Low cardinality Positive Interior cubature on NURBS-shaped domains

Alvise Sommariva and Marco Vianello

Università degli Studi di Padova

Software for Approximation 2022 February 3, 2022

Purpose

We present an algorithm that computes an algebraic cubature rule

$$\int_{\mathcal{S}} f(x,y) dx dy \approx \sum_{j=1}^{\eta} w_j f(Q_j)$$

over curvilinear polygons ${\cal S}$ defined by piecewise rational functions, that

- for n fixed, is exact for any $p \in \mathbb{P}_n$, being \mathbb{P}_n the space of bivariate polynomials of total degree n (i.e. ADE=n);
- has positive weights $\{w_j\}_j$ and interior nodes $\{Q_j\}_j \subseteq \mathcal{S}$;
- has low cardinality, i.e. $\eta \leq (n+1)(n+2)/2$ nodes.

Examples are domains ${\mathcal S}$ such that $\partial {\mathcal S}$ is defined piecewise by

- NURBS curves,
- by composite Bezier curves,
- parametric splines.

Purpose

Key tools:

- overlooked theorem by Wilhelmsen (1976) on Tchakaloff sets, (sufficiently dense set on S contains nodes of an algebraic rule of PI-type with ADE=n),
- a new in-domain algorithm for such curvilinear polygons, (before available only on parametric spline curvilinear polygons or basic S),
- the sparse nonnegative solution of underdetermined moment matching systems by the Lawson-Hanson NonNegative Least Squares solver,

(extracts nodes and determines positive weights from the dense pointset and moments of a basis of \mathbb{P}_n).

Applications:

- NEFEM with NURBS-shaped curvilinear elements,
- VEM with NURBS-shaped curvilinear elements.

Examples of integration domains

Figure: Examples of integration domains.

In-domain routine for rational spline curvilinear polygons

Assumptions:

the curvilinear polygon $\mathcal{S} \subset \mathbb{R}^2$ is a Jordan domain (hence the domain has no holes and the boundary has no self-intersections);

- whose boundary ∂S is described by parametric equations $x = \tilde{x}(t), \ y = \tilde{y}(t), \ t \in [a, b], \ \tilde{x}, \tilde{y} \in C([a, b]), \ \tilde{x}(a) = \tilde{x}(b)$ and $\tilde{y}(a) = \tilde{y}(b)$;
 - (the boundary is described parametrically by two periodic continuous functions);
- for which there are partitions $\{I^{(k)}\}$, k=1,...,M of [a,b], and $\{I_j^{(k)}\}$ with $j=1,...,m_k$ of each $I^{(k)}:=[t(k),t(k+1)]$, such that the restrictions of \tilde{x} , \tilde{y} on each closed interval $I^{(k)}$ are rational splines, w.r.t. the subintervals $\{I_j^{(k)}\}$, (the boundary is described parametrically by M rational splines).

Example I: composite Bezier closed curves

I: composite Bezier closed curves:

- for specific points $\{\mathbf{P}_{i,k}\}_{1,\ldots,m_k} \subset \mathbb{R}^2$ choosen by the user;
- defined the Bernstein polynomials

$$b_{i,l}(t) = {l \choose i} t^i (1-t)^{l-i}, \ i = 0, \ldots, l-1, \ t \in [0,1];$$

the k-th curve is of the form

$$\mathcal{B}(\tilde{t}) = \mathcal{B}(\omega_k(t)) = \sum_{i=0}^{m_k-1} b_{i,m_k-1}(t) \mathbf{P}_{i+1,k},$$

where

$$\tilde{t} = \frac{t^{(k+1)} + t^{(k)}}{2} + \frac{t^{(k+1)} - t^{(k)}}{2}t := \omega_k(t), t \in [0, 1],$$

(the boundary is described parametrically by continuous functions that are specific piecewise polynomials, often used in computer graphics).

Example II: NURBS

II: NURBS:

domains S in which ∂S is locally a p-th degree NURBS curve, i.e. defined in the curvilinear side $V_k \frown V_{k+1}$ as

$$\mathbf{C}(t) = \frac{\sum_{i=1}^{m_k} B_{i,p}(t) w_i \mathbf{P}_{i,k}}{\sum_{i=1}^{m_k} B_{i,p}(t) w_i}, \ t \in [t^{(k)}, t^{(k+1)}]$$

where

- $\{P_{i,k}\}_{i=1}^{m_k}$ are the control points, $\{\mathbf{w}_{i,k}\}_{i=1}^{m_k}$ are the weights,
- {B_{i,p}}^{mk}_{i=1} are suitable p-th degree B-spline basis functions defined on the nonperiodic (and nonuniform) knot vector

$$U = \{\underbrace{t^{(k)}, \dots, t^{(k)}}_{p+1}, t^{(k)}_{p+1}, \dots, t^{(k)}_{m_k - (p+1)}, \underbrace{t^{(k+1)}, \dots, t^{(k+1)}}_{p+1}\}.$$

with
$$t_{p+j}^{(k)} \leq t_{p+j+1}^{(k)}$$
, $j = 1, \ldots, m_k - 1$,

(the boundary ∂S is described parametrically by continuous functions that are specific piecewise rational functions, often used in computer graphics).

In-domain algorithm: Jordan curve theorem

Jordan curve theorem:

a point P belongs to a Jordan domain \mathcal{S} if and only if, having taken a point $P^* \notin \mathcal{S}$ then the segment $\overline{P^*P}$ crosses $\partial \mathcal{S}$ an odd number c(P) of times.

Figure: Points and boundary intersections. On the left c(P) = 1 and the point P is in the domain. On the right c(P) = 2 and the point P is outside the domain.

In-domain algorithm: Pathological cases

Pathological cases:

Figure: Critical situations for establishing the crossing number on curvilinear polygons.

In-domain algorithm: implementation

Basic idea:

- Cover the boundary ∂S by rectangles, with sides parallel to the axes, so that $x = \tilde{x}(t)$ and $y = \tilde{y}(t)$ are monotone (we will name them monotone boxes). Thus, the boundary is the graph of a local monotone Cartesian function in x and y.
- For each point P that is not in a pathological case, count the $c_0(P)$ monotone boxes strictly below P.
- If a point is inside some monotone boxes, count all the $c_1(P)$ times that is *over* the part of the boundary belonging to the box.
- Put $c(P) = c_0(P) + c_1(P)$. If c(P) is odd then P is inside S, otherwise it is not inside the curvilinear domain.
- For pathological cases, use alternative techniques, see [1].

In-domain algorithm: examples I

Figure: Monotone boxes and computation of the crossing number c(P) when \mathcal{P} is a disk. On the left figure, c(P) = 1, on the right one c(P) = 2.

In-domain algorithm: examples II

Figure: Monotone boxes and detection of the points inside the domain.

In-domain algorithm: main difficulties

- **1** Fast determination of the monotone boxes, from the piecewise rational splines \tilde{x} , \tilde{y} (pre-processing);
- 2 analysis of the pathological points;
- 3 for each point P, fast determination of the monotone boxes necessary to the computation of c(P);
- 4 fast determination if a point P belonging to a monotone box is over or below the curve relative to the monotone box:
- **5** deciding when a point P close to the boundary ∂S is numerically inside S or not.
- for cubature purposes, we must be able to analyse 1000 points in less than 10^{-3} seconds, including the pre-processing cputime.

Remark

The fact that the boundary is described parametrically by piecewise rational splines is fundamental in items 1, 4, 5.

Moments computation

Having in mind to compute a rule with algebraic degree of precision ADE = n by moments equations, we

- define a suitable basis $\{\phi_j\}$ of the polynomial space \mathbb{P}_n (tensorial Chebyshev on the bounding box \mathcal{R}^* of \mathcal{S}),
- lacktriangle compute the moments $\gamma_1, \ldots, \gamma_N$, where

$$\gamma_j := \int_{\mathcal{S}} \phi_j(x, y) dx dy,.$$

To this purpose:

- I By applying the Gauss-Green theorem, each γ_j is the sum of some line integrals, that after some computation are shown to require the integration in [-1,1] of continuous rational functions.
- 2 We compute these integrals in [-1,1] by high-order Gauss-Legendre rule (other techniques may be used).

Implementing Tchakaloff-like algebraic cubature rules

We extract the nodes and positive weights of a Tchakaloff-like algebraic cubature rule (i.e. a rule with ADE=n, positive weights, and cardinality at most equal to the dimension of \mathbb{P}_n , i.e. N = (n+1)(n+2)/2), by the following algorithm:

• compute the moments $\gamma = (\gamma_j)$ of a suitable basis of \mathbb{P}_n ;

at the k-th iteration of the algorithm

- introduce a tensorial grid \mathcal{M}_{ℓ} in the rectangle $\mathcal{R}^* := [a_1, b_1] \times [a_2, b_2]$ containing \mathcal{S} ;
- determine by the *in-domain* algorithm, at the ℓ -th iteration of the procedure, the set

$$\mathcal{P}_{\ell} = \mathcal{P}_{\ell-1} \cup (\mathcal{M}_{\ell} \cap \mathcal{S})$$

(the points of the analysed meshes, as well as of the present one, belong to \mathcal{S});

■ compute the Vandermonde matrix $V_{\mathcal{P}_{\ell}} = (\phi_j(\mathcal{P}_i^{(\ell)}))_{i,j}$ (relatively to the basis $\{\phi_j\}$ of \mathbb{P}_n and the pointset $\mathcal{P}_{\ell} = \{\mathcal{P}_i^{(\ell)}\}$);

Implementing Tchakaloff-like algebraic cubature rules

- apply the Lawson-Hanson algorithm to attempt to find a solution $w^* \geq 0$ to the overdetermined linear system $V_{\mathcal{P}_\ell} w = \gamma$ (any solution provides an alg. rule with pos. weights, internal nodes, ADE = n);
- find the nonnull components of w^* , say $\{w_i^{(\ell)}\}_{i=1,\dots,\nu_\ell}$;
- determine the corresponding nodes $\{(x_i^{(\ell)}, y_i^{(\ell)})\}_{i=1,...,\nu_\ell}, \nu_\ell \leq N$ (if $w_i^* > 0$ then $(x_i^{(\ell)}, y_i^{(\ell)})$ is the relative node);
- for a fixed tolerance ε , check if the so obtained rule is such that

$$\gamma_j^{(\ell)} = \sum_{i=1}^{\nu_\ell} w_i^{(\ell)} \phi_j(x_i^{(\ell)}, y_i^{(\ell)}), \ j = 1, \dots, N,$$

well approximates the set of moments $\gamma = \{\gamma_j\}$, i.e.

$$\|\gamma^{(\ell)} - \gamma\|_2 \le \varepsilon \tag{1}$$

(the cubature rule numerically matches the moments at ADE = n);

• if (1) does not hold, iterate the procedure.

Implementing Tchakaloff-like algebraic cubature rules

Comment:

- The basic idea is to fill the domain S with points until one is able to determine the wanted ruled by Lawson-Hanson algorithm [5].
- Important: Lawson-Hanson will find a solution with at most (n+1)(n+2)/2 positive components!
- In VEM, the algebraic degree of precision ADE = n is typically low, say $n \le 5$, and all the process must take at most 10^{-2} seconds (many MATLAB tricks!).
- By construction the rules have internal nodes and positive weights.
- In exact arithmetic this procedure has finite termination in view of a theorem by Wilhelmsen mentioned above [5], since the set \mathcal{P}_{ℓ} becomes sufficiently dense after a finite number of iterations.
- Many technical details are skipped and can be found in [1].

We have implemented in Matlab the ideas sketched above (cf.[3]).

In order to show the flexibility of our method, we consider the domains that are in the next figure from left to right,

- 1 a "M" shaped domain S_1 , in which ∂S_1 is determined by a unique order 3 NURBS curve with 16 distinct control points,
- 2 a convex domain S_2 , where ∂S_2 is obtained by joining a circular and an elliptical arc, followed by a segment,
- **3** a concave domain S_3 whose boundary ∂S_3 consists of a unique NURBS curve of order 3 with 9 distinct control points.

Figure: The curvilinear domains S_i with i=1,2,3, the grid points P outside the domain or on its boundary (in red), those inside the domain (in green) and the nodes of a cubature formula of PI-type for n=6 (28 magenta dots). The control points of the NURBS curve are represented as cyan squares, joined to represent the so called *control points polygon*.

_	_	_				
	n	#	# trial pts	cond	moment res	cpu
\mathcal{S}_1	2	6	28 (121)	1	5 <i>e</i> -16	1.3e-2
	4	15	108 (377)	1	1e-15	1.8e-2
İ	6	28	225 (637)	1	1e-15	2.2e-2
	8	45	693 (1573)	1	3e-15	3.4e-2
	10	66	1304 (3077)	1	5e-15	8.5 <i>e</i> -2
S_2	2	6	65 (121)	1	8e-16	4.8 <i>e</i> -3
	4	15	65 (121)	1	2e-15	4.8e-3
	6	28	109 (196)	1	2e-15	6.6e-3
İ	8	45	274 (484)	1	2e-15	9.0e-3
	10	66	609 (961)	1	3e-15	1.5e-2
S_3	2	6	50 (121)	1	5e-16	5.3e-3
İ	4	15	50 (121)	1	7e-16	6.1e-3
	6	28	89 (196)	1	1e-15	7.6e-3
	8	45	239 (484)	1	2e-15	1.1e-2
	10	66	491 (961)	1	4e-15	1.6e-2

Table: Degree of precision n = 2, 4, 6, 8, 10 of the rule, cardinality # of the extracted nodes, cubature conditioning and moment residual of the rule on domains S_i , i = 1, 2, 3, number of trial points used in the extraction, cubature condition number cond, moment residual of the rule and median of the cputime over 50 tests.

As a further illustration, we report in the next Table the relative errors made by the Tchakaloff-like rules when approximating $\int_{\mathcal{S}_i} f_k(x, y) dx dy$, where

$$f_1(x,y) = \exp(-(x^2 + y^2)),$$

$$f_2(x,y) = ((x - x_0)^2 + (y - y_0)^2)^{11/2}, (x_0, y_0) = (0, 0.4),$$

$$f_3(x,y) = ((x - x_0)^2 + (y - y_0)^2)^{1/2}, (x_0, y_0) = (0, 0.4),$$

- The functions f_k , k = 1, 2, 3 are examples of functions with different degree of regularity on each domain S_i , i = 1, 2, 3.
- The reference values of these integrals are those obtained by the same routines with ADE = 20.
- As expected, in both the domains the quality of the approximation worsens for less regular integrands (indeed $f_1 \in C^{\infty}(S_i)$, whereas $(0,0.4) \in S_i$ is a singular point for the first derivatives of f_3 and for 6-th derivatives of f_2).

	\mathcal{S}_3			\mathcal{S}_4			\mathcal{S}_5		
ADE	f_1	f_2	f_3	f_1	f_2	f ₃	f_1	f_2	f ₃
2	2 <i>e</i> -02	4e-01	4 <i>e</i> -02	4 <i>e</i> -03	9e - 01	6 <i>e</i> -02	6e-03	2 <i>e</i> -01	1e-02
4	3 <i>e</i> -03	2 <i>e</i> -01	9 <i>e</i> -02	3 <i>e</i> -04	2e - 02	4 <i>e</i> -02	9 <i>e</i> -04	2 <i>e</i> -01	1 <i>e</i> -02
6	3 <i>e</i> -04	4 <i>e</i> -02	6 <i>e</i> -03	4 <i>e</i> -05	3e - 02	2 <i>e</i> -02	4 <i>e</i> -05	1 <i>e</i> -02	4 <i>e</i> -03
8	3 <i>e</i> -05	3 <i>e</i> -03	2 <i>e</i> -03	1 <i>e</i> -06	8 <i>e</i> -04	1 <i>e</i> -03	2 <i>e</i> -06	2 <i>e</i> -03	3e-03
10	1e-06	8 <i>e</i> -05	1e-03	8 <i>e</i> -09	4 <i>e</i> -05	2 <i>e</i> -04	8 <i>e</i> -08	3e-05	2 <i>e</i> -04

Table: Relative errors of the new rules on the domains S_i , i = 1, 2, 3 with ADE = 2, 4, 6, 8, 10.

Numerical examples: indomain

#	algorithm	\mathcal{S}_1	\mathcal{S}_2	\mathcal{S}_3
10 ³	inRS1	4.3 <i>e</i> -03 <i>s</i>	1.9 <i>e</i> -03 <i>s</i>	2.1 <i>e</i> -03 <i>s</i>
	inRS2	2.8 <i>e</i> -03 <i>s</i>	1.3 <i>e</i> -03 <i>s</i>	1.3 <i>e</i> -03 <i>s</i>
	speed-up	1.5	1.5	1.6
10 ⁴	inRS1	1.8 <i>e</i> -02 <i>s</i>	8.8 <i>e</i> -03 <i>s</i>	9.5 <i>e</i> -03 <i>s</i>
	inRS2	4.4 <i>e</i> -03 <i>s</i>	3.2 <i>e</i> -03 <i>s</i>	3.2 <i>e</i> -03 <i>s</i>
	speed-up	4.1	2.8	3.0
10 ⁵	inRS1	1.6e-01s	7.3 <i>e</i> -02 <i>s</i>	8.0 <i>e</i> -02 <i>s</i>
	inRS2	1.7 <i>e</i> -02 <i>s</i>	2.1 <i>e</i> -02 <i>s</i>	2.0 <i>e</i> -02 <i>s</i>
	speed-up	9.4	3.5	4.0

Table: The indomain algorithm named inRS1 proposed in [1] has been improved in [2] by inRS2. In this table we list the CPU time of these routines on the three NURBS-shaped domains S_i , i=1,2,3, with # Halton points of the corresponding bounding box.

MATLAB Software

- All the MATLAB routines and demos are collected in the toolbox CUB_RS and can be downloaded at [3].
- We are not aware of the existence of an official built-in NURBS toolbox (though it can be retrieved by third-parties and MATLAB has a specific environment for rational splines). Thus we have implemented a set of routines to describe $\partial \mathcal{S} \subset \mathbb{R}^2$ by piecewise rational splines, including parametric splines or composite Bezier curves or NURBS.
- Finally we provide the routines
 - inRS that implement the faster in-domain algorithm introduced in [2] (of interest also in meshless methods),
 - cubRS that computes a PI-type Tchakaloff-like algebraic cubature rule of degree n,

for the designed domain S.

Future research

- Fast filling of the domain;
- generalisation to domains that are not simply connected;
- application to PDE problems with VEM and NEFEM;
- application to meshless methods;
- 3D instances (very difficult task!).

Bibliography

- A. Sommariva and M. Vianello, Low cardinality Positive Interior cubature on NURBS-shaped domains (submitted).
 (Cubature and first indomain routine)
- 2 A. Sommariva and M. Vianello, inRS: implementing the indicator function for NURBS-shaped planar domains (submitted). (Faster indomain routine)
- Matlab software: A. Sommariva homepage, https://www.math.unipd.it/~alvise/software.html.
- 4 A. Sommariva, M. Vianello, Compression of multivariate discrete measures and applications, *Numer. Funct. Anal. Optim.*, 36 (2015), 1198–1223. (Details on cubature compression)
- D. R. Wilhelmsen, A Nearest Point Algorithm for Convex Polyhedral Cones and Applications to Positive Linear approximation, *Math. Comp.*, 30 (1976), 48-57.