
Tchakalo�-like polyhedral quadrature with and without
tetrahedralization

Alvise Sommariva and Marco Vianello

Functional Analysis, Approximation Theory and Numerical Analysis
Matera, Italy, July 5-8, 2022

Thanks: RITA, UMI group TAA, GNCS project Metodi e software per la
modellistica integrale multivariata



Purpose

We present an algorithm that computes an algebraic cubature rule∫
Ω

f (x, y, z)dxdydz ≈
η∑
j=1

wjf (Qj)

over general polyhedra Ω ⊂ R3.

The motivation is the lack for available routines in Matlab.
The intention is to provide algorithms with and without tetrahedralization.
The degrees δ are mild (say less than 10).

2/19



Algorithms with tetrahedralization

This approach is well-known in literature.
Determine a triangulation T = {Tk}k=1,...,M of the polyhedron Ω, i.e.
Ω = ∪Mk=1Tk and the intersection of the interior of two distinct tetrahedrons
Tk is empty.

Compute the integral Q(k)
δ (f ) =

∑Nk
j=1 w

(k)
j f (P(k)

j ) by a rule with algebraic
degree of exactness δ on each Tk , k = 1, . . . ,M.
In view of the additivity of the integration operator we get a rule of degree δ
on Ω, i.e.

IΩ(f ) ≈
M∑
k=1

Q(k)
δ (f ) =

M∑
k=1

Nk∑
j=1

w(k)
j f (P(k)

j ).

3/19



Algorithms with tetrahedralization: triangulation

Some considerations about the triangulation.
If the polyhedron Ω is not convex/star shaped (knowing a center!), the
determination of the triangulation may not be straightforward.
If Ω is obtained by alphashape from a point cloud of vertices, the command
alphaTriangulation returns a triangulation of Ω.
Note that by varying the alphashape parameter, the obtained domain can
be very di�erent.

4/19



Algorithms with tetrahedralization: rules on tetrahedron

Some considerations about the rules on the tetrahedra with internal nodes and
positive weights.

For degrees of precision δ = 0, 1, . . . , 20, there are in literature several pointsets
that are exact for all the polynomials of total degree δ on the reference
tetrahedron T∗ with vertices [1,0,0], [0, 1,0], [0,0,0], [0,0, 1] and have
almost-minimal cardinality.

deg card deg card deg card deg card
1 1 6 23 11 94 16 247
2 4 7 31 12 117 17 288
3 6 8 44 13 144 18 338
4 11 9 57 14 175 19 390
5 14 10 74 15 207 20 448

Table: Cardinality of almost-minimal rules on reference tetrahedron.

All these rules have internal nodes and positive weights.
For δ > 20, one can use a the well-established Stroud rule, that in general
has a not minimal cardinality but it is easy to be implemented.

5/19



Algorithms with tetrahedralization: rules on tetrahedron

Once a rule is available on the reference tetrahedron T∗, it can be easily
obtained on each Tk by barycentric coordinates and the computation of Tk
volume.
If the cardinality L of the rule on the wanted polyhedron Ω is higher than

L̃δ = (δ + 1)(δ + 2)(δ + 3)/6

then one can extract a Tchakalo� rule with at most L̃n internal nodes and
positive weights by means of Lawson-Hanson algorithm. This process is fast
for mild δ.

Alternatively one can apply a QR approach, that is faster but does not
guarantee the positiveness of the weights.

6/19



Algorithms without tetrahedralization

The procedure works essentially as follows:
we compute the moments {γk}k=1,...,N of a certain polynomial basis
{φk}k=1,...,N of tensorial type by means of cubature rules with ADE δ + 1 on
the polyhedron facets {Fi}i=1,...,M , in virtue of the divergence theorem;
using an inpolygon routine we consider a su�cient number of points
{P̃l}l=1,...,L inside Ω so that the overdetermined linear system V ′w = γ, with
Vl,k = (φk(P̃l)), has a nonnegative solution w with at most N ≤ L positive
components.
extract a rule with positive weights and internal nodes via fast
Lawson-Hanson algorithm.

In spite of the simplicity of this approach there are many aspects that deserve
explanations, on the implementation side as well as on the theoretical one.

7/19



Algorithms without tetrahedralization: moment computation

Some considerations about the moment computation.

For all the triples α = (α1, α2, α3) with α1, α2, α3 ∈ N and α1 + α2 + α3 ≤ δ, one must
compute the moments of the tensorial Chebyshev basis on the bounding box of Ω, i.e.

γα =

∫
Ω

T̃ (a1,b1)
α1 (x)T̃ (a2,b2)

α2 (y)T̃ (a3,b3)
α3 (z) dx dy dz

where, being Tm the Chebyshev polynomial of �rst kind, of degree m,

T̃ (a,b)
m (t) := Tm

((
x − a + b

2

)
2

b− a

)
. (1)

One can show that in view of divergence theorem it is equivalent to compute

γα =
M∑
k=1

∫
Fk
n(k)
1 U(a1,b1)

α1 (x)T̃ (a2,b2)
α2 (y)T̃ (a3,b3)

α3 (z) dS

where Fk are the polyhedra facets with outer normals n(k)
1 and U(a,b)

α1 ∈ Pα1+1

U(a,b)
0 (x) = x−a + b

2
, U(a,b)

1 (x) =
1

b− a

(
x − a + b

2

)2

,U(a,b)
m =

2
b− a

(
T̃ (a,b)
m+1 (x)

2(m + 1)
−
T̃ (a,b)
m−1 (x)

2(m− 1)

)
,m > 1.

8/19



Algorithms without tetrahedralization: moment computation

Since

γα =
M∑
k=1

∫
Fk
n(k)
1 U(a1,b1)

α1
(x)T̃ (a2,b2)

α2
(y)T̃ (a3,b3)

α3
(z) dS

we compute the k-th term of the sum by a cubature rule on the polygonal facet
Fk .

Note that each integrand is a polynomial of total degree at most δ + 1.

By an a�ne map, with some care, this can be conveniently done by cubature of
degree δ + 1 over a suitable planar polygon F (2)

k ⊂ R2, thing that can be done
even without triangulations of F (2)

k .

9/19



Algorithms without tetrahedralization: PI rule computation

Finally we can compute a cubature formula with positive weights and internal
nodes as follows.

1 generate a set of random-points P(1) = {Pi}k1i=1 in the smallest parallelepiped
[a1, b1]× [a2, b2]× [a3, b3] containing Ω (k1 well-choosen!);

2 determine those points P(2) = {P(2)
j }

k2
j=1 ⊆ P(1) belonging to Ω (e.g. by

open-source routine inpolyhedron);
3 by a procedure of Lawson-Hanson type, for instance using Matlab built-in
lsqnonneg or the alternative open source LHDM,

extract a set of nodes Q(1) = {Qj}k3j=1 ⊆ P
(2),

compute the relative (positive) weights {wj}k3j=1 ⊆ R+,

so that the moment error ‖V Tw− γk‖2 is less than tol, where Vi,j = ψj(P
(2)
i )

and γk =
∫

Ω
ψk(x, y, z) dx dy dz (ψk is the Pδ basis on the smallest

parallelepiped) and tol is a tolerance �xed by the user, e.g. tol=10−14;
4 in case of failure, generate new random-points, and restart from item 1, also

using the already de�ned internal points P(2).
Fundamental: a result by Wilhelmsen says that in theory this procedure will have
success for su�ciently dense data.

10/19



Numerical experiments: domains

Figure: Examples of polyhedral domains.

Left: non convex, Center: convex, Right: non convex with hole.

11/19



Numerical experiments: domain 1

1 2 3 4 5 6 7 8 9 10
10

-16

10
-15

Polynomial integrals matching

1 2 3 4 5 6 7 8 9 10
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Cputimes

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

Cardinality

Full

FullC/Free

Figure: Domain 1 (30 facets): Moment matching of the free/not free methods over 100
integrands of the form (c1 + k1 · x + ·y + k3 · z)δ where c1, k1, k2, k3 ∈ [0, 1] are random,
average cputime and cardinality. Triangulation cputime: 5e− 3 seconds.

12/19



Numerical experiments: domain 1, integration of some functions

1 2 3 4 5 6 7 8 9 10
10

-15

10
-10

10
-5

10
0

Relative errors f1

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10
10

-8

10
-6

10
-4

10
-2

10
0

Relative errors f2

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Relative errors f3

Full

FullC

Free

Figure: Domain 1 (30 facets): Relative errors integrating f1(x, y, z) = exp(−x2 − y2 − z2),
f2(x, y, z) = ((x − x0)2 + (y − y0)2 + (z − z0)2)5/2,
f3(x, y, z) = ((x − x0)2 + (y − y0)2 + (z − z0)2)1/2, con (x0, y0, z0) = (1.5, 1.5, 1.5).

13/19



Numerical experiments: domain 2

1 2 3 4 5 6 7 8 9 10
10

-16

10
-15

10
-14

Polynomial integrals matching

1 2 3 4 5 6 7 8 9 10
10

-3

10
-2

10
-1

10
0

10
1

Cputimes

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

Cardinality

Full

FullC/Free

Figure: Domain 2 (760 facets, sphere like): Moment matching of the free/not free methods
over 100 integrands of the form (c1 + k1 · x + ·y + k3 · z)δ where c1, k1, k2, k3 ∈ [0, 1] are
random, average cputime and cardinality. Triangulation cputime: 8e− 2 seconds. The
indomain is fast since the domain is convex.

14/19



Numerical experiments: domain 2, integration of some functions

1 2 3 4 5 6 7 8 9 10
10

-15

10
-10

10
-5

10
0

Relative errors f1

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10
10

-8

10
-6

10
-4

10
-2

10
0

10
2

Relative errors f2

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10

10
-6

10
-4

10
-2

10
0

Relative errors f3

Full

FullC

Free

Figure: Domain 2 (760 facets, sphere like): Relative errors integrating
f1(x, y, z) = exp(−x2 − y2 − z2), f2(x, y, z) = ((x − x0)2 + (y − y0)2 + (z − z0)2)5/2,
f3(x, y, z) = ((x − x0)2 + (y − y0)2 + (z − z0)2)1/2, con (x0, y0, z0) = (1, 1, 1).

15/19



Numerical experiments: domain 3

1 2 3 4 5 6 7 8 9 10
10

-16

10
-15

Polynomial integrals matching

1 2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Cputimes

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10

10
1

10
2

10
3

Cardinality

Full

FullC/Free

Figure: Domain 3 (20 facets, hole): Moment matching of the free/not free methods over 100
integrands of the form (c1 + k1 · x + ·y + k3 · z)δ where c1, k1, k2, k3 ∈ [0, 1] are random,
average cputime and cardinality. Triangulation cputime: 5e− 3 seconds.

16/19



Numerical experiments: domain 2, integration of some functions

1 2 3 4 5 6 7 8 9 10
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Relative errors f1

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10
10

-8

10
-6

10
-4

10
-2

10
0

Relative errors f2

Full

FullC

Free

1 2 3 4 5 6 7 8 9 10
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Relative errors f3

Full

FullC

Free

Figure: Domain 3 (20 facets, hole): Relative errors integrating
f1(x, y, z) = exp(−x2 − y2 − z2), f2(x, y, z) = ((x − x0)2 + (y − y0)2 + (z − z0)2)5/2,
f3(x, y, z) = ((x − x0)2 + (y − y0)2 + (z − z0)2)1/2, con (x0, y0, z0) = (1.5, 1.5, 1.5).

17/19



Final conclusions

Our intention is to propose a fast and reliable code. In this sense we intend to
�nd faster indomain routines for polyhedra;
�nd faster Lawson-Hanson method (collaborators work in progress);
�nd best parameters (e.g., fewer points from which extract the �nal nodes);
many more stress tests for the routines;
application to PDE problems.

In terms of cputime there is no problem with the moment computation (it is fast
and accurate).

Important: All the Matlab routines will be available at the authors’ homepages.

18/19



Bibliography

1 P.F. Antonietti, P. Houston, G.Pennesi, Fast Numerical Integration on Polytopic Meshes
with Applications to Discontinuous Galerkin Finite Element Methods. J. of Scienti�c
Comp. 77, 1339–1370 (2018).
Quadratures without the need to partition the domain into triangles or tetrahedrons, no software.

2 M. Dessole, F. Marcuzzi, M. Vianello, Accelerating the Lawson-Hanson NNLS solver for
large-scale Tchakalo� regression designs, DRNA 13, 20–29 (2020).
Fast Lawson-Hanson algorithm and Matlab codes.

3 S. Holcombe, Matlab open source routine: inpolyhedron
Open source Matlab in-domain routine for polyhedra.

4 S.E. Mousavi, N. Sukumar, Numerical integration of polynomials and discontinuous
functions on irregular convex polygons and polyhedrons. Comput. Mech. 47, 5 (2011),
535–554.
Cubature without triangulations, no software. Moments by Lasserre’s method.

5 A. Sommariva, M. Vianello, Compression of multivariate discrete measures and
applications, Numer. Funct. Anal. Optim., 36 (2015), 1198–1223.
(Details on cubature compression)

6 D. R. Wilhelmsen, A Nearest Point Algorithm for Convex Polyhedral Cones and
Applications to Positive Linear approximation, Math. Comp., 30 (1976), 48-57.

19/19


