12} h^2 f^{(2)}(\xi), \ h = \frac{(b-a)}{N}.$$

■ Visto che per le formule composte di Cavalieri-Simpson $(r_3^{(c)}(f))_N \to 16 = 2^4$, abbiamo che p = 4 e quindi $(E_2^{(c)}(f))_N \approx C^*h^4$. In effetti l'errore delle formule composte di Cavalieri-Simpson è

$$E_2^{(c)}(f) := I(f) - S_2^{(c)}(f, a, b, N) = \frac{-(b-a)}{180} \left(\frac{h}{2}\right)^4 f^{(4)}(\xi) \approx C^* h^4.$$

Esempio.

Approssimare l'integrale definito

$$I = \int_0^1 x^3 \sqrt{x} dx = 2/9.$$

mediante le formule composte note, $N = 1, 2, 4, \dots, 1024$..

N	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	#R	# T	#CS
1	1.3e - 01	2.8e - 01	3.4 <i>e</i> – 03	1	2	3
2	3.6 <i>e</i> – 02	7.2e - 02	2.3e - 04	2	3	5
4	9.1e - 03	1.8e - 02	1.5e-05	4	5	9
8	2.3e - 03	4.6e - 03	1.0e - 06	8	9	17
16	5.7 <i>e</i> – 04	1.1e - 03	6.5e - 08	16	17	33
32	1.4e - 04	2.8e - 04	4.1e-09	32	33	65
64	3.6e - 05	7.1e - 05	2.6e-10	64	65	129
128	8.9e - 06	1.8e - 05	1.7e-11	128	129	257
256	2.2e - 06	4.5e - 06	1.0e - 12	256	257	513
512	5.6 <i>e</i> – 07	1.1e-06	6.6e-14	512	513	1025
1024	1.4e - 07	2.8e - 07	4.1e - 15	1024	1025	2049

Tabella: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_0^1 x^3 \sqrt{x} dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f)$, $E_1^{(c)}(f)$, $E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^R$, $\#_N^T$, $\#_N^S$.

Nella seconda tabella, mostriamo il rapporto tra 2 errori successivi per ogni formula ovvero se $(E_k^{(c)}(f))_N$, k=0,1,2, è l'errore compiuto dalla formula S_k , relativamente al calcolo di $\int_a^b f(x) dx$, utilizzando N suddivisioni, valutiamo

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}}$$

per k = 0, 1, 2 (ossia per le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson).

Dalle tabelle vedremo che i valori relativi

- alle formule composte del punto medio e dei trapezi tendono a 4,
- alla formula composta di Cavalieri-Simpson tendono a 16,

e quindi con errori rispettivamente del tipo C^*h^2 e C^*h^4 .

N	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_3^{(c)}(f))_N$
1	3.76	3.86	14.56
2	3.93	3.96	15.00
4	3.98	3.99	15.31
8	4.00	4.00	15.53
16	4.00	4.00	15.67
32	4.00	4.00	15.77
64	4.00	4.00	15.84
128	4.00	4.00	15.89
256	4.00	4.00	15.92
512	4.00	4.00	16.06

Tabella: Decadimento degli errori delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_0^1 x^3 \sqrt{x} \, dx$, in cui si descrivono i rapporti tra 2 errori successivi per ogni formula.

Esempio.

Approssimare l'integrale definito

$$I=\int_0^1 \sqrt{x} dx=2/3.$$

mediante le formule composte note, $N = 1, 2, 4, \dots, 2048$.

A differenza del caso precedente, la convergenza delle tre famiglie di formule è molto lenta, ed è principalmente dovuto al fatto che la funzione pur essendo continua in [a,b], non appartiene nemmeno a $C^1[0,1]$, visto che non è derivabile in 0.

Ciò nonostante risultano convergenti.

N	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	$\#_N^R$	# T	$\#_N^{CS}$
1	4.0e - 02	1.7e - 01	2.9e - 02	1	2	3
2	1.6e - 02	6.3e-02	1.0e-02	2	3	5
4	6.3e - 03	2.3e - 02	3.6e - 03	4	5	9
8	2.4 <i>e</i> – 03	8.5e-03	1.3e-03	8	9	17
16	8.7 <i>e</i> – 04	3.1e-03	4.5e-0 4	16	17	33
32	3.2e - 04	1.1e-03	1.6e-04	32	33	65
64	1.1e - 04	4.0e - 04	5.6e-05	64	65	129
128	4.1e - 05	1.4e - 04	2.0e-05	128	129	257
256	1.5e - 05	5.0e-05	7.0e-06	256	257	513
512	5.2e - 06	1.8e-05	2.5e-06	512	513	1025
1024	1.8e - 06	6.3e-06	8.8e-07	1024	1025	2049
2048	6.5e - 07	2.2e - 06	3.1e - 07	2048	2049	4097

Tabella: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_0^1 \sqrt{x} dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f), E_1^{(c)}(f), E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^R, \#_N^T, \#_N^{CS}$.

Nella seconda tabella, mostriamo il rapporto tra 2 errori successivi per ogni formula ovvero se $(E_k^{(c)}(f))_N$, k=0,1,2, è l'errore compiuto dalla formula S_k , relativamente al calcolo di $\int_a^b f(x) dx$, utilizzando N suddivisioni, mostriamo

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}}$$

per k = 0, 1, 2 (ossia per le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson).

In particolare si vede che i valori relativi alle tre formule composte del punto medio e dei trapezi tendono a $2.83 \approx 2^{1.5}$ e quindi la convergenza è del tipo $C^*h^{1.5}$ (cf. [1, p262 e p.291]).

N	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_3^{(c)}(f))_N$
1	2.47	2.64	2.82
2	2.59	2.70	2.83
4	2.67	2.74	2.83
8	2.72	2.77	2.83
16	2.75	2.79	2.83
32	2.78	2.80	2.83
64	2.79	2.81	2.83
128	2.80	2.81	2.83
256	2.81	2.82	2.83
512	2.82	2.82	2.83
1024	2.82	2.82	2.83

Tabella: Decadimento degli errori delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_0^1 \sqrt{x} dx$, in cui si descrivono i rapporti tra 2 errori successivi per ogni formula.

Esempio.

Approssimare l'integrale definito

$$I = \int_0^{100} \exp(-x^2) \, dx = \frac{\sqrt{\pi}}{2} \cdot \text{erf}(100)$$

dove erf(x) è la funzione di errore. mediante le formule composte note, $N=1,2,4,\ldots,2048\ldots$

Nella prima tabella che segue esponiamo gli errori compiuti dalle regole composte per $N=1,2,4,\ldots,512$.

N	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	$\#_N^{R}$	$\#_N^T$	$\#_N^{CS}$
1	8.9e - 01	4.9e + 01	1.6e + 01	1	2	3
2	8.9 <i>e</i> – 01	2.4e+01	7.4e + 00	2	3	5
4	8.9e - 01	1.2e + 01	3.3e + 00	4	5	9
8	8.9e - 01	5.4e + 00	1.2e + 00	8	9	17
16	8.9 <i>e</i> – 01	2.2e + 00	1.6e-01	16	17	33
32	6.1e - 01	6.8e-01	1.8e-01	32	33	65
64	3.1 <i>e</i> - 02	3.1e-02	1.0e - 02	64	65	129
128	1.7e - 07	1.7e - 07	5.6e-08	128	129	257
256	1.1e - 16	1.1e - 16	2.2e - 16	256	257	513

Tabella: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_0^{100} \exp(-x^2) \, dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f)$, $E_1^{(c)}(f)$, $E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^R$, $\#_N^T$, $\#_N^S$.

Per $n \leq 64$ l'errore decresce lentamente, ed è comprensibile visto che l'intervallo ha ampiezza 100 e quindi il numero di campionamenti delle formule composte sono troppo pochi, ossia il valore di h troppo grande. Nella seconda tabella, mostriamo il rapporto tra 2 errori successivi per ogni formula ovvero se $(E_k^{(c)}(f))_N$, k=0,1,2, è l'errore compiuto dalla formula S_k , relativamente al calcolo di $\int_a^b f(x) dx$, utilizzando N suddivisioni, valutiamo

$$(r_k^{(c)}(f))_N = \frac{(E_k^{(c)}(f))_N}{(E_k^{(c)}(f))_{2N}}$$

per k = 0, 1, 2 (ossia per le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson).

N	$(r_0^{(c)}(f))_N$	$(r_1^{(c)}(f))_N$	$(r_3^{(c)}(f))_N$
1	1.00	2.04	2.12
2	1.00	2.08	2.27
4	1.00	2.17	2.74
8	1.00	2.40	7.69
16	1.44	3.31	0.85
32	19.74	21.74	17.74
64	184935.89	184937.89	184933.89
128	1515188455.00	1515188459.00	252531408.50

Tabella: Decadimento degli errori delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_0^{100} \exp(-x^2) \, dx$, in cui si descrivono i rapporti tra 2 errori successivi per ogni formula.

Osserviamo che dal caso precedente i valori relativi alle formule composte del punto medio e dei trapezi non tendono a 4, e quelli della formula composta di Cavalieri-Simpson non tendono a 16.

Sia [a,b] un intervallo limitato e consideriamo la formula di quadratura

$$S_N(f) := \sum_{j=0}^N w_j f_j \approx \int_a^b f(x) \, dx \tag{8}$$

dove $f_j = f(x_j)$, con $\{x_j\}_{j=0,...,N}$ nodi di quadratura.

Si supponga che invece di $\{f_j\}_j$ si disponga di una loro approssimazione $\{\tilde{f}_j\}_j$.

Ci si chiede come cambia il valore dell'integrale, valutando

$$\tilde{S}_{N}(f) := \sum_{j=1}^{N} w_{j} \tilde{f}_{j}$$
 (9)

invece di $S_N(f)$.

Da (8), (9), ricaviamo per la disuguaglianza triangolare

$$|S_{N}(f) - \tilde{S}_{N}(f)| = |\sum_{j=1}^{N} w_{j} f_{j} - \sum_{j=1}^{N} \tilde{f}_{j}| = |\sum_{j=1}^{N} w_{j} (f_{j} - \tilde{f}_{j})|$$

$$\leq \sum_{j=1}^{N} |w_{j}| |f_{j} - \tilde{f}_{j}| \leq \left(\sum_{j=1}^{N} |w_{j}|\right) \cdot \max_{j} |f_{j} - \tilde{f}_{j}|.$$

Quindi la quantità

$$\mathcal{I}(S_N) = \sum_{j=1}^N |w_j| \tag{10}$$

è un indice di stabilità della formula di quadratura S_N , in quanto se $\mathcal{I}(S_N)$ è grande, a piccole perturbazioni $\max_j |f_j - \tilde{f}_j|$ possono corrispondere valori degli integrali $S_N(f)$, $\tilde{S}_N(f)$ molto diversi.

Se la formula ha grado di precisione almeno 0 allora

$$\int_{a}^{b} 1 \ dx = \sum_{j=1}^{N} w_{j}. \tag{11}$$

e si ha $\sum_{j=1}^{N} w_j \le \sum_{j=1}^{N} |w_j|$ con la disuguaglianza stretta se e solo se qualche peso w_j è negativo.

Di conseguenza, da (10), (11),

$$b-a=\int_{a}^{b}1\ dx=\sum_{j=1}^{N}w_{j}\leq\sum_{j=1}^{N}|w_{j}|=\mathcal{I}(S_{N})$$

con la disuguaglianza stretta se qualche peso w_j è negativo.

Quindi la presenza di pesi negativi peggiora l'indice di stabilità $\sum_{j=1}^{N} |w_j|$, mentre se sono tutti positivi e la formula ha grado di precisione almeno 0

$$\mathcal{I}(S_N) = b - a$$

e quindi piccoli errori nel valutare la funzione f nei nodi di quadratura non comporta che $S_N(f)$ e $\tilde{S}_N(f)$ possano essere arbitrariamente distanti.

Nella tabella relativa agli indici di stabilità valutiamo la somma dei moduli dei pesi delle regole di Newton-Cotes a n+1 nodi.

Come si vede le formule pur avendo grado di precisione almeno n, cominciano a essere meno stabili al crescere di n.

n	${\mathcal I}$
0	2.00000e + 00
1	2.00000e + 00
2	2.00000e + 00
3	2.00000e + 00
4	2.00000e + 00
5	2.00000e + 00
6	2.00000e + 00
7	2.00000e + 00
8	2.90243e + 00
9	2.00000e + 00
10	6.12959e + 00

Tabella: Indice di stabilità $\mathcal{I}(S_n)$ delle formule di Newton Cotes chiuse aventi n+1 nodi.

Definita la famiglia di formule di quadratura $\{S_n\}_{n\in\mathbb{N}}$ (con grado di precisione non necessariamente n), ognuna del tipo

$$S_n(f) := \sum_{i=0}^{\eta_n} w_{i,n} f(x_{i,n}) \approx I(f) := \int_a^b f(x) dx$$
 (12)

introduciamo l'errore della formula n-sima

$$\mathcal{E}_n(f) := \int_a^b f(x) dx - \sum_{i=0}^{\eta_n} w_{i,n} f(x_{i,n}).$$

Qualora $\mathcal{E}_n(f) \to 0$ la famiglia di formule $\{S_n(f)\}_{n \in \mathbb{N}}$ converge a $\int_a^b f(x) dx$.

In altri termini, la famiglia di formule $\{S_n(f)\}_{n\in\mathbb{N}}$ risulta convergente all'integrale definito $\int_a^b f(x)dx$ se

$$S_n(f):=\sum_{i=0}^{\eta_n}w_{i,n}f(x_{i,n})\to\int_a^bf(x)dx.$$

La convergenza delle formule algebriche, ottenute integrando il polinomio interpolatore, dipende dalla famiglia di nodi prescelti.

Se consideriamo i nodi di Chebyshev $\{x_k^{(\mathsf{ch})}\}_{k=0,\ldots,n}$, per quanto visto nell'interpolazione polinomiale, abbiamo che se $f \in C^1([a,b])$ con [a,b] limitato e p_n il polinomio di grado al più n che interpola le coppie $(x_k,f(x_k))$ allora

$$\lim_{n} \max_{x \in [a,b]} |f(x) - p_n(x)| = 0,$$

e per un corollario precedente, deduciamo che

$$\lim_{n \to +\infty} \int_a^b p_n(x) dx = \int_a^b f(x) dx. \tag{13}$$

La formula basata sui nodi di Chebyshev

$$\sum_{k=0}^{n} w_k^{(\mathsf{ch})} f(x_k^{(\mathsf{ch})})$$

essendo interpolatoria, ha grado di precisione almeno n e di conseguenza

$$\int_{a}^{b} p_{n}(x)dx = \sum_{k=0}^{n} w_{k}^{(\mathsf{ch})} f(x_{k}^{(\mathsf{ch})}), \ \forall p_{n} \in \mathbb{P}_{n}. \tag{14}$$

Da (13), (14) deduciamo

$$\lim_{n\to+\infty}\sum_{k=0}^n w_k^{(\mathsf{ch})} f(x_k^{(\mathsf{ch})}) = \int_a^b f(x) dx,$$

ovvero la famiglia di formule $\{S_n\}_{n\in\mathbb{N}}$, applicata a f, converge all'integrale definito $\int_a^b f(x)dx$.

In generale, altre scelte di nodi non godono sempre di qualità, anche per funzioni $f \in C^{\infty}([a,b])$.

A tal proposito, se consideriamo i nodi di equispaziati $\{x_k^{(e)}\}_{k=0,...,n}$, per quanto visto nell'interpolazione polinomiale, abbiamo che se $f \in C^{\infty}([a,b])$ con [a,b] limitato e p_n il polinomio di grado al più n che interpola le coppie $(x_k,f(x_k))$, $k=0,\ldots,n$ allora non si può affermare

$$\lim_{n} \max_{x \in [a,b]} |f(x) - p_n(x)| = 0,$$

come si può verificare per $f(x)=1/(1+x^2)$, ovvero la funzione di Runge. A partire da questo fatto si può dimostrare (non immediato) che se consideriamo la famiglia di formule di quadratura di Newton-Cotes $\{S_n\}$ (cioè S_n è la formula di quadratura interpolatoria avente n+1 nodi equispaziati), applicata alla funzione di Runge

$$\lim S_n(f) \neq \int_{-5}^5 f(x) dx.$$

Nella tabella 59 tali risultati risultano ancora più evidenti. Le famiglia di regole di Newton-Cotes non converge all'integrale richiesto, a differenza di quanto succede utilizzando formule interpolatorie nei nodi di Chebyshev (come previsto dalla teoria).

n	E_n^e	E_n^{ch}
10	1.9e + 00	1.7e - 01
20	3.0e + 01	3.3e - 03
30	7.7e + 02	6.2e - 05
40	2.5e + 04	1.2e - 06
50	8.9e + 05	2.1e - 08
60	7.3e + 09	4.7e - 10
70	1.0e + 07	2.7e - 12
80	6.3e + 05	6.1e - 13
90	1.4e + 05	4.1e - 14
100	1.9e + 03	4.4e - 15

Tabella: Nella prima colonna il parametro n pari al grado dell'interpolante polinomiale, nella seconda e terza colonna gli errori assoluti di quadratura ottenuti integrando le interpolanti in n+1 nodi rispettivamente equispaziati e di Chebyshev (in [-5,5]).

Nel caso dell'interpolazione polinomiale a tratti, si può mostrare che se

- 1 $f \in C^{m+1}([a,b])$ con [a,b] limitato,
- **2** Δ_N è una partizione di [a,b] in N intervalli $[x_{mk},x_{m(k+1)}]$ con $k=0,\ldots,N-1$, aventi la stessa ampiezza h,
- **3** $s_{m,N}$ è l'interpolante polinomiale a tratti di grado m di f relativamente ai nodi x_0, x_1, \ldots, x_{mN} ,

allora per $C^* = \max_{x \in [a,b]} |f^{(n+1)}(x)|$ si ha

$$0 \leq \max_{x \in [a,b]} |f(x) - s_{m,N}(x)| \leq \frac{C^*}{(m+1)!} h^{m+1} = \frac{C^*}{(m+1)!} \left(\frac{b-a}{N}\right)^{m+1}$$

e quindi per il teorema del confronto

$$\lim_{N\to+\infty}|f(x)-s_{m,N}(x)|=0.$$

Di conseguenza per il corollario 0.1

$$\int_a^b s_{m,N}(x)dx \to \int_a^b f(x)dx$$

e siccome, per costruzione, la formula composta $S_m^{(c)}(f,a,b,N)$ basata su una regola a m nodi, corrisponde a calcolare $\int_a^b s_{m,N}(x) dx$ otteniamo

$$\lim_{N\to+\infty} S_m^{(c)}(f,a,b,N) = \int_a^b f(x)dx,$$

ovvero che le formule composte $S_m^{(c)}(f,a,b,N)$ sono convergenti al crescere di N.

Questo implica che sotto opportune ipotesi di regolarità di f, le formule composte del punto medio, dei trapezi e di Cavalieri-Simpson, risultano convergenti all'aumentare del numero N di sottointervalli.

Ripetiamo quale esempio la determinazione dell'integrale definito

$$\int_{-5}^{5} \frac{1}{1+x^2} \ dx$$

e dalla sua tabulazione si evince la convergenza delle formule composte del punto medio, dei trapezi e di Cavalieri-Simpson, all'aumentare del numero N di sottointervalli.

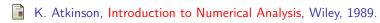
Osserviamo che per un numero alto di nodi, la formula $E_2^{(c)}(f)$ propone errori molto piccoli, seppur non decrescenti al crescere di N, cosa naturale, perchè gli $E_2^{(c)}(f)$ sono prossimi alla precisione di macchina.

N	$E_0^{(c)}(f)$	$E_1^{(c)}(f)$	$E_2^{(c)}(f)$	#R	# T	#CS N
1	7.3e + 00	2.4e + 00	4.0e + 00	1	2	3
2	1.4e + 00	2.4e + 00	9.6e - 02	2	3	5
4	4.6e - 01	5.4e - 01	1.3e - 01	4	5	9
8	3.9e - 02	3.8e - 02	1.3e - 02	8	9	17
16	2.1e - 04	6.9e - 04	9.1e - 05	16	17	33
32	1.2e - 04	2.4e - 04	4.5e - 08	32	33	65
64	3.0e - 05	6.0e - 05	2.6e - 09	64	65	129
128	7.5e — 06	1.5e - 05	1.6e - 10	128	129	257
256	1.9e - 06	3.8e - 06	1.0e - 11	256	257	513
512	4.7e - 07	9.4e - 07	6.4e - 13	512	513	1025
1024	1.2e - 07	2.4e - 07	4.0e - 14	1024	1025	2049
2048	2.9e - 08	5.9e - 08	2.7e - 15	2048	2049	4097
4096	7.3e - 09	1.5e - 08	4.4e - 16	4096	4097	8193
8192	1.8e - 09	3.7e - 09	0.0e + 00	8192	8193	16385
16384	4.6e - 10	9.2e - 10	4.4e - 16	16384	16385	32769
32768	1.1e - 10	2.3e - 10	4.4e - 16	32768	32769	65537
65536	2.9e - 11	5.7e - 11	0.0e + 00	65536	65537	131073
131072	7.2e - 12	1.4e - 11	4.4e - 16	131072	131073	262145
262144	1.8e - 12	3.6e - 12	8.9e - 16	262144	262145	524289
524288	4.5e - 13	9.0e - 13	1.8e - 15	524288	524289	1048577
1048576	1.1e - 13	2.2e - 13	0.0e + 00	1048576	1048577	2097153

Tabella: Paragone delle formule del rettangolo, trapezi e Cavalieri-Simpson composta, per N subintervalli, relativamente al calcolo di $I=\int_{-5}^5 1/(1+x^2)dx$, in cui si descrivono gli errori assoluti $E_0^{(c)}(f)$, $E_1^{(c)}(f)$, $E_2^{(c)}(f)$, per ogni formula e rispettivi numeri di nodi $\#_N^R$, $\#_N^T$, $\#_N^{CS}$.

Alvise Sommariya

Bibliografia I



J.F.Epperson, An introduction to Numerical Methods and Analysis, 2nd Edition, Wiley, 2013.

A. Quarteroni e F. Saleri, Elementi di calcolo numerico, Progetto Leonardo, 1999.

Wikipedia, Formule di Newton-Cotes, https://it.wikipedia.org/wiki/Formule_di_Newton-Cotes.

Wikipedia, Numerical Integration, https://en.wikipedia.org/wiki/Numerical_integration

Wikipedia, Regola del Rettangolo, https://it.wikipedia.org/wiki/Regola_del_rettangolo

Wikipedia, Regola del Trapezio, https://it.wikipedia.org/wiki/Regola_del_trapezio

Bibliografia II

Wikipedia, Regola di Cavalieri-Simpson, https://it.wikipedia.org/wiki/Regola_di_Cavalieri-Simpson

Wolfram MathWorld, Formule di Newton-Cotes, http://mathworld.wolfram.com/Newton-CotesFormulas.html.