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Minimax approximation seeks the polynomial of degree n that approxi-

mates the given function in the given interval such that the absolute maxi-

mum error is minimized. The error is defined here as the difference between

the function and the polynomial.

Chebyshev Proved that such polynomial exists and that it is unique.

He also gave the criteria for a polynomial to be a minimax polynomial[1].

Assuming that the given interval is [a, b] Chebyshev’s criteria states that if

Pn(X) is the minimax polynomial of degree n then there must be at least

(n+2) points in this interval at which the error function attains the absolute

maximum value with alternating sign as shown in figure 1 for n = 3 and by

the following equations:

a ≤ x0 < x1 < · · · < xn+1 ≤ b

F (xi) − Pn(xi) = (−1)iE (1)

i = 0, 1, . . . , n + 1

E = ± max
a≤x≤b

|F (x) − Pn(x)| (2)
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Figure 1: Example of a minimax third order polynomial that conforms to
the Chebychev criteria

The minimax polynomial can be computed analytically up to n = 1. For

higher order a numerical method due to Remez [2] has to be employed.

Remez algorithm is an iterative algorithm. We start the first iteration

by an arbitrary set of (n + 2) points in the given interval. Each iteration

is composed of two steps. In the first step we compute the coefficients such

that the error function takes equal magnitude with alternating sign at (n+2)

given points.

F (xi) − Pn(xi) = (−1)iE (3)

F (xi) − [c0 + c1(xi − a) + c2(xi − a)2

+ · · ·+ cn(xi − a)n] = (−1)iE (4)

c0 + c1hi + · · ·+ cnhn
i + (−1)iE = F (xi) (5)
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i = 0, 1, 2, . . . , n + 1

Equation 5 is a system of (n + 2) linear equations in the (n + 2) unknowns

{c0, c1, . . . , cn, E}. These equations are proved to be independent [2] hence

we can solve them using any method from linear algebra to get the values of

the coefficients as well as the error at the given (n + 2) points.

After the first step we compute the coefficients such that the error func-

tion at the given (n + 2) points is equal in magnitude and alternating in

sign. However the magnitude of this error is the not the absolute maximum

magnitude in the given interval [a, b]. Therefore the minimax condition is

still not met. We need to move to a new set of points.

The second step of Remez algorithm seeks a new set of (n + 2) points

that approach the (n + 2) points of the minimax condition.

The second step is called the exchange step. There are two exchange

techniques. In the first exchange technique we exchange a single point in the

current set of (n + 2) points to get a new set of points while in the second

exchange technique we exchange all the points of the current set of (n + 2)

points to get a new set points.

We start the second step by noting that the error alternates in sign at the

(n+2) points of the first step therefore the error function has (n+1) roots, one

root in each of the the intervals: [x0, x1], [x1, x2], . . . , [xn, xn+1]. We compute

these roots using any numerical method such as the method of chords or

bisection. We denote these roots by z0, z1, . . . , zn. We divide the interval

[a, b] into the (n + 2) intervals: [a, z0], [z0, z1], [z1, z2], . . . , [zn−1, zn], [zn, b]. In

each of these intervals we compute the point at which the error attains its

maximum or minimum value and denote these points by x∗
0, x

∗
1, . . . , x

∗
n+1.

We can carry out the last step numerically by computing the root of the
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derivative of the error function if such root exists otherwise we compute the

error function at the endpoints of the interval and pick the one that gives

larger absolute value.

We define k such that

k = max
i

|F (x∗
i ) − Pn(x∗

i )| (6)

In the single point exchange technique we exchange xk by x∗
k while in the

multiple exchange technique we exchange all the (n+2) points {xi} by {x∗
i }.

We use this new set of (n + 2) points in the first step of the following

iteration. We repeat the two steps a number of times until the difference

between the old (n + 2) points and the new (n + 2) points lies below a given

threshold. Figure 2 illustrates the second step graphically for a third order

polynomial.
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Figure 2: Illustration of second step of Remez algorithm
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At the end of Remez algorithm we approach the Chebychev minimax

condition hence the magnitude of the error function at the final set of the (n+

2) points (E) represents the maximum absolute value of the approximation

error.
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