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We present an algorithm that computes an algebraic cubature rule

n
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over general polyhedra Q C R3.
m The motivation is the lack for available routines in Matlab.

m The intention is to provide algorithms with and without tetrahedralization.
m The degrees 0 are mild (say less than 10).
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This approach is well-known in literature.

m Determine a triangulation 7 = {T¢}«=,... .M of the polyhedron Q, i.e.
Q = U}, Ty and the intersection of the interior of two distinct tetrahedrons

Tk is empty.
m Compute the integral Q(k)(f) = E/ - w(k)f( (k)) by a rule with algebraic
degree of exactness § on each Ty, k = 1 , M.

m In view of the additivity of the integration operator we get a rule of degree §

on Q, ie. .
ia(f) ~ 2 00 =33 w TR

k=1 j=1
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Some considerations about the triangulation.

m If the polyhedron Q is not convex/star shaped (knowing a center!), the
determination of the triangulation may not be straightforward.

m If Q is obtained by alphashape from a point cloud of vertices, the command
alphaTriangulation returns a triangulation of 2.

m Note that by varying the alphashape parameter, the obtained domain can
be very different.
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Algorithms with tetrahedralization: rules on tetrahedron

Some considerations about the rules on the tetrahedra with internal nodes and
positive weights.

For degrees of precision § = 0,1,...,20, there are in literature several pointsets
that are exact for all the polynomials of total degree ¢ on the reference
tetrahedron T* with vertices [1,0, 0], [0,1,0], [0,0,0], [0,0,1] and have
almost-minimal cardinality.

deg | card || deg | card || deg | card || deg | card
1 6 | 23| 11|94 | 16 |247
4 7| 31 || 12| N7 || 17 |288
8 | 44 || 13 | 144 || 18 | 338
1 9 | 57 |14 | 175 | 19 |390
14 1110 | 74 || 15 | 207 || 20 | 448

U~ WN —
o

Table: Cardinality of almost-minimal rules on reference tetrahedron.

m All these rules have internal nodes and positive weights.
m For § > 20, one can use a the well-established Stroud rule, that in general
has a not minimal cardinality but it is easy to be implemented.
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m Once a rule is available on the reference tetrahedron T%, it can be easily
obtained on each T, by barycentric coordinates and the computation of Ty
volume.

m If the cardinality L of the rule on the wanted polyhedron Q is higher than

Ls=(+M(0+2)(0+3)/6

then one can extract a Tchakaloff rule with at most In internal nodes and
positive weights by means of Lawson-Hanson algorithm. This process is fast
for mild 4.

Alternatively one can apply a QR approach, that is faster but does not
guarantee the positiveness of the weights.
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Algorithms without tetrahedralization

The procedure works essentially as follows:

m we compute the moments {7k }k=1,... n of a certain polynomial basis
{¢k}k=,... n of tensorial type by means of cubature rules with ADE § + 1 on
the polyhedron facets {Fj}i= . m, in virtue of the divergence theorem;

m using an inpolygon routine we consider a sufficient number of points
{P}i=1....1 inside Q so that the overdetermined linear system V'w = ~, with
Vi.k = (¢«(P))), has a nonnegative solution w with at most N < L positive
components.

m extract a rule with positive weights and internal nodes via fast
Lawson-Hanson algorithm.

In spite of the simplicity of this approach there are many aspects that deserve
explanations, on the implementation side as well as on the theoretical one.
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Algorithms without tetrahedralization: moment computation

Some considerations about the moment computation.

For all the triples a = (a1, a2, a3) with an, a2, 3 € N and oy + a2 + a3 < 4, one must
compute the moments of the tensorial Chebyshev basis on the bounding box of €, i.e.

%:Lm“mmmmmmwwww

where, being T, the Chebyshev polynomial of first kind, of degree m,

Feb(g) = T, <(x— “J;b) bf a> , M

One can show that in view of divergence theorem it is equivalent to compute

%fZ/ U ()T ()Tl )(2) ds

where Fi are the polyhedra facets with outer normals n1(k) and Ufﬁ’b) €Po

2 F(a,b) F(a,b)
@b) () — . 9tb by ] Ca+b\ e 2 [ Tei () TR
Vo™ (x) = x 2 U (X)_bfa X 2 » Un T b—a\2(m+1) 2(m-1))’
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Since
Vo = Z/ (k) U("‘ b1)(x T(az bz)( )T&zs,ba)(z) ds
we compute the k-th term of the sum by a cubature rule on the polygonal facet
Fk.
Note that each integrand is a polynomial of total degree at most § + 1.

By an affine map, with some care, this can be conveniently done by cubature of
degree ¢ + 1 over a suitable planar polygon .7-',52) C IR?, thing that can be done
even without triangulations of ]-',52).
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Algorithms without tetrahedralization: Pl rule computation

Finally we can compute a cubature formula with positive weights and internal
nodes as follows.

generate a set of random-points P() = {P,-}f.q:1 in the smallest parallelepiped
[a, bi] X [a@2, b] X [a3, bs] containing Q (ki well-choosen!);

determine those Points PR = {P/@ }/’-(; C PO belonging to Q (e.g. by
open-source routine inpolyhedron);

by a procedure of Lawson-Hanson type, for instance using Matlab built-in
lsqnonneg or the alternative open source LHDM,

B extract a set of nodes Q) = {O,-}:Z] c PO,
m compute the relative (positive) weights {w,'}llz1 C RT,

so that the moment error ||VTw — |7 is less than tol, where V;; = w,(Pi(z))
and v, = fQ Ur(x,y, z) dx dy dz (1) is the Ps basis on the smallest
parallelepiped) and tol is a tolerance fixed by the user, e.g. tol=10""4;

in case of failure, generate new random-points, and restart from item 1, also
using the already defined internal points P(),

Fundamental: a result by Wilhelmsen says that in theory this procedure will have
success for sufficiently dense data.
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Figure: Examples of polyhedral domains.

Left: non convex, Center: convex, Right: non convex with hole.
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Gardinality

Figure: Domain 1 (30 facets): Moment matching of the free/not free methods over 100
integrands of the form (c + ki - x + -y + k3 - 2)° where @, ki, k2, ks € [0,1] are random,

average cputime and cardinality. Triangulation cputime: 5e — 3 seconds.
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Figure: Domain 1(30 facets): Relative errors integrating fi(x, y, z) = exp(—x* — y* — 2%),
falx,y,2) = ((x = x0)* + (y = o)’ + (2 — 20)°)"2,
f(%y,2) = (x = x0)* + (y — y0)* + (2 — 20)%)"/2, con (x0, yo, 20) = (1.5,1.5,1.5).
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Cputimes Cardinality
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Figure: Domain 2 (760 facets, sphere like): Moment matching of the free/not free methods
over 100 integrands of the form (¢ + ki - x + -y + k3 - 2)° where a, ki, k2, k3 € [0, 1] are
random, average cputime and cardinality. Triangulation cputime: 8e — 2 seconds. The
indomain is fast since the domain is convex.
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Figure: Domain 2 (760 facets, sphere like): Relative errors integrating
filx.y,2) = exp(—x* = y* = Z), fo(x,.2) = ((x = x0)* + (y = yo)* + (2 = 20)°)*"%,
fi(x.y,2) = ((x = x0)* + (y = y0)* + (2 = 20)*)"/%, con (x0, Y0, 20) = (1,1,1).
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Figure: Domain 3 (20 facets, hole): Moment matching of the free/not free methods over 100
integrands of the form (c + ki - x + -y + k3 - 2)° where a, ki, k2, ks € [0,1] are random,
average cputime and cardinality. Triangulation cputime: 5e — 3 seconds.
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Figure: Domain 3 (20 facets, hole): Relative errors integrating
filx.y,2) = exp(—x* = y* = Z), fo(x,.2) = ((x = x0)* + (y = yo)* + (2 = 20)°)"%,
B(xy,2) = (x = x0)* + (y = y0)* + (z — 20)%)"?, con (x0, yo, 20) = (1.5,1.5,1.5).
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Our intention is to propose a fast and reliable code. In this sense we intend to
m find faster indomain routines for polyhedra;
m find faster Lawson-Hanson method (collaborators work in progress);
m find best parameters (e.g., fewer points from which extract the final nodes);
B many more stress tests for the routines;
m application to PDE problems.

In terms of cputime there is no problem with the moment computation (it is fast
and accurate).

Important: All the Matlab routines will be available at the authors” homepages.
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