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Abstract

Textbooks on differential equations often give the impression that most differential
equations can be solved in closed form, but experience does not bear this out. It
remains true that solutions of the vast majority of first order initial value problems
cannot be found by analytical means. Therefore, it is important to be able to approach
the problem in other ways. Today there are numerous methods that produce numerical
approximations to solutions of differential equations. Here, we introduce the oldest and
simplest such method, originated by Euler about 1768. It is called the tangent line
method or the Euler method. It uses a fixed step size h and generates the approximate
solution.

The purpose of this paper is to show the details of implementing a few steps of
Euler’s method, as well as how to use built-in functions available in MATLAB (2005)
[1]. In the first part, we use Euler methods to introduce the basic ideas associated with
initial value problems (IVP). In the second part, we use the Runge-Kutta method pre-
sented together with the built-in MATLAB solver ODE45. The implementations that
we develop in this paper are designed to build intuition and are the first step from
textbook formula on ODE to production software.

Key words: Euler’s methods, Euler forward, Euler modified, Euler backward, MAT-
LAB, Ordinary differential equation, ODE, ode45.

1 Introduction

The dynamic behavior of systems is an important subject. A mechanical system involves displace-
ments, velocities, and accelerations. An electric or electronic system involves voltages, currents,
and time derivatives of these quantities. An equation that involves one or more derivatives of the
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unknown function is called an ordinary differential equation, abbreviated as ODE. The order of the
equation is determined by the order of the highest derivative. For example, if the first derivative
is the only derivative, the equation is called a first-order ODE. In the same way, if the highest
derivative is second order, the equation is called a second-order ODE.

The problems of solving an ODE are classified into initial-value problems (IVP) and boundary-
value problems (BVP), depending on how the conditions at the endpoints of the domain are spec-
ified. All the conditions of an initial-value problem are specified at the initial point. On the other
hand, the problem becomes a boundary-value problem if the conditions are needed for both initial
and final points. The ODE in the time domain are initial-value problems, so all the conditions are
specified at the initial time, such as t = 0 or x = 0. For notations, we use t or x as an independent
variable. Some literatures use t as time for independent variable.

It is important to note that our focus here is on the practical use of numerical methods in
order to solve some typical problems, not to present any consistent theoretical background. There
are many excellent and exhaustive texts on these subjects that may be consulted. For example, we
would recommend Edwards and Penny (2000) [2], Boyce and DiPrima (2001) [3], Coombes et al.
(2000) [4], Van Loan (1997) [5], Nakamura (2002) [6], Moler (2004) [7], and Gilat (2004) [8].

2 Numerical methods

Numerical methods are commonly used for solving mathematical problems that are formulated in
science and engineering where it is difficult or even impossible to obtain exact solutions. Only a
limited number of differential equations can be solved analytically. Numerical methods, on the
other hand, can give an approximate solution to (almost) any equation. An ordinary differential
equation (ODE) is an equation that contains an independent variable, a dependent variable, and
derivatives of the dependent variable. Literal implementation of this procedure results in Euler’s
method, which is, however, not recommended for any practical use. There are other methods
more sophisticated than Euler’s. Among them, there are three major types of practical numerical
methods for solving initial value problems for ODEs: (i) Runge-Kutta methods, (ii) Burlirsch-Stoer
method, and (iii) predictor-corrector methods. We will present these three approaches on another
occasion. Now, we are interested to talk about Euler’s methods.

2.1 EULER methods

The Euler methods are simple methods of solving first-order ODE, particularly suitable for quick
programming because of their great simplicity, although their accuracy is not high. Euler methods
include three versions, namely,

• forward Euler method

• modified Euler method

• backward Euler method



2.1.1 Forward Euler method

The forward Euler method for y′ = f(y, x) is derived by rewriting the forward difference approxi-
mation,

(yn+1 − yn)/h ≈ y′n (1)

to

yn+1 = yn + hf(yn, xn) (2)

where y′n = f(yn, xn) is used. In order to advance time steps, Eq. 2 is recursively applied as

y1 = y0 + hy′0
y1 = y0 + hf(y0, x0)
y2 = y1 + hf(y1, x1) (3)
y3 = y2 + hf(y2, x2)
...

yn = yn−1 + hf(yn−1, xn−1)

2.1.2 Modified Euler method

First, the modified Euler method is more accurate than the forward Euler method. Second, it is
more stable. It is derived by applying the trapezoidal rule to the solution of y′ = f(y, x)

yn+1 = yn +
h
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[f(yn+1, xn+1) + f(yn, xn)] (4)

2.1.3 Backward Euler Method

The backward Euler method is based on the backward difference approximation and written as

yn+1 = yn + hf(yn+1, xn+1) (5)

The accuracy of this method is quite the same as that of the forward Euler method.

2.2 Steps for MATLAB implementation

The purpose of using an example is to show you the details of implementing the typical steps of
Euler’s method, so that it will be clear exactly what computations are being executed. For some
reasons, MATLAB does not include Euler functions. Therefore, if you really need one, you have to
code by yourselves. However, MATLAB has very sophisticated ones using Runge-Kutta algorithms.
We will show how to use one of them in the next section.



2.2.1 Basic steps

The typical steps of Euler’s method are given below.

Step 1. define f(x, y)

Step 2. input initial values x0 and y0

Step 3. input step sizes h and number of steps n

Step 4. calculate x and y:

for i=1:n
x=x+h
y=y+hf(x,y)

end

Step 5. output x and y

Step 6. end

2.2.2 Example

As an application, consider the following initial value problem

dy

dx
=

x

y
, y(0) = 1 (6)

which was chosen because we know the analytical solution and we can use it for check. Its exact or
analytical solution is found to be

y(x) =
√

x2 + 1 (7)

Therefore, we will be able to compare the approximate solutions and the exact solution.

Here we wish to approximate y(0.3) using the Euler’s methods with step sizes h = 0.1 and
h = 0.05. We find by hand-calculation,

x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3
y0 = 1
y1 = y0 + hf(x0, y0) = y0 + hx0/y0 = 1
y2 = y1 + hx1/y1 = 1.01
y3 = y2 + hx2/y2 = 1.0298.



Since y(0.3) =
√

(0.3)2 + 1 = 1.044030, we find that

Error =
|y(0.3)− y3|

y(0.3)
× 100 = 1.36%

Similarly, for the step size h = 0.05, we find that the error is

Error =
|y(0.3)− y6|

y(0.3)
× 100 = 0.67%

2.2.3 MATLAB codes

• Step 1: Create user-defined function files: euler forward.m, euler modified.m,
and euler backward.m.

function [x,y]=euler_forward(f,xinit,yinit,xfinal,n)
% Euler approximation for ODE initial value problem
% Euler forward method
% File prepared by David Houcque - Northwestern U. 5/11/2005

% Calculation of h from xinit, xfinal, and n
h=(xfinal-xinit)/n;

% Initialization of x and y as column vectors
x=[xinit zeros(1,n)]; y=[yinit zeros(1,n)];

% Calculation of x and y
for i=1:n

x(i+1)=x(i)+h;
y(i+1)=y(i)+h*f(x(i),y(i));

end

end

function [x,y]=euler_modified(f,xinit,yinit,xfinal,n)
% Euler approximation for ODE initial value problem
% Euler modified method
% File prepared by David Houcque - Northwestern U. - 5/11/2005

% Calculation of h from xinit, xfinal, and n
h=(xfinal-xinit)/n;

% Initialization of x and y as column vectors
x=[xinit zeros(1,n)]; y=[yinit zeros(1,n)];



% Calculation of x and y
for i=1:n

x(i+1)=x(i)+h;
ynew=y(i)+h*f(x(i),y(i));
y(i+1)=y(i)+(h/2)*(f(x(i),y(i))+f(x(i+1),ynew));

end

end

function [x,y]=euler_backward(f,xinit,yinit,xfinal,n)
% Euler approximation for ODE initial value problem
% Euler backward method
% File prepared by David Houcque - Northwestern U. - 5/11/2005

% Calculation of h from xinit, xfinal, and n
h=(xfinal-xinit)/n;

% Initialization of x and y as column vectors
x=[xinit zeros(1,n)];
y=[yinit zeros(1,n)];

% Calculation of x and y
for i=1:n

x(i+1)=x(i)+h;
ynew=y(i)+h*(f(x(i),y(i)));
y(i+1)=y(i)+h*f(x(i+1),ynew);

end

end

• Step 2: Solve the problem by putting data and called functions into a script file called
main1.m:

% Script file: main1.m
% The RHS of the differential equation is defined as
% a handle function
% File prepared by David Houcque - Northwestern U. - 5/11/2005

f=@(x,y) x./y;

% Calculate exact solution
g=@(x) sqrt(x.^2+1);
xe=[0:0.01:0.3];
ye=g(xe);



% Call functions
[x1,y1]=euler_forward(f,0,1,0.3,6);
[x2,y2]=euler_modified(f,0,1,0.3,6);
[x3,y3]=euler_backward(f,0,1,0.3,6);

% Plot
plot(xe,ye,’k-’,x1,y1,’k-.’,x2,y2,’k:’,x3,y3,’k--’)
xlabel(’x’)
ylabel(’y’)
legend(’Analytical’,’Forward’,’Modified’,’Backward’)
axis([0 0.3 1 1.07])

% Estimate errors
error1=[’Forward error: ’ num2str(-100*(ye(end)-y1(end))/ye(end)) ’%’];
error2=[’Modified error: ’ num2str(-100*(ye(end)-y2(end))/ye(end)) ’%’];
error3=[’Backward error: ’ num2str(-100*(ye(end)-y3(end))/ye(end)) ’%’];

error={error1;error2;error3};
text(0.04,1.06,error)

• Step 3: Compare the results.
The calculated results are displayed in the graphical form below. Reasonably good results
are obtained even for a moderately large step size and the approximation can be improved
by decreasing the step size. According to the results (Figure 1) and Table 1, forward and
backward approaches give identically the same results (less than 1% of error), while modified
method give very good result when compared with the exact solution.

h Forward Modified Backward

0.05 0.67% 0.04% 0.67%

Table 1: Comparison of exact solution with Euler methods

2.3 Using built-in function

MATLAB has several different functions (built-ins) for the numerical solution of ordinary differ-
ential equations (ODE). In this section, however, we will present one of them. We will also give
an example how to use it, instead of writing our own MATLAB codes as we did in the first part.
The basic steps, previously defined, are still typically the same. These solvers can be used with
the following syntax:

[x,y] = solver(@odefun,tspan,y0)
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Figure 1: Comparison of exact solution with Euler methods



solver is the solver you are using, such as name, ode45 or ode23. odefun is the function that
defines the derivatives, so odefun defines y′ as a function of the independent parameter (typically
x or t) as well as y and other parameters. tspan a vector that specifies the interval of the solution
(e.g., [t0,tf]). y0 is the initial value of y. [x,y] is the output, which is the solution of the ODE.

2.3.1 Runge-Kutta methods

There are many variants of the Runge-Kutta method, but the most widely used one is the following.
Given:

y′ = f(x, y) (8)
y(xn) = yn

we compute in turn

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
) (9)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4)

2.3.2 Using ode45

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair [9]. That means
the numerical solver ode45 combines a fourth order method and a fifth order method, both of which
are similar to the classical fourth order Runge-Kutta (RK) method discussed above. The modified
RK varies the step size, choosing the step size at each step in an attempt to achieve the desired
accuracy. Therefore, the solver ode45 is suitable for a wide variety of initial value problems in
practical applications. In general, ode45 is the best function to apply as a “first try” for most
problems. Table 2 lists ODE solvers, which are MATLAB built-in functions. A short description
of each solver is included.

Note - It is important to note that in MATLAB 7.0 (R14), latest version, it is preferred to have
odefun in the form of a function handle. For example, it is recommended to use the following
syntax,

ode45(@xdot,tspan,y0)

rather than



Solver Accuracy Description

ode45 Medium This should be the first solver you try
ode23 Low Less accurate than ode45

ode113 Low to high For computationally intensive problems
ode15s Low to medium Use if ode45 failed

Table 2: Some MATLAB ODE solvers

ode45(’xdot’,tspan,y0)

Note the use of @xdot and ’xdot’. Use function handles to pass any function that defines quantities
the MATLAB solver will compute, in particular for simple functions.

On the other hand, it is also important to remember that complicated differential equations
should be written an M-file instead of using inline command or function handle.

Following is an example of an ordinary differential equation using a MATLAB ODE solver.
First, let’s create a script file, called main2.m, as follows:

% Script file: main2.m
% The RHS of the differential equation is defined as
% a function handle.
% File prepared by David Houcque - Northwestern U. - 5/11/2005

f=@(x,y) x./y;

% Calculate exact solution
g=@(x) sqrt(x.^2+1);
xe=[0:0.01:0.3];
ye=g(xe);

% Call function
[x4,y4]=ode45(f,[0,0.3],1);

% Plot
plot(xe,ye,’k-’,x4,y4,’k:’)
xlabel(’x’)
ylabel(’y’)
legend(’Analytical’,’ode45’)
axis([0 0.3 1 1.05])

Here, we use the same data as defined in the first part for Euler’s methods. The initial conditions
and the time steps are the same as before.

The integration proceeds by steps, taken to the values specified in tspan. Note that the step
size (the distance between consecutive elements of tspan) does not have to be uniform.



A plot comparing the computed y versus x is shown in Figure 2. According to the plot, the
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Figure 2: Comparison of exact solution with ode45 solution

calculated results using the built-in function (ode45) give a very good result when compared with
the analytical solution.

Additional on all of these solvers can be found in the online help. For addition information
on numerical methods, we refer to Shampine (1994) [10] and Forsythe et al. (1977) [11].

3 Conclusion

The above plots show the results obtained from different algorithms. Consequently, we can see
better that Runge-Kutta algorithm is even more accurate at large step size (h = 0.1) than Euler
algorithms at small step size (h = 0.05). One can easily adapt these MATLAB codes as needed for
a different type of problem. In using numerical procedure, such as Euler’s method, one must always
keep in mind the question of whether the results are accurate enough to be useful. In the preceding
examples, the accuracy of the numerical results could be ascertained directly by a comparison with
the solution obtained analytically. Of course, usually the analytical solution is not always available
to compare.
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