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Purpose

The main purpose of the talk is to show a novel strategy for
determining by Caratheodory-Tchakaloff compression implemented
in the d-CATCH package

the computation of nodes and weights of a low-cardinality
positive quadrature formula, nearly exact for polynomials of a
given degree,

hyperinterpolation of mild degree,

over spherical polygons.

The Matlab software used in this talk is available at the authors’
homepage.

Alvise Sommariva Quadrature/Hyperinterp. over Spherical Polygons. 2/ 20



Spherical polygon

A great circle is the intersection of the unit-sphere S2 with a plane
passing through the origin.

Let P1, . . . ,PL be distinct points of S2 and set P0 = PL.

A spherical polygon is the region P ⊂ S2 whose boundary δP
is determined by the geodesic arcs {γk}k=0,...,L, where each γk
is the portion of the great circles joining Pk with Pk+1.

is oriented counterclockwise.

In this talk we suppose that P
is contained in a cap Ω whose polar angle is strictly inferior
than π;

P is simple, i.e. it has no self intersections.
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Spherical polygon triangulation

Under these assumptions,

if C is the center of such a cap Ω containing P then
determine the stereographic projection P ′ of P on the plane
πC tangent in C to the unit-sphere;

compute a triangulation over the planar polygon P ′ (e.g. by
Matlab built-in environment polyshape), i.e. P ′ = ∪mi=1T

′
i

where T ′i ⊂ πC are planar triangles whose interior do not
overlap, i.e. if j 6= k then int(T ′j ) ∩ int(T ′k) = ∅;
map back to the sphere, by means of the inverse of the
stereographic projection, each planar triangle T ′k into a
spherical triangle Tk .

The spherical triangles {Tk}k=1,...,M determine a spherical
triangulation of P.
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Cubature on spherical polygons

The purpose of this section is to determine a cubature rule over
the spherical polygon P, that has internal nodes {Qk}k=1,...,N and
positive weights {wk}k=1,...,N so that if f is a continuous function
then ∫

P
f (x , y , z)dσ ≈

N∑
k=1

wk f (xk , yk , zk).

Since {Tk}k=1,...,M is a spherical triangulation of P, if we
determine such a cubature rule over each spherical triangle Tk

then by the addivity of integration we have such a rule on P either.
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Cubature on spherical polygons: spherical triangles

Figura: What we will get: quadrature nodes (and weights) on a spherical
triangle lifted from the projected elliptical triangle.
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Cubature on spherical polygons: spherical triangles

With no loss of generality, up to a suitable rotation, we
concentrate on spherical triangles T = ABC with centroid
(A + B + C )/‖A + B + C‖2 at the north pole, that are completely
contained in the northern-hemisphere, and do not touch the
equator.

Then, if f ∈ C (T ), g(x , y) =
√

1− x2 − y2,

IT :=

∫
T
f (x , y , z)dσ =

∫
T ⊥

f (x , y , g(x , y))
1

g(x , y)
dxdy ,

where T ⊥ is the projection of T onto the xy-plane, that is the
curvilinear triangle whose vertices, say Â, B̂, Ĉ , are the
xy-coordinates of A, B, C , respectively.
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Quadrature on spherical polygons: spherical triangles

The sides of T ⊥ are arcs of ellipses centered at the origin, being the
projections of great circle arcs. Then we can split the planar integral into
the sum of the integrals on three elliptical sectors Si with i = 1, 2, 3,
obtained by joining the origin with the vertices Â, B̂, Ĉ , namely

IT =

∫
T ⊥

f (x , y , g(x , y))
1

g(x , y)
dxdy =

3∑
i=1

∫
Si

f (x , y , g(x , y))
1

g(x , y)
dxdy

If the purpose is to compute an algebraic rule over T , with degree of

precision n, positive weights and internal nodes (i.e. rules of PI-type) we

face the problem that while f is a polynomial of total degree n then

being g(x , y) =
√

1− x2 − y2, we have that in general

f (x , y , g(x , y)) 1
g(x,y) may not be a polynomial.
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Quadrature on spherical polygons: spherical triangles

To see this properly let

f (x , y , z) = xαyβzγ , 0 ≤ α + β + γ ≤ n, α, β, γ ∈ N;

g(x , y) =
√

1− x2 − y2.

Thus

f (x , y , g(x , y))
1

g(x , y)
= xαyβ(1− x2 − y2)(γ−1)/2.

Thus if γ is

odd then f (x , y , g(x , y)) 1
g(x ,y) is a polynomial of degree at

most n,

even then f (x , y , g(x , y)) 1
g(x ,y) is 1/g multiplied for a

polynomial of degree at most n.
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Quadrature on spherical polygons: spherical triangles

Key points:

Approximate 1/g by a polynomial pε of degree m = mε such
that |pε − 1/g | ≤ ε · 1/|g |.
Since f /g ≈ f · pε ∈ Pn+m, we integrate f · pε instead of f /g
on the elliptical sectors Si , i = 1, 2, 3.

By determining a rule of algebraic degree of precision n + m over
each elliptical sector Si , i = 1, 2, 3, with internal nodes, and
positive weights then we have a rule on T ⊥ := ∪3

i=1Si with nodes
(xk , yk)k=1,...,Nn+m , weights wk=1,...,Nn+m of PI-type.

Mapping back the nodes on the sphere, we have a rule over the
spherical triangle that is near algebraic with ADE n since∫

T
f (x , y , z)dσ ≈

Nn+m∑
j=1

wi√
1− x2

j − y2
j

f (xj , yj ,
√

1− x2
j − y2

j ).

(1)
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Quadrature on spherical polygons: spherical triangles

Some details:

Rule over elliptical sector Si : since each Si is an affine
transformation of a circular sector of the unit-disk S∗i , we
determine a formula on S∗i and map it to Si (some care on
the weights that must be multiplied by absolute value of the
transformation matrix determinant);
Computation of m = mε: it is sufficient to find the degree of a
(near) optimal univariate polynomial approximation (up to ε)
to 1/

√
1− t where t ∈ [0,max{‖Â‖2

2, ‖B̂‖2
2, ‖Ĉ‖2

2}].
Thus m = mε can be estimated by Chebfun (even stored in
tables!).
Caratheodory-Tchakaloff rule compression: from the nodes
{Pk} and weights {wk} of the PI-type rule on T , we extract
one with cardinality at most (n + 1)2, by Lawson-Hanson
algorithm (see dCATCH suite implementation).
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Quadrature on spherical polygons: example

Figura: Quadrature nodes on a spherical polygon of a rule of PI-type,
with ADE=8, 380544 points, before Caratheodory-Tchakaloff
compression. Cputime: about 10 seconds.

Alvise Sommariva Quadrature/Hyperinterp. over Spherical Polygons. 12/ 20



Quadrature on spherical polygons: example

Figura: Triangulation of a spherical polygon (967 spherical triangles) and
quadrature rule of PI-type with ADE=8, 81 points, after
Caratheodory-Tchakaloff compression (magenta). Cputime: 3.5 seconds.
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Quadrature on spherical polygons: hyperinterpolation

As introduced by I.H. Sloan in 1995, given

an orthonormal basis of Pd
n(Ω) (the subspace of d-variate

polynomials of total-degree not exceeding n, restricted to a
compact set or manifold Ω ⊂ Rd) w.r.t. a given measure dµ
on Ω), say {pj}, 1 ≤ j ≤ Nn = dim(Pn

d(Ω)),

a quadrature formula exact for P2n
d(Ω) with nodes

X = {xi} ⊂ Ω and positive weights w = {wi}, 1 ≤ i ≤ M
with M ≥ Nn,

the discretized orthogonal projection (hyperinterpolation) of
f ∈ C (Ω) is

(Lnf )(x) =
M∑
j=1

〈f , pj〉l2,w(X )pj(x) =
M∑
i=1

wi f (xi )
Nn∑
j=1

pj(xi )pj(x).
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Quadrature on spherical polygons: hyperinterpolation

Letting Ω be the spherical polygon,

by means of the routines in our Matlab package dCATCH we
determine the required orthonormal basis {pj},
we compute the quadrature rule of degree 2n on Ω,

we finally get the hyperinterpolant of degree n.

As previously mentioned, the Matlab software implementing this
approach is available at the authors’ homepage.
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Quadrature on spherical polygons: hyperinterpolation test

As example, we take into account a course map of Australia
(without taking into account its smaller islands).

Figura: Quadrature nodes of PI-type on a coarse approximation of
Australia, useful for hyperinterpolation. ADE is 10, there are 167 sph.
triangles, the full rule has 81711 points, the compressed one 121, with
moments error of ≈ 5 · 10−15. The whole process took about 3 seconds.
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Quadrature on spherical polygons: hyperinterpolation test

Setting (x0, y0, z0) ≈ (−6.325e − 01, 6.668e − 01,−3.908e − 01)
as an approximation of australian centroid, and

h(x , y , z) = (x − x0)2 + (y − y0)2 + (z − z0)2

we define

1 f1(x , y , z) = 1 + x + y2 + x2 · y + x4 + y5 + x2 · y2 · z2

(polynomial, total degree 6);

2 f2(x , y , z) = cos(10 · (x + y + z)) (oscillations);

3 f3(x , y , z) = sin(−h(x , y , z)) (regular);

4 f4(x , y , z) = exp(−h(x , y , z)) (regular);

5 f5(x , y , z) = ((x − x0)2 + (y − y0)2 + (z − z0)2)3/2 (hard);

6 f6(x , y , z) = ((x − x0)2 + (y − y0)2 + (z − z0)2)5/2 (medium);
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Quadrature on spherical polygons: hyperinterpolation test
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Figura: Inf-Norm hyperinterpolation error.
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Quadrature on spherical polygons: hyperinterpolation test
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Figura: Hyperinterpolation operator Inf-Norm.
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