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Purpose

We present an algorithm that computes an algebraic cubature rule∫
S
f (x , y)dxdy ≈

η∑
j=1

wj f (Qj)

over curvilinear polygons S defined by piecewise rational functions,
that

for n fixed, is exact for any p ∈ Pn, being Pn the space of
bivariate polynomials of total degree n (i.e. ADE=n);

has positive weights {wj}j and interior nodes {Qj}j ⊆ S;

has low cardinality, i.e. η ≤ (n + 1)(n + 2)/2 nodes.

Examples are domains S such that ∂S is defined piecewise by

NURBS curves,

by composite Bezier curves,

parametric splines.
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Purpose

Key tools:

overlooked theorem by Wilhelmsen (1976) on Tchakaloff sets,
(sufficiently dense set on S contains nodes of an algebraic rule of PI-type with

ADE=n),

a new in-domain algorithm for such curvilinear polygons,
(before available only on parametric spline curvilinear polygons or basic S),

the sparse nonnegative solution of underdetermined moment
matching systems by the Lawson-Hanson NonNegative Least
Squares solver,
(extracts nodes and determines positive weights from the dense pointset and

moments of a basis of Pn).

Applications:

NEFEM with NURBS-shaped curvilinear elements,

VEM with NURBS-shaped curvilinear elements.
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Examples of integration domains

Figure: Examples of integration domains.
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In-domain routine for rational spline curvilinear polygons

Assumptions:

the curvilinear polygon S ⊂ R2 is a Jordan domain
(hence the domain has no holes and the boundary has no self-intersections);

whose boundary ∂S is described by parametric equations
x = x̃(t), y = ỹ(t), t ∈ [a, b], x̃ , ỹ ∈ C ([a, b]), x̃(a) = x̃(b)
and ỹ(a) = ỹ(b);
(the boundary is described parametrically by two periodic continuous functions);

for which there are partitions {I (k)}, k = 1, ...,M of [a, b],

and {I (k)
j } with j = 1, ...,mk of each I (k) := [t(k), t(k + 1)],

such that the restrictions of x̃ , ỹ on each closed interval I (k)

are rational splines, w.r.t. the subintervals {I (k)
j },

(the boundary is described parametrically by M rational splines).
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Example I: composite Bezier closed curves

I: composite Bezier closed curves:

for specific points {Pi ,k}1,...,mk
⊂ R2 choosen by the user;

defined the Bernstein polynomials

bi ,l(t) =

(
l
i

)
t i (1− t)l−i , i = 0, . . . , l − 1, t ∈ [0, 1];

the k-th curve is of the form

B(t̃) = B(ωk(t)) =

mk−1∑
i=0

bi ,mk−1(t)Pi+1,k ,

where

t̃ =
t(k+1) + t(k)

2
+

t(k+1) − t(k)

2
t := ωk(t), t ∈ [0, 1],

(the boundary is described parametrically by continuous functions that are specific

piecewise polynomials, often used in computer graphics).
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Example II: NURBS

II: NURBS:

domains S in which ∂S is locally a p-th degree NURBS curve, i.e. defined in
the curvilinear side Vk _ Vk+1 as

C(t) =

∑mk
i=1 Bi,p(t)wiPi,k∑mk

i=1 Bi,p(t)wi
, t ∈ [t(k), t(k+1)]

where

{Pi,k}mk
i=1 are the control points, {wi,k}mk

i=1 are the weights,

{Bi,p}mk
i=1 are suitable p-th degree B-spline basis functions defined on the

nonperiodic (and nonuniform) knot vector

U = {t(k), . . . , t(k)︸ ︷︷ ︸
p+1

, t
(k)
p+1, . . . , t

(k)
mk−(p+1), t

(k+1), . . . , t(k+1)︸ ︷︷ ︸
p+1

}.

with t
(k)
p+j ≤ t

(k)
p+j+1, j = 1, . . . ,mk − 1,

(the boundary ∂S is described parametrically by continuous functions that are specific

piecewise rational functions, often used in computer graphics).
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In-domain algorithm: Jordan curve theorem

Jordan curve theorem:
a point P belongs to a Jordan domain S if and only if, having
taken a point P∗ /∈ S then the segment P∗P crosses ∂S an odd
number c(P) of times.

P

P
*

P

P
*

Figure: Points and boundary intersections. On the left c(P) = 1 and the
point P is in the domain. On the right c(P) = 2 and the point P is
outside the domain.
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In-domain algorithm: Pathological cases

Pathological cases:

P

P
*

P

P
*

P

P
*

Figure: Critical situations for establishing the crossing number on
curvilinear polygons.
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In-domain algorithm: implementation

Basic idea:

Cover the boundary ∂S by rectangles, with sides parallel to
the axes, so that x = x̃(t) and y = ỹ(t) are monotone (we
will name them monotone boxes). Thus, the boundary is the
graph of a local monotone Cartesian function in x and y .

For each point P that is not in a pathological case, count the
c0(P) monotone boxes strictly below P.

If a point is inside some monotone boxes, count all the c1(P)
times that is over the part of the boundary belonging to the
box.

Put c(P) = c0(P) + c1(P). If c(P) is odd then P is inside S,
otherwise it is not inside the curvilinear domain.

For pathological cases, use alternative techniques, see [1].
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In-domain algorithm: examples I

P

P

Figure: Monotone boxes and computation of the crossing number c(P)
when P is a disk. On the left figure, c(P) = 1, on the right one
c(P) = 2.
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In-domain algorithm: examples II

Figure: Monotone boxes and detection of the points inside the domain.
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In-domain algorithm: main difficulties

1 Fast determination of the monotone boxes, from the piecewise
rational splines x̃ , ỹ (pre-processing);

2 analysis of the pathological points;

3 for each point P, fast determination of the monotone boxes
necessary to the computation of c(P);

4 fast determination if a point P belonging to a monotone box is over
or below the curve relative to the monotone box;

5 deciding when a point P close to the boundary ∂S is numerically
inside S or not.

6 for cubature purposes, we must be able to analyse 1000 points in
less than 10−3 seconds, including the pre-processing cputime.

Remark

The fact that the boundary is described parametrically by piecewise

rational splines is fundamental in items 1, 4, 5.
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Moments computation

Having in mind to compute a rule with algebraic degree of
precision ADE = n by moments equations, we

define a suitable basis {φj} of the polynomial space Pn

(tensorial Chebyshev on the bounding box R∗ of S),

compute the moments γ1, . . . , γN , where

γj :=

∫
S
φj(x , y)dxdy , .

To this purpose:

1 By applying the Gauss-Green theorem, each γj is the sum of
some line integrals, that after some computation are shown to
require the integration in [−1, 1] of continuous rational
functions.

2 We compute these integrals in [−1, 1] by high-order
Gauss-Legendre rule (other techniques may be used).
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Implementing Tchakaloff-like algebraic cubature rules

We extract the nodes and positive weights of a Tchakaloff-like
algebraic cubature rule (i.e. a rule with ADE=n, positive weights,
and cardinality at most equal to the dimension of Pn, i.e.
N = (n + 1)(n + 2)/2), by the following algorithm:

compute the moments γ = (γj) of a suitable basis of Pn;

at the k-th iteration of the algorithm

introduce a tensorial grid M` in the rectangle
R∗ := [a1, b1]× [a2, b2] containing S;

determine by the in-domain algorithm, at the `-th iteration of the
procedure, the set

P` = P`−1 ∪ (M` ∩ S)

(the points of the analysed meshes, as well as of the present one, belong to S);

compute the Vandermonde matrix VP`
= (φj(P(`)

i ))i,j (relatively to

the basis {φj} of Pn and the pointset P` = {P(`)
i });
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Implementing Tchakaloff-like algebraic cubature rules

apply the Lawson-Hanson algorithm to attempt to find a solution
w∗ ≥ 0 to the overdetermined linear system VP`

w = γ
(any solution provides an alg. rule with pos. weights, internal nodes, ADE = n);

find the nonnull components of w∗, say {w (`)
i }i=1,...,ν` ;

determine the corresponding nodes {(x (`)
i , y

(`)
i )}i=1,...,ν` , ν` ≤ N

(if w∗l > 0 then (x
(`)
l , y

(`)
l ) is the relative node);

for a fixed tolerance ε, check if the so obtained rule is such that

γ
(`)
j =

ν∑̀
i=1

w
(`)
i φj(x

(`)
i , y

(`)
i ), j = 1, . . . ,N ,

well approximates the set of moments γ = {γj}, i.e.

‖γ(`) − γ‖2 ≤ ε (1)

(the cubature rule numerically matches the moments at ADE = n);

if (1) does not hold, iterate the procedure.
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Implementing Tchakaloff-like algebraic cubature rules

Comment:

The basic idea is to fill the domain S with points until one is able to
determine the wanted ruled by Lawson-Hanson algorithm [5].

Important: Lawson-Hanson will find a solution with at most
(n + 1)(n + 2)/2 positive components!

In VEM, the algebraic degree of precision ADE = n is typically low,
say n ≤ 5, and all the process must take at most 10−2 seconds
(many MATLAB tricks!).

By construction the rules have internal nodes and positive weights.

In exact arithmetic this procedure has finite termination in view of a
theorem by Wilhelmsen mentioned above [5], since the set P`
becomes sufficiently dense after a finite number of iterations.

Many technical details are skipped and can be found in [1].
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Numerical examples: cubature

We have implemented in Matlab the ideas sketched above (cf.[3]).

In order to show the flexibility of our method, we consider the
domains that are in the next figure from left to right,

1 a ”M” shaped domain S1, in which ∂S1 is determined by a
unique order 3 NURBS curve with 16 distinct control points,

2 a convex domain S2, where ∂S2 is obtained by joining a
circular and an elliptical arc, followed by a segment,

3 a concave domain S3 whose boundary ∂S3 consists of a
unique NURBS curve of order 3 with 9 distinct control points.
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Numerical examples: cubature
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Figure: The curvilinear domains Si with i = 1, 2, 3, the grid points P
outside the domain or on its boundary (in red), those inside the domain
(in green) and the nodes of a cubature formula of PI-type for n = 6 (28
magenta dots). The control points of the NURBS curve are represented
as cyan squares, joined to represent the so called control points polygon.
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Numerical examples: cubature

n # # trial pts cond moment res cpu

S1 2 6 28 (121) 1 5e−16 1.3e−2

4 15 108 (377) 1 1e−15 1.8e−2

6 28 225 (637) 1 1e−15 2.2e−2

8 45 693 (1573) 1 3e−15 3.4e−2

10 66 1304 (3077) 1 5e−15 8.5e−2

S2 2 6 65 (121) 1 8e−16 4.8e−3

4 15 65 (121) 1 2e−15 4.8e−3

6 28 109 (196) 1 2e−15 6.6e−3

8 45 274 (484) 1 2e−15 9.0e−3

10 66 609 (961) 1 3e−15 1.5e−2

S3 2 6 50 (121) 1 5e−16 5.3e−3

4 15 50 (121) 1 7e−16 6.1e−3

6 28 89 (196) 1 1e−15 7.6e−3

8 45 239 (484) 1 2e−15 1.1e−2

10 66 491 (961) 1 4e−15 1.6e−2

Table: Degree of precision n = 2, 4, 6, 8, 10 of the rule, cardinality # of the extracted nodes, cubature
conditioning and moment residual of the rule on domains Si , i = 1, 2, 3, number of trial points used in the
extraction, cubature condition number cond, moment residual of the rule and median of the cputime over 50 tests.
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Numerical examples: cubature

As a further illustration, we report in the next Table the relative errors
made by the Tchakaloff-like rules when approximating

∫
Si fk(x , y) dx dy ,

where

f1(x , y) = exp(−(x2 + y2)),

f2(x , y) = ((x − x0)2 + (y − y0)2)11/2 , (x0, y0) = (0, 0.4),

f3(x , y) = ((x − x0)2 + (y − y0)2)1/2 , (x0, y0) = (0, 0.4),

The functions fk , k = 1, 2, 3 are examples of functions with different
degree of regularity on each domain Si , i = 1, 2, 3.

The reference values of these integrals are those obtained by the
same routines with ADE = 20.

As expected, in both the domains the quality of the approximation
worsens for less regular integrands (indeed f1 ∈ C∞(Si ), whereas
(0, 0.4) ∈ Si is a singular point for the first derivatives of f3 and for
6-th derivatives of f2).
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Numerical examples: cubature

S3 S4 S5

ADE f1 f2 f3 f1 f2 f3 f1 f2 f3
2 2e−02 4e−01 4e−02 4e−03 9e−01 6e−02 6e−03 2e−01 1e−02
4 3e−03 2e−01 9e−02 3e−04 2e−02 4e−02 9e−04 2e−01 1e−02
6 3e−04 4e−02 6e−03 4e−05 3e−02 2e−02 4e−05 1e−02 4e−03
8 3e−05 3e−03 2e−03 1e−06 8e−04 1e−03 2e−06 2e−03 3e−03

10 1e−06 8e−05 1e−03 8e−09 4e−05 2e−04 8e−08 3e−05 2e−04

Table: Relative errors of the new rules on the domains Si , i = 1, 2, 3 with
ADE = 2, 4, 6, 8, 10.
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Numerical examples: indomain

# algorithm S1 S2 S3

inRS1 4.3e−03s 1.9e−03s 2.1e−03s
103 inRS2 2.8e−03s 1.3e−03s 1.3e−03s

speed-up 1.5 1.5 1.6

inRS1 1.8e−02s 8.8e−03s 9.5e−03s
104 inRS2 4.4e−03s 3.2e−03s 3.2e−03s

speed-up 4.1 2.8 3.0

inRS1 1.6e−01s 7.3e−02s 8.0e−02s
105 inRS2 1.7e−02s 2.1e−02s 2.0e−02s

speed-up 9.4 3.5 4.0

Table: The indomain algorithm named inRS1 proposed in [1] has been
improved in [2] by inRS2. In this table we list the CPU time of these
routines on the three NURBS-shaped domains Si , i = 1, 2, 3, with #
Halton points of the corresponding bounding box.
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MATLAB Software

All the MATLAB routines and demos are collected in the
toolbox CUB RS and can be downloaded at [3].

We are not aware of the existence of an official built-in
NURBS toolbox (though it can be retrieved by third-parties
and MATLAB has a specific environment for rational splines).
Thus we have implemented a set of routines to describe
∂S ⊂ R2 by piecewise rational splines, including parametric
splines or composite Bezier curves or NURBS.

Finally we provide the routines

inRS that implement the faster in-domain algorithm
introduced in [2] (of interest also in meshless methods),
cubRS that computes a PI-type Tchakaloff-like algebraic
cubature rule of degree n,

for the designed domain S.
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Future research

Fast filling of the domain;

generalisation to domains that are not simply connected;

application to PDE problems with VEM and NEFEM;

application to meshless methods;

3D instances (very difficult task!).
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