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Purpose

In this presentation we consider the basics of the tensorial type
rules (sometimes known as product rules), for numerical integration
over a domain Q C RY via a weighted sum, that is

/ F(x)dQ ~ > wief(x)-
Q k=1

These formulas are usually based on univariate rules of Gaussian
type, in virtue of all their favourable properties.

We will consider the basic case of domains Q2 as
m the hypercube [-1,1]¢;
m the simplex;
m the disk and more general specific domains obtained by linear
blending;
m time permitting, we will discuss tensorial rules on the sphere
and on some of its subdomains.

For details, see e.g. [2, p.36I1].
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In order to show the basic idea behind this approach, we consider
first the example of the sometimes called normal domain.

To introduce this technique, we consider the case of bivariate
normal domains

Q={(xy): a<x<b P(x)<y<d(x)}

being ¢, ¢ : [a,b] — R two sufficiently regular functions.

Figure: A normal domain Q2 where a = 0, b = 2, ‘w(x) = sin(x),
@(x) = sin(x) + log(x + 3).

3/75



Since

Q={(xy): a<x<b, ¥(x)<y<d(x)}
m setting g(x) = ff((:)) f(x,y) dy,

m using the rule fab g(x) dx =~ >0, wig(x),
we have from basic calculus,

) = [ s [ b ( /w f:)f(x,Y)dY> = [ o

n n é(xi)
Ay wig(x) =Y wi / f(xi;y) dy m
i=1 i=1 ¥(xi)

475



We observe that we can approximated the n inner integrals of

n (xi)
’(f)zzwi/w( ) f(xi,y) dy
i=1 Xi

with a suitable m-point rule.

Notice that the domain of the integral may vary with the index “/ ”, but
that this is not a problem, since we can scale the rule (e.g. one can use a
shifted Gauss-Legendre rule, from [—1,1] to [¢)(x;), &(xi))).

If

o(x1) m
/ | F(xiy) dy = > viif (%, ¥i)
=1

P(xi

we finally get the formula with cardinality mn

1) =D wid viif(iyi) = D> wiviif(xi. yi.i) = Smn(f)
= =

i=1 j=
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Normal domains

We observe that in the construction of the formula
n m n m
I(F) = > wi > viif (i yii) = D > wiviif (%, i)
i=1 j=1 i=1 j=1

we did not make assumptions on the degree of exactness of

b n
/ g(x)dx ~ Z wig(x;i)
a i=1

and of each

#(x) m
/w fxioy) dy = > viif (% ji)-

(Xf) j=1

Except for specific cases, e.g. ¢, polynomials, it will not be
possible to choose m, n so to have formulas with a fixed degree of
exactness 9, that is I(p) = Sy n(p) for each p € P5(R2) .
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Normal domains

We define some Matlab codes to illustrate these formulas. We start
with a routine define_normal_rule that computes the nodes and
weights on a normal domain defined by the interval [a, b] and the
functions v, ¢.

function [nodes,weights]=define_normal_rule(n,m,a,b,psi,phi)
% Rule direction "x”

abn=r_jacobi(n,0,0); xw=gauss(n,abn); % Gauss-Legendre
x=xw(:,1); w=xw(:,2); x=(a+b)/2+(b-a)*x/2; w=(b-a)*w/2;

% Rule direction "y”".
abm=r_jacobi(m,0,0); yv=gauss(m,abm); % Gauss-Legendre

% Rule on the normal domain
y=yv(:,1); v=yv(:,2);

nodes =[]; weights=[];

for i=Tn
psi_i=feval (psi,x(i)); phi_i=feval (phi,x(i));
y_i=(psi_i+phi_i)/2+((phi_i-psi_i)/2)*y; % scaled nodes
v_i=((phi_i-psi_i)/2)*v; % scaled weights

nodes_add=[x(i)*ones(size(y_i)) y_il; % rule nodes/weights to add
nodes=[nodes; nodes_add];

weights_add=w(i)*v_i;

weights=[weights; weights_add];
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Normal domains

Next we implement a demo, to study the case in which
m a=0, b=2m ¥(x) =sin(x) and ¢(x) = sin(x) + log(x + 3);
m the integrand is f(x, y) = (x + 0.5y)" and I(f) = 234913153.2071612.. . ..

function demo_normal_domain

a=0; b=2*pi; % Define "normal domain”.

psi=0(x) sin(x);

phi=0@(x) sin(x)+log(x+3);

f=0@(x,y) (x+0.5%y)."10; % integrand

Iex=2.349131532071612e+08; % integral computed with high order rule
n=10; m=11; % Define "n”, "m” (cardinality of the rules).

% External routine that computes nodes and weights.
[nodes ,weights]=define_normal_rule(n,m,a,b,psi,phi);

% Compute integral .
fnodes=feval (f,nodes (:,1) ,nodes(:,2));
Inum=weights '* feval (f,nodes(:,1) ,nodes(:,2));

fprintf ('\n \t * | : %-1.15e’,Inum);
fprintf('\n \t * AE: %-1.3e’,abs(Inum-Iex));
fprintf(’'\n \t * RE: %-1.3e \n’,abs(Inum-Iex)/abs(Iex));

% Plot normal domain (external subroutine)

plot_normal_domain(a,b,psi,phi);

plot(nodes (:,1) ,nodes(:,2), go’, MarkerEdgeColor ", 'k’
"MarkerFaceColor ', 'g’, 'MarkerSize ' ,4);

axis equal; axis tight;

hold off;
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Below we mention the routine for plotting the domain.

As numerical results we see that the formula is not exact for degree 10, since the
integrand belongs to Pyo.
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Figure: The normal domain Q where a = 0, b = 2, 9(x) = sin(x),
¢(x) = sin(x) + log(x + 3) and the cubature nodes achieved from the
usage of Gauss-Legendre rules in which n =10 and m = 15.
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m This technique can be used for computing integrals over
hypercubes Q = [~1,1]9 (thus, by shifting, also on
hyperectangles).

m This time we ask the rule must have a fixed degree of
exactness ADE = 4.

m Following the ideas described in the part about normal
domains, we adopt a Gauss-Legendre rule

1 n
/1g(x)dx ~ Z wig(xi)
- i=1

with n = [%] nodes, so having at least ADE = 4.
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Hypercubes

Thus we have

I(f): = /f(x)dQ:/.../1 F(x1, .., xg) dx ... dxqg

Z ZW“. Wi f(Xis - Xi,)- ()

ig=1

Q

That is a formula with cardinality

(1) =G

Since it grows exponentially with the dimension d, this formula
maybe not suitable for d high, causing the so called curse of
dimensionality.

For example, if ADE = § = 20 and d = 10, one needs 10" function
evaluations (possibly expensive, in view of the number of variables
involved).
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In general this kind of rules are very used in low dimension (e.g. 2
or 3), but they are not minimal, in the sense that there are rules
with much lower number of nodes, sharing the same cardinality.

If Q = [1,1]%, that is the unit-square, a rule with ADE = §, in view
of Mdller lower bound, must have at least cardinality

k+1)(k+2

(k) 5 = 2k

ng =
(k+1)2(k+2) + L(k;H)J’ 6 =2k +1

and there are rules that go closer to this bound than those of
tensorial type.
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ADE| MB |AMR| TR
5(71 719
10021 22 | 36
15140 | 46 | 64
20|66 | 77 121
25|97 | 13 169
30|136| 166 |256
35(180| 222|324
40231287 | 441
45|287| 361 529
50|351|442 |676

Table: Formulas on the unit square. Algebraic degree of exactness ADE,
the Moeller bound MB, the cardinality of almost minimal rules AMR and
that of tensorial rules TR.
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Hypercubes

We now approximate certain integrals on the unit-square and unit-cube.

function demo_hypercube
ADE=10; d=2; % d is the dimension of the cube

% Define integrand
switch d
case 2
f=@(x,y) (0.3*x+0.9%y)."10; 1=5.002201832727280e-01;
case 3

f=@(x,y,z) (0.3*x+0.9*%y+0.8%z)."10; 1I=4.377443514181815e+01
end

% Gaussian rule with degree ADE.
n=ceil ((ADE+1) /2);
abn=r_jacobi(n,0,0); xw=gauss(n,abn); % Gauss-Legendre
x=xw(:,1); w=xw(:,2);
switch d
case 2
[x1,x2] = meshgrid(x); [wl,w2] = meshgrid(w);
fP=feval (f,x1,x2); w=wl.*w2;
Inum=sum (sum(w.*£P));
case 3
[x1,%x2,x3] = ndgrid(x); [wl,w2,w3] = ndgrid(w);
fP=feval (f,x1,x2,x3); w=wl.*w2.*w3;
Inum=sum (sum (sum(w.*£fP)));
end

fprintf('\n \t * | : %I1.15e¢’,Inum)
fprintf ('\n \t * AE: %1.3e’,abs(I-Inum))
fprintf ('\n \t * RE: %1.3e \n’',abs(I-Inum)/abs(Inum))
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Hypercubes

1. We consider the case of the formula on [—1,1]°. It has ADE equal to 10 and we

show it integrates exactly (in the numerical sense!) p(x, y) = (0.3x + 0.9y)".

>> f=0(x,y) (0.3*x+0.9%y)."10;
>> I=integral2(f,-1,1,-1,1, AbsTol  ,10°(-15), RelTol ' ,10°(-15));
>> format long e
>> 1
I =
5.002201832727280e-01
>> demo_hypercube

* I : 5.002201832727267e-01
* AE: 1.332e-15
* RE: 2.663e-15

>>

2. We consider the case of the formula on [—1,1°. It has degree 10 and we show
it integrates exactly (in the numerical sense!) p(x, y, z) = (0.3x + 0.9y + 0.82)".

>> f=0(x,y,z) (0.3*x+0.9%y+0.8%z)."10;

>> I=integral3(f,-1,1,-1,1,-1,1, AbsTol ,10°(-15), RelTol’ ,107°(-15));
>> format long; I

I =
43.774435141818145
>> demo_hypercube

* I : 4.377443514181813e+01
* AE: 2.132e-14
* RE: 4.870e-16

>>
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A tensorial rule can be also found for the n-simplex. For simplicity
we shall take into account the case of a triangle, see e.g. [4] for a
survey on the topic.

There are many reference triangles 7, depending on the purpose.
We will consider T~ with vertices (0, 0), (1,0), (0,1).

Figure: The reference triangle with vertices (0, 0), (1,0), (0,1).
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It can be easily seen, setting y = ux and shifting the variables that
iss=2x—1t=2u—1

1) = [ foensa = [ | | roxyy ey

= /1x/1f(x,xu)dxdu=...:

_ // <s+1 (S+1)4(t+1)>(1+5)dsdt 3)

Thus, we have reduced to a certain interval on the square [1,1].
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Setti
e T _[(s+1 (s+1)(t+1)
o) =g (3, EENEED)
we get
1 1
P = /_1/_1%):(5—21—1,(54—1)4&—1-1))(1+s)dsdt
_ /1 /1 6(s,6)(1 + ) ds dt @
1)
Defining

m for the direction s, a Gauss-Jacobi rule with degree of
exactness ADE = §, w.r.t. the weight (1 —5)°(1+5) =1+,
m for the direction t, a Gauss-Legendre rule with degree of
exactness ADE = §, i.e. w.r.t. the weight (1 —3)°(1+ s)°,
we get a formula with positive weights, internal nodes, ADE = ¢ on
the simplex, with cardinality ([%31])? ~ %.
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More precisely, letting
E n=[2"] (number of points of Gaussian rule with ADE=0),

B o(s.0) = 3 (55, S 40),

L 8(8)(1+ 5)ds = S0, wDg(x(D),
I e(t)de =0 wt™ g(X(GL))

we have
1.
1) / / 6(s, t)(1 + 5) dsdt
1J 4
1. n n 1
/Zw,-(Q)qS(x‘@),t)dt:Zwl.(GJ)/ ¢(XI,(GJ),t)dt
== i=1 =1

3 3 )
i=1 =1

n (GL) (G/) (Xi(c;j)_l_.l Xi(c;j)+,| XI-(GL)+1)

Q

%

ZZ 2 2 2

i=1 =1

Note that if f € P5 then =~ are = and the formula is exact.
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Simplex

As first thing, we define a routine define_rule_simplex that
determines such a formula on the reference simplex.

function [nodes,weights]=define_rule_simplex(ade)

% Cubature rule on the unit simplex
% * with vertices (0,0), (1,0), (1,1),
% * with ADE equal to ade.

% Gaussian -Jacobi rule.

m=ceil ((ade+1)/2);

ab_GJ=r_jacobi(m,0,1); xw_GJ=gauss(m,ab_GJ); % Gauss-Jacobi
x_GI=(xw_GJ (:,1)+1)/2; w_GJ=xw_GJ(:,2);

% Gaussian -Legendre rule.
ab_GL=r_jacobi(m,0,0); xw_GL=gauss(m,ab_GL); % Gauss-Legendre
x_GL=(xw_GL (: ,1) +1) /2; w_GL=xw_GL (:,2);

% Define tensorial rule
[x_mat_GJ,x_mat_GL]=meshgrid (x_GJ,x_GL);
X_mat=x_mat_GJ; Y_mat=x_mat_GJ.*x_mat_GL;

[w_mat_GJ,w_mat_GL]=meshgrid (w_GJ,w_GL);
W_mat =(1/8)*w_mat_GJ.*w_mat_GL;

nodes=[X_mat (:) Y_mat (:)];
weights=W_mat (:) ;
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Simplex

Next we present a Matlab demo demo_simplex.m in which we test
the polynomial exactness and plot the nodes of the formula.

function demo_simplex
ade=10;

f=0@(x,y) (0.3*x+0.9%y)."10;
1=6.254277723408297e-02;

% Gaussian rule with degree ADE.
[nodes ,weights]=define_rule_simplex(ade);
fP=feval (f,nodes (: ,1) ,nodes (:,2));

Inum=weights *fP;

% Stats

fprintf(’\n * ade: %-8.0f’,ade)

fprintf ('\n * # : %-8.0f",length(weights))

fprintf ('\n \t * | : %-1.15e’ ,Inum)

fprintf (’'\n * AE : %-1.3e’ ,abs(I-Inum))

fprintf (’'\n # RE : %-1.3e \n’,abs(I-Inum)/abs(Inum))

gray_color=[211, 211, 211]/256;

fill ([0 1 1 0],[0 O 1 0],gray_color);

hold on;

plot (nodes (: ,1) ,nodes(:,2), go’, MarkerEdgeColor’, 'k’
"MarkerFaceColor ', 'g’, "MarkerSize ' ,6);

axis equal; axis tight;

hold off;
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Simplex

For the computation of the reference value I, we have written the
routine exact_integral_simplex.m, based on adaptive procedure
integral?2 over a rectangle.
H As first method for approximating fT f(x, y) dxdy we take into
account an integrand on [0, 1], equal to f - X7, where X7 is
the characteristic function on the simplex 7.
Alternatively we replaced the desired integral with one on a
square, as described in (4).
function exact_integral_simplex
£=0(x,y) (0.3*x+0.9%y)."10; % integrand on the simplex
method=2;
switch method
case 1

F=Q(x,y) f(x,y) . *(y <= x);
I=integral2(F,0,1,0,1, "AbsTol  ,10"(-15), RelTol ,10°(-15))

case 2
F=0@(s,t) (1/8)*f( (s+1)/2,(s+1) .*(t+1)/4) .*(1+s);
I=integral2(F,-1,1,-1,1, "AbsTol’ ,10°(-15), RelTol " ,10"(-15));
end
fprintf ('\n \t | : %1.15e \n ',I)
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Running the demo we get
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Figure: Nodes of the tensorial rule on the unit-simplex, for ADE = 10.
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Simplex

As before, these rules are easily at hand, but they are far from

being the best around in terms of cardinality.

For example, at degree 10, the tensorial rule above had 36 nodes,
but it is known there is one with these feature having only 24
positive weights and internal nodes (sometime known with the

acronym Pl type, see table below).

0

N5

0

N5

0

N5

0

N5

~o s w=|Z

l
12
16
19
24

W oOoONOULE WN =

o

n
12
13
14
15
16
17
18
19
20

27
32
36
42
46
52
57
66
70
78

21
22
23
24
25
26
27
28
29
30

85
93
100
109
17
130
141
150
159
7

31
32
33
34
35
36
37
38
39
40

181

193
204
214
228
243
252
267
282
295

a1
)
43
44
45
46
47
48
49
50

309
324
339
354
370
385
399
423
435
453

Table: Cardinality Nj of (almost) minimal rules on triangles with ADE = 4.
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Unit-disk

Similar rules can be established for the d-dimensional unit-ball. For
sake of simplicity we restrict our attention to the bivariate
unit-disk, i.e. Q = B(0,1).

We observe that in this case, after the transformation in polar
coordinates, taking into account the determinant of the jacobian
matrix,

[~ [ [ fireoxoy.ran) - rana

Notice that the r.h.s. consists of an integral over a rectangle
[a, b] x [0, 27] where the integrand is

g(r,0) = f(rcos(0), rsin(0)) - r.
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If f is a polynomial of R? of total degree § then
f)=> axy
0<i+j<6o

and consequently

f(rcos(9), rsin(6)) - r Z a;j(rcos(9)) (rsin(0) r

0<iH<s

= Z a;;r" 1 cos'(0)) sin'(0)

0<i+j<6

that is
H an algebraic polynomial of total degree 6 + 1 in the variable r;
a trigonometric polynomial of degree ¢ in the variable 6.

The last point deserves some attention, since usually the trigonometric
polynomials g of degree 4, that is g € T}, are written as

& é
q(0) = > ajcos(j0) + > _ bysin(j6).
j=0 j=1
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Now suppose that
m [y pori(x)dx = S0 wipss1(xi) = Ssa(p). for pssr € Posr,
m [77 q5(0)d0 = M vigs(67) = Ts(q). for gs € T,

then if f(x) = > o<1 j<s ai X'y we get

ln(f) = /01 /027r f(rcos(8), rsin(8)) - r dr dd
= /1 /27r Z a;jr 7 cos'(6) sin/(0) dr do
0 J0

0<it<6

1 27
=Y a / ) ( / cos'(0) sin/(6) d6)
0<iH<d 0 0
= Z a;;Ss11(r) Ts(cos'(0) sin/(6)) 5)
0<i+j<s

With some care, it can be seen that the latter is exactly the

tensorial rule based on 5511 and T; applied to approximate Io(f). g5



As rules, a common choice, to get a formula with ADE = §, is to adopt

m a Gauss-Legendre rule, shifted in [0, 1], with ADE = +1, in the
variable “r ”,

m a trapezoidal rule, on § 4 2 equispaced points, including the
extrema, on the angular interval [0, 2], that can be proved to be
exact over trigonometric polynomials of degree 6.

08 06 04 02 0 02 04 06 08 1

Figure: Nodes of the tensorial rule on the unit-disk, for § = 10. It has 11 radii

equispaced on the angles and 6 points for each radius.
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In view of the fact that
m the Gauss-Legendre rule has not nodes at the extrema 0, 1,

m the trapezoidal rule has nodes in 0, 27 and
(rcos(0), rsin(0)) = (rcos(2n), rsin(2r)),

one has

m not to worry that the origin is counted many times as node (since it is not a
node!),

m the points of the initial radius is counted twice (being on the initial and final
radius), so rearranging the weights, the formula can avoid the points of the
final radius.

Thus one can see that such a product rule has cardinality

[?1 (6+1),

inferior or equal to the dimension of the polynomial space Ps(B(0,1)) that is
dim(P5(B(0,1))) = w
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Thus, setting

H ng = "%-l'

mms=0+1
m h=21/(0+1), ,9(TPZ) (TPZ) —h
we have

1 p2m
If) = / f(rcos(8), rsin(f)) - rdf dr
0 Jo
~ inGL)/Zﬂf(foL)COS(a)a sm(9)) (GL) do

ZW(GL)Z (TPZ)f (GL) s(g(TPZ)) X(GL) (Q(TPZ))) (GL)

_ ZZ (GL) (TPZ) (GL) f( (GL)COS(G(TPZ)) (GL) (Q(TPZ)))
i=1 j=1

31/75



In passing, it worths pointing out that exist rules with interior
nodes and positive weights, prescribed degrees of exactness ¢ and
very low cardinality.

N[5 [ N;
17755
301972
4 ||25| M7
6 | 27|137
7 133|199
12 (137|247
12 (39273
16 || 41295
19 | 45| 361
28 (49425
36 || 53| 487
4465|733

G W20V NOUT D WN =

Table: Cardinality N5 of (almost) minimal rules on the unit with ADE = 4.
As example, the so designed tensorial rule for degree 19 has 210 points.
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In what follows, we implement these tensorial rules and show some
numerical examples.




Unit-disk
function demo_disk

ade=10; % Define "n”, "m” (cardinality of the rules).
example=1; % define example

switch example
case 1
f=@(x,y) (x+0.5*%y)."10; % integrand
Iex=3.932323797070195e-01 ; % numerically exact integral
otherwise
f=0(x,y) (1+x+0.5*%y)."11; % integrand
Iex=5.546261116442703e+02 ; % numerically exact integra
end

% External routine that computes nodes and weights.
[nodes ,weights]=define_rule_disk(ade);

% Compute integral .
fnodes=feval (f,nodes (:,1) ,nodes(:,2));

Inum=weights '* feval (f,nodes(:,1) ,nodes(:,2));

% Statistics

fprintf ("\n \t * # : %-8.0f",length (weights));

fprintf ('\n \t * #T: %-8.0f",ceil ((ade+1)/2) *(ade+1));
fprintf ('\n \t * | : %-1.15¢’ ,Inum);

fprintf('\n \t * AE: %-1.3e’,abs(Inum-Iex));

fprintf ("\n \t * RE: %-1.3e \n',abs(Inum-Iex)/abs(Iex));

% Plot disk and pointset

th=linspace (0,2*%pi,100); gray_color=[211, 211, 211]/256;

fill (cos(th),sin(th),hgray_color); hold on;

plot(nodes (:,1) ,nodes(:,2), go’, MarkerEdgeColor’, 'k’
"MarkerFaceColor ", 'g’, "MarkerSize ' ,6);

axis equal; axis tight;

hold off; 34/75




Unit-disk

1. As first experiment we integrate a polynomial of degree 10, by a
rule with ADE equal to 10. To this purpose we set in ade=10 and
example=1 in the file demo_disk, getting

>> demo_disk
* # : 66
#T: 66
I : 3.932323797070124e-01
AE: 7.161e-15
RE: 1.821e-14

*
*
*
*

>>

2. As second experiment we integrate a polynomial of degree 11, by
a rule with ADE equal to 11. To this purpose we set in ade=11 and
example=2 in the file demo_disk.m, getting

>> demo_disk
* #0072
* #T: 72
* I : 3.932323797070125e-01
* AE: 6.994e-15
* RE: 1.779e-14
>>
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Unit-disk

We observe that the numerical approximation of the desired integral can be
obtained by the following adaptive routine,

function exact_integral_disk
example=1;

switch example
case 1
fpolar=@(r,t) (1*r.*cos(t)+0.5%r.*sin(t))."10.*r;
I=integral2(fpolar,0,1,0,2%pi, "AbsTol” ,10°(-15), RelTol’ ,10°(-15))
case 2
fpolar=Q(r,t) (1+1*r.*cos(t)+0.5*%r.*sin(t)). " 11.%r;
I=integral2(fpolar,0,1,0,2%pi, "AbsTol’ ,10°(-15), RelTol’ ,10°(-15));
end

fprintf ("\n \t | : %1.15e \n’,I)
or alternatively, by means of chebfun environment,

function exact_integral_disk_chebfun
example =1;

switch example
case 1
f=0(x,y) (1*x+0.5%y)."10;
case 2
f=0(x,y) (1+1*x+0.5%y)."11;
end

fc=diskfun(f); Ic=sum2(fc);
fprintf('\n \t lc: %1.15e \n’,Ic)

36/75


https://www.chebfun.org/

Note on trigonometric integration in [0, 27]

One may have doubts about the fact that the trapezoidal rule with
0 4 2 nodes integrates exactly a trigonometric polynomial p of
degree ¢. Let us make an experiment to clarify these ideas.

Since p(0) = p(2), only § + 1 nodes are needed.
function demo_trapzrule
delta=5; % max degree of trig. polynomials

% trapezoidal formula: nodes "x” and weights "h”".
x=linspace (0,2*pi,delta+2); x=x(2:end); h=x(2)-x(1);

% cosines to be integrated
for k=0:delta
f=0@(x) cos(k*x);
S=h*sum(feval (f,x));
I=integral (f,0,2*pi,” AbsTol” ,10"°(-14) ,"RelTol” ,10"(-14));
AE(k+1)=abs(S-I);
end

% sines to be integrated
for k=1:delta
f=0(x) sin(k*x);
S=h*sum(feval (f,x));
I=integral (f,0,2*pi,” AbsTol” ,10°(-14) ,"RelTol” ,10"(-14));
AE(end+1)=abs(S-I);
end

fprintf (’'\n \t max ae: %1.3e \n \n’, max(AE));
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Note on trigonometric integration in [0, 27]

By the previous demo we test that the trapezoidal rule, integrates
correctly in [0, 27] a basis of the trigonometric polynomials of
degree § =5, i.e.

{cos(kx)}k=o0,....s U {sin(kx) }k=1.....s

and consequently, by the linearity of integral operator, any
trigonometric polynomial of degree §.
Numerically we get

>> demo_trapzrule
max ae: 2.939e-15
>>

that is, we have approximated close to machine precision all the
integrals on a trigonometric basis of degree § = 5.
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We investigate the case of circular regions that can be obtained by
the so called linear blending of elliptical arcs.

Let two elliptical arcs defined respictively by

P(8) = Aicos(f)+ Bisin(d) + G,
Q(9) = Axcos(0)+ Bysin(0) + G,

where 6 € [a, 5], 0 < 8 — a < 27 and
Ai=(an,ap), Bi=(ba,bp), G =(cn,ca), i=12
The region
Q= {(x,y) = U(t,0) = tP(6) + (1 = £)Q(6), (¢,0) € [0,1] x [a, AT}
is known as linear blending of elliptical arcs.
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Linear blending on ell. arcs: circular segments

For a better understanding, we make some examples.

Example
Set in (6)
B A=(0),B8=(0,r),G=(0,0),
Ay =(r,0), B, =(0,—-r), G = (0,0).
and consider the interval [0, 5] with 0 < 5 < 7.

Since

m P(0) = A cos(0) + Bsin(0) + G,

m Q(0) = Aycos(0) + Bysin(0) + G,
we have in particular
P(8) = (rcos(6)+0-sin(8)+0, 0-cos(8)+r-sin(0)+0) = (rcos(h), rsin(6)),
Q(0) = (rcos(6)+0-sin(0)+0, 0-cos(d)—r-sin(0)+0) = (rcos(#), —rsin(0)).
The regions that we obtain are circular segments. In particular for =

we get the unit-disk.
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Figure: Example 1, with 8 =m, f =7/2, B =n/3, B = 7 /4.
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Linear blending on ell. arcs: circular sectors

Set in (6)
B A =(0,0), B=(0,0), G=(0,0),
A, =(r,0), B, =(0,r), GG = (0,0).
and consider the interval [, 5] with 0 < 5 — a < 27.

Since
m P(0) = Ajcos(8) + Bsin(9) + G,
m Q(6) = Aycos(0) + Bysin(0) + G,
we have in particular

P(0) = (0 cos(#) +0-sin(#) + 0,0 - cos(f)+ 0-sin(#) +0) = (0, 0),

Q(0) = (rcos(6)+0-sin(#)+0, 0-cos(8)+r-sin(8)+0) = (rcos(d)rsin(6)).
The regions that we obtain are sectors.
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Figure: Circular sector, with r=1, a =0, 8 = 7/3.
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As one may understand, depending on the parameters, many other
circular regions can be defined as

m Symmetric or asymmetric sectors or annuli,
m circular zones,
m circular lenses,
m butterfly-shaped and candy-shaped regions.

See [6] for more details.
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Trigonometric quadrature

A cubature rule of tensorial type in these domains is based on trigonometric
gaussian formula with degree of exactness n. For details see [3].

Let Ts = spank—o,...,s(cos(k8), sin(k®)) the trigonometric polynomials of degree 4.

Theorem (Trigonometric Gaussian quadrature formula on subintervals)

Let {(&, Aj) }j=,...,541. be the nodes and positive weights of the algebraic Gaussian
quadrature formula for the weight function

2sin(w/2)
1— x2sin®(w/2)

w(x) = , x € (=1,1), w € (0, n].

Then for 0 < 8 — a < 27 the following trigonometric Gaussian quadrature formula
on [a, 8] holds for any p € Ps

B 5+1
_|_
/ p(0) 30 = > Np0)+ 1), = 25
@ j=1

where

—

 — DetiesTl (e Al D) & Mm@y = 122y = 2 .

The formula is implemented in the Matlab procedure trigauss. 4575


https://www.math.unipd.it/~marcov/mysoft/subp/TRIGAUSS/trigauss.m

Trigonometric quadrature

As demo, we provide a rule for integrating f € Tip on [0, /6], where
f(6) = (cos(2t) — 0.5 sin(t) + 0.2)°.

function demo_trigauss
% Demo on quadrature of trigonometric polynomials over intervals [alpha, beta].

deg=10;
f=0@(t) (cos(2*t)-0.5*sin(t)+0.2)."5;
alpha=0; beta=pi/6;

IR=integral(f,alpha, beta, 'AbsTol  ,10°(-14), RelTol’ ,10°(-14));

tw=trigauss(deg,alpha, beta);
ft=feval (f,tw(:,1));
w=tw(:,2);

Inum=w *ft;

fprintf ('\n \t IR :% -1.15e"’ ,IR);

fprintf ('\n \t Inum :%-1.15¢’ ,Inum);

fprintf(’\n \t AE :% -1.3e’ ,abs(Inum-1IR));
fprintf('\n \t RE :%-1.3e’ ,abs(Inum-IR)/abs(IR));
fprintf('\n \n’);

We get a rule with 11 points, for which we get what follows.

>> demo_trigauss

IR :4.875668241566165e-01
Inum :4.875668241566168e-01
AE :3.331e-16
RE :6.831e-16
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Linear blending on ell. arcs: cubature

Now observe that if
Q= {(xy) = U(t,0) = tP(6) + (1 - )Q(0), (t,0) < [0,1] x [e, 5]}
then by the injectivity of U

1
I = /Q F(x,y)dxdy = /O F(U(t, 6))| det(U(t, 0))| ded (6)

where one can see,

m after some analysis, that | det(JU(t, #))| is a mixed
algebraic-trigonometric polynomial belonging to the tensor-product
space P4([0,1]) @ Tk([ev, B]);

m if f € Ps then the integrand in (6) belongs to
Ps([0, 1) © Ts([ev, 51)
and thus one can apply a tensorial rule based on
m Gauss-Legendre rule of degree § + hin [0,1],

m trigonometric Gauss rule of degree § + k in [« 3],

to get a formula with degree § over 2.
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Linear blending on ell. arcs: cubature

Consider the planar domain generated by linear blending of two parametrics arcs
Q={(xy)=U(t,0) = tP(0) + (1 — )Q(0) € [0,1] x [, f], 0<B—oa<2m}
where
P(0) = Ajcos(8) + Bisin(0) + G, Q(6) = Ay cos(0) + By sin(0) + G, @)
in which 6 € [a, 8], 0 < 8 — a < 27 and

A= (an,ap), Bi=(by,b2), G =(c,c), i=12.

Assume that the transformation U is injective for (t,0) € (0,1) x (v, 8), and let

v = (an— an)(b — bz) + (a2 — a22)(bx — bn)

u = (b —bx)(cn — ca) + (b — bu)(ci2 — c22)

w = (an—an)(a2 — )+ (o — ax)(ca — cn)

vo = ba(ap —ap)+ bp(an —axn), wvi=bxu(cn — ) + bxn(en — cx)
va = axn(oe — o)+ an(en —an), vs = apan — anazn + bnby — bipby
va = apby — anby + anbp — apbn
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Linear blending on ell. arcs: cubature

Then the following product Gaussian formula with 62 /2 + O(8) nodes holds

S+k+1[(d+h+1)/2]

/s f(x, y)dxdy Wif(xj, ¥i)

=1 i=1

for each f € ]P’(Zs, with
m h=0 when uy = u; = u3 = 0, h =1 otherwise;
k=0whenuy=w=vi=v, =v3=v4 =0;
k =1 when v3 = v4 = 0 and one among uy, up, v;, v, is nonzero;
k = 2 if one among v3, v4 is nonzero;
(xi, vij) = U(tiGL, 0; + ),
0 < Wj = | det(JU(t, 6; + 1)) WP, where
B {(6; + p, \j)} are the angular nodes and weights of the trigonometric gaussian
formula of degree of exactness 6 + k on [c, S];

| {(t,.GL, wiGL)} are the nodes and weights of Gauss-Legendre formula of degree of
exactness § + h on [0, 1];
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Linear blending on ell. arcs: cubature

m The theorem above is a little involved, in view of all the
possible choices of the parameters.

m The core is that depending on A;, B;, C;, i = 1,2, one can
determine some nonnegative integers h and k, so that by

H a trigonometric rule on [a, (] of degree § + k,
a Gauss-Legendre rule on [0,1] of degree § + h,

one gets a tensorial rule with a prescribed degree of precision
0, on the linear blending (of elliptical arcs) domain,

Q= {(x,y) = U(t,0) = tP(0)+(1-)Q(0), (t,0) € [0,1]x[a, 5]}

m The cardinality is of the rule is of order §2/2.

m Depending on the linear blending, the pertinent formula is
available by means of the Matlab procedure gqellblend.
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As numerical experiment we compute formulas on a sector
described as
m A= (170)’ B = (071)' G= (07 0),
m A, =(1,0), B, =(0,-1), G = (0,0),
ma=08=n/3
and integrate some polynomials.

Figure: A circular sector and its cubature nodes for ADE = 10. 51775



Linear blending on ell. arcs: cubature

function demo_linear_blending

% Object: Example of integration over a sector.

% Settings.

ade=10; f_example=1;

% Main code below.

switch f_example

case 1

f=@(x,y) (x+0.5*y)."10; % integrand
Iex=1.792695693383881e-01; % numerically exact

integral
otherwise
f=0(x,y) (1+x+0.5*y)."11; % integrand
Iex=4.313845631275915e+02; % numerically exact integral
end
% Domain .
beta=pi/3; alpha=0; % examples: pi/4, pi/3, pi/2, pi.
ri=0; r2=1;

Al=[r1 0]; B1=[0 r1]; Cc1=[0 0I;

A2=[r2 0]; B2=[0 r2]; c2=[0 O0];

% Cubature formula

A=[A1; A2]; B=[B1; B2]; C=[C1; C2];

xyw = ggellblend(ade,A,B,C,alpha, beta); x=xyw(:,1);
% Integral computation.

fxy=feval (f,x,y); Inum=w’ *fxy;

% Statistics
fprintf ('\n \t
fprintf (’'\n \t
fprintf (’'\n \t
fprintf ('\n \t
% Plot arcs
plot_linear_blending(A1,B1,C1,A2,B2,C2,alpha, beta);

hold on;

plot(x,y, go’, MarkerEdgeColor’, 'k, MarkerFaceColor ', ’g’, MarkerSize ' ,6);
axis equal; axis tight;hold off;

y=xyw(:,2); w=xyw(:,3);

# : %-8.0f",length(w));

I : %-1.15e’ ,Inum);

AE: %-1.3e’,abs(Inum-Iex));

RE: %-1.3e \n’,abs(Inum-Iex)/abs(Iex));

PR
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Linear blending on ell. arcs: cubature

function plot_linear_blending(A1l,B1,C1,A2,B2,C2,alpha,beta)

% The parameters Al1,B1,C1,A2,B2,C2 are row vectors "1 x 2”.
% 0<beta - alpha <=2*pi .

theta=linspace (alpha,beta,300); theta=theta’;

% Plot first arc.
P=bsxfun(@times,Al,cos(theta))+bsxfun(@times,B1l,sin (theta)) +...
bsxfun(@times,Cl,ones(size (theta)));

Q=bsxfun(@times, A2, cos(theta))+bsxfun(@times,B2,sin(theta)) +...
bsxfun(@times,C2,ones(size (theta)));

t=linspace(0,1,300); t=t’;
s=[];
for k=1:size(P,1)
SLOC=bsxfun(@times ,P(k,:) ,t)+bsxfun(@times,Q(k,:) ,1-t); S=[S; SLOC];
end

% Plot
gray_color=[211, 211, 211]/256;
plot(s(:,1).,8(:,2),’0", color’,gray_color, 'MarkerEdgeColor',gray_color,...
"MarkerFaceColor ' ,gray_color,...
"MarkerSize ' ,6);
hold on;
plot(P(:,1) ,P(:,2),'r-", LineWidth " ,4);
plot(Q(:,1).Q(:,2),'b-", LineWidth’ ,4);
axis equal
hold off;
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Linear blending on ell. arcs: cubature

1. As first experiment we integrate a polynomial of degree 10, by a rule with ADE
equal to 10. To this purpose we set in ade=10 and example=1 in the file
demo_linear_blending, getting

>> demo_linear_blending
* # @ 66
* I : 1.792695693383878e-01
* AE: 2.776e-16
* RE: 1.548e-15
>>

2. As second experiment we integrate a polynomial of degree 11, by a rule with
ADE equal to 11. To this purpose we set in ade=11 and example=2 in the file
demo_linear_blending.m, getting

>> demo_linear_blending
* # . 84
* I : 4.313845631275914e+02
* AE: 1.137e-13
* RE: 2.635e-16
>>

If we finally use a formula with degree 10, we get instead an unsatisfactory result,
too far from machine precision.

>> demo_linear_blending
* # @ 66
* I : 4.313845629175062e+02
* AE: 2.101e-07
* RE: 4.870e-10
>>
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Unit-Sphere

Let us suppose that we have to compute
I(f) = |, f(m)ds*(m)

with f € C(S?).

A first technique consists in reducing /(f) to an integral over a
certain rectangle and then apply suitable tensorial rules.

To this purpose, consider the spherical coordinates

n — (cos¢sinf,sinpsinf,cosfh), 0 <¢p<2m, 0<0<m.

Thus, taking into account the jacobian determinant of the
transformation, we get

2 pw
I(f) :/0 /O f(cos ¢sin B, sin ¢sin 6, cos ) sin 6 dode.
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Unit-Sphere

Aiming to determine

27 ™
I(f) :/0 /0 f(cos ¢sin B, sin ¢sin b, cos ) sin 6 dfdo.

in view of the periodicity in the variable ¢, we apply the composite
trapezoidal rule with uniform spacing, that is
. 2w . m - o
&)= | 8(0)do ~Inlg) = > _"glih), h="
j=0
where // means the first and last argument of the sum must be
halved.
Taking into account the periodicity of the integrand, it is immediate
that
'i _ = "o(ih) = g(o ih _
m(g) =D "slih) =257+ D _alih) + =5+ =

j=0 = =

N—r
3
N
Og
—
N
3
N—r
INgE
0q
S—
>
N—"
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The integral of

2 pm
I(f) :/0 /o f(cos ¢sin B, sin ¢ sin b, cos ) sin O dfdo.

w.r.t. the variable 6 is more problematic. Setting z = cos(f), we
have

I(f) = /027r /_1] f(cos p\/1— 22 sin p\/1 — 22, z) dz dg.

At his point one can apply
m Gauss-Legendre quadrature over [—1,1] with n nodes
{zk}k=1,... n and weights {w }i=1__ni
m the trapezoidal rule with nodes ¢; = |7, j=1,...,2nand
weights h = T
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Unit-Sphere

After these substitutions we get

2n—1 n

Ih(f) = hz Z wif(cosg; - 1/1— z2,sin o - \/1—72,%, Z)

=1 k=1

thus for 8, = arccos z

2n—1 n
I(f)=h Z Z wif(cosg; - sin O, sin ¢; - sin O, cos b)
=1 k=1

The following result holds, setting P>,_1 the set of polynomials on
the sphere of degree at most 2n — 1.

Theorem (Atkinson, Han, p. 169)

If f € Pan_1 then I(f) = I,(f). If f(x, y, 2) = Z*" we have that
I(f) # In(f)-

In other words the formula has degree of exactness § = 2n —1.
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Unit-Sphere

Next, introducing the best approximation error at degree n, w.r.t.
uniform norm,

En(f) = min [If — plloo

pEP,

one can prove that

[I(f) = In(f)] < 8mE2ni(f)-

The following result holds

Theorem (Atkinson, Han, p.141)

Let r > 1 be an integer. Assume f is r-times continuously
differentiable over S?. with all such derivatives in C(S?). Then

En(f) < R
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Unit-Sphere

Supposing that we have at hand the Matlab codes
B rjacobi,
m gauss,

that implement the Gaussian rules w.r.t. a Jacobi weight, we intend
to test the product Gauss rule on the computation of the integrals

| h(f) == [ exp(x)dS? ~ 14.76801374576529;
b(f) := [q exp(—x* — 0.1x y? — 2% 2%); dS* ~
5.028153009823267;
B(f) = Jo(0.1x + y? 4+ 0.5 2%)3dS? ~ 1.969928193450972;
To this purpose we define the routines

B gaussian_product_rule.m that computes nodes and weight of
the rule for a fixed n,

B demo_product_gaussian_rule.m that tests the results on the

approximation of /(f), by means of product Gauss rules for
n=2,3,4,5,6.
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The routine gaussian_product_rule.m implements the tensorial rule
described above.



https://www.math.unipd.it/~alvise//PHD_2024/LEZIONI/SPHERE/MATLAB/PRODUCT_RULE/gaussian_product_rule.m

Unit-Sphere

function demo_product_gaussian_rule(example)
% Demo: see
% K.Atkinson, W.Han, Spherical Harmonics and Approximations on the Unit
% Sphere: An introduction, p.172.
if nargin < 1, example=3; end
nv=2:6;
I=[L
switch example
case 1
f=0(x,y,z) exp(x)+0*y+0%*z;
=1.476801374576529e+01;
case 2
f=0(x,y,z) exp(-x."2-0.1%y."2-2%2."2);
I=5.028153009823267
case 3
f=0(x,y,z) (0.1*%x+y."2+0.5%z."3)."3;
I=1.969928193450972;
end

if isempty(I), F=spherefun(f); I=sum2(F); format long; I, end
AE=[]; RE=[];

for n=nv
[nodes ,w]=gaussian_product_rule(n);
x=nodes (: ,1) ; y=nodes(:,2); z=nodes(:,3);
fnodes=feval (f,x,y.2);

In=vw'*fnodes;
AE(end+1)=abs(In-I); RE(end+1)=abs(In-I)/(abs(I)+(I == 0));

fprintf (’\n \t n: %3.0f nodes: %5.0f AE: %I1.2e RE: %l.2¢e’ ,...
n,length(x) ,AE(end) ,RE(end))
end

fprintf('\n \n’); 62/75




Unit-Sphere

The routine demo_product_gaussian_rule.m provides the following results,
choosing the variable example from 1to 3.

>> demo_product_gaussian_rule (1)

n: 2 nodes: 8 AE: 1.17e-02 RE: 7.94e-04
n: 3 nodes: 18 AE: 4.00e-04 RE: 2.71e-05
n: 4 nodes: 32 AE: 4.91e-07 RE: 3.32e-08
n: 5 nodes: 50 AE: 3.84e-09 RE: 2.60e-10
n: 6 nodes: 72 AE: 2.21e-12 RE: 1.50e-13

>> demo_product_gaussian_rule(2)

n 2 nodes: 8 AE: 3.54e-01 RE: 7.04e-02
n 3 nodes: 18 AE: 4.77e-02 RE: 9.49e-03
n 4 nodes: 32 AE: 5.71e-03 RE: 1.13e-03
n 5 nodes: 50 AE: 5.04e-04 RE: 1.00e-04
n 6 nodes: 72 AE: 3.71e-05 RE: 7.38e-06

>> demo_product_gaussian_rule(3)

n: 2 nodes: 8 AE: 8.11e-03 RE: 4.12e-03

n: 3 nodes: 18 AE: 2.21e-02 RE: 1.12e-02

n: 4 nodes: 32 AE: 2.74e-02 RE: 1.39e-02

n: 5 nodes: 50 AE: 0.00e+00 RE: 0.00e+00

n: 6 nodes: 72 AE: 4.44e-16 RE: 2.25e-16
>>

The third function is a polynomial of degree 9 and the formula has degree
of exactness 2n—1, so per N = 5, n = 6 the relative errors are close to 0.
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In view of the rotational symmetry of the sphere, one prefers
points that are not clustered to the poles, but due to the structure
of Gauss-Legendre rules, this set does.

Figure: Gauss Product Rule for n = 15.
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Spherical rectangles

Let
R = [a1, o] x [az, b2] € [0, 7] x [0, 27]

be a rectangle, and define as spherical rectangle Q2 (sometimes
also known as geographical rectangle) the subdomain of the sphere
S? whose points are of the form

P =¢&(0,¢) := (cospsinb,sin psinf,cosh), (0,¢) € R.

We observe that depending on R, several well-known subdomains
Qr = £(R) of the 2-sphere can be defined in this way, as

m caps,
m collars,
m slices,

m more generally spherical rectangles defined by longitudes and
latitudes.
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Figure: Above and below: a spherical rectangle £([w/6, /3] x [0,7/2]) and a
spherical cap £([0,7/3] x [0, 27]).
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Figure: Above and below: a (spherical) collar £([r/6, 7 /3] x [0,27]) and a
(spherical) slice £([0, 7] x [0, 7/3]).
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Spherical rectangles

To this purpose, we introduce the following result

Let w € [0, 7].

m Ts([—w,w]) = span{1, cos (kB), sin (k0)},1 < k < 4,0 € [~w,w],

B w: [—w,w] — R be a symmetric weight function,

m {{}m,...641 {\j}j=1,....541 be respectively the nodes and the weights

of an algebraic gaussian rule relatively to the symmetric weight function
2si 2

sin(@/2) e (<1,1).

1— sin?(w/2) x2

3(x) = w(2arcsin (sin (w/2)x))

Then

- S+1
[ #Ow(6)db = S AF(6).f € Tol-o,0]) ®)
e P
where 6; = 2 arcsin (sin (w/2)¢)) € (—w,w), j=1,...,0 + 1

68/75



Spherical rectangles

This theorem says that if we intend to integrate

/ " HO)w(6)do

where f is a trigonometric polynomial of degree § and w a
symmetric weight function in [—w,w] then it is sufficient to

m compute the nodes {¢;} and weights {);} of a gaussian rule
with § nodes w.r.t. a certain weight function 5;

m modify the nodes {;} into {6;} by a simple transformation.

The hidden difficulty is that the computation of these formula is
not trivial since the weight function is a little unusual.
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Spherical rectangles

We provide an algebraic rule over the spherical rectangle Qz C S2.

Let

m Qg a spherical rectangle, where R = [ai, bi] X [az, by] C [0, 7] X [0, 27];

m {0 52 and (AP L) 5.5 be the nodes and the weights of a
gaussian subperiodic trigonometric rule on [ai, bi] w.r.t. w(x) =1, having
trigonometric degree of precision n+ 1;

m {0127y 540 and (AP}, L be the nodes and the weights of a
gaussian subperiodic trigonometric rule on [ay, b] w.r.t. w(x) =1, having
trigonometric degree of precision n.

Then the tensorial cubature rule

642 o+

Sn(f) = Z Z )‘l'hlzf(gih/z)

A= =1

Gip = EO 012, Xy, = Ny sin (6)7)

integrates exactly in Q2r every algebraic polynomial of total degree 6.
70/75



Spherical rectangles

The previous theorem from [5] seems complicated, but it comes
directly from observing that similarly to the tensorial rule on the
unit sphere

b b
lo, = / / f(cos 0, sin 6y, sin B, sin 6y, cos 6;) sin 6; dbdb,.
a a

and thus if f is a polynomial of total degree § then the integrand on
the r.h.s. is
® a trigonometric polynomial of degree § 4 1in the variable 6;;
® a trigonometric polynomial of degree J in the variable 6;
and thus to provide a tensorial rule of the desired degree we need
m a formula with trigonometric degree J + 1 in the variable 6,
(ranging in [a1, bi]);
m a formula with trigonometric degree ¢ in the variable 6;
(ranging in [a1, by));
The rest is the determination of a tensorial rule by means of

univariate rules to obtain the desired formula.
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Spherical rectangles

Remark (Caps)

The cardinality of these rules is = 6%, where § is the degree of
precision. With some tricks, one can have a formula on the spherical
cap with ~ 6% /2 points.

Remark (Software)

Though at first sight the result of the theorem is a little complicated,
in practice when one provides the nodes and the weights of the
subperiodic formula (not easy!), everything become simpler.

As for the numerical software, see the Matlab package Cubature rules
on spherical rectangles.
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https://www.math.unipd.it/~alvise/software.html
https://www.math.unipd.it/~alvise/software.html

As numerical tests, we consider the cubature of the functions
filx) = exp(—x*—100y? —0.52%),
fr(x) = sin(—x*—=100y% — 0.52%),
f(x) = max(1/4—((x =1/V5) + (y = 2/V5)* + (z - 2/V5)?), 0))°
on the spherical rectangle
Qr =¢&(R), R=[n/6, /3] x [0, 7/2].

Figure: The spherical rectangle £([7/6, /3] x [0, 7/2]) and the nodes of the rule
of degree of exactness § = 10. 73/75



Spherical rectangles

Deg.

f

f

f3

5
10
15

20
25
30
35
40
45
50

3.34e - 04
4.89e — 06
9.12e — 09
1.76e — 10
7.73e—14
3.33e—-16
3.47¢ - 17
1.14e — 16
3.47e —17
2.08e — 17

7.38e — 02
2.69e — 02
5.14e - 03
1.13e — 02
1.13e — 02
1.23e — 03
2.58e — 05
1.96e — 07
6.94e — 10
1.33e — 12

4.53e — 06
5.44e — 07
4.07e — 08
2.43e — 08
9.53e — 09
2.23e — 09
2.33e — 09
2.82e 10
8.84e — 10
5.48e — 1

Table: Absolute errors for degrees 5,10, ...,50, w.r.t. the integrals on the
spherical rectangle &([7/6, /3] x [0, 7/2]) on the test functions fi, f2, f5.
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