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Dedication

This talk is dedicated to Ezio Venturino, for all the support that he
gave to the development of Approximation Theory in Italy as well
as the personal friendship that strongly bounds our group of
researchers in Padua with that at the University of Turin.

Figure: From left to right: L. Bos, E. Venturino, A. De Rossi, A. Sommariva and R.
Cavoretto (Matera 2022).
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Announcement JAS/NAMAS

NAMAS and Journal of Approximation Software.
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Announcement Workshop

The goal of SA2025 is to bring together researchers working in different fields of
approximation and implementing algorithms using in particular the Matlab
software, and other programming languages.
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Purpose

In this talk we will briefly discuss
numerical cubature over scattered data;
introduce some basics on the topic;
show the results that we have achieved on this topic since 2005.

Joint work with Marco Vianello (University of Padua), and RITA collaborators
Roberto Cavoretto (University of Turin),
Francesco Dell’Accio (University of Calabria),
Alessandra De Rossi (University of Turin),
Giacomo Elefante (University of Turin),
Filomena Di Tommaso (University of Calabria),
Nashua Siar (University Moulay Ismail, Morocco).

Work partially supported by
the DOR funds of the University of Padova,
INdAM-GNCS 2024 Project “Kernel and polynomial methods for approximation and
integration: theory and application software”.

Research accomplished within
the RITA,
the SIMAI Activity Group ANA&A,
the UMI Group TAA.
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Main problem

We intend to numerically approximate∫
Ω
f (x)dΩ ≈

N∑
i=1

wif (Pi).

where
Ω is a domain of R2 or R3 (e.g. a sphere, a polygon, a
polyhedron, etc.),
f ∈ C(Ω),
are available the samplings f (Pi), i = 1, . . . ,N at the scattered
data P1, . . . , PN ∈ Ω.
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Monte Carlo type methods

In the case the set of nodes {Pi}i=1,...,N is a subset of sequence of
points that is uniformly distributed in Ω, a classical approach is that
of Monte Carlo-type methods∫

Ω
f (x)dΩ ≈ µ(Ω)

N

N∑
i=1

f (Pi).

where µ(Ω) is the measure of the domain Ω (or an approximation).

Notice that the weights are all equal to µ(Ω)
N .
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Monte Carlo type methods: basic implementation

Typically Ω is defined by set operations over

Ω1, . . . ,ΩM ,

e.g. ∩Mi=1Ωi or ∪Mi=1Ωi .

A basic approach is to
determine a hyper-rectangle R containing Ω;
define an uniformly distributed sequence X∗

R on R;
take the first N∗ points XR of X∗

R (usually N∗ is very large);

determine the sequence of points of X (i)
R ⊆ XR belonging to

Ωi , i = 1, . . . ,M (in-domain functions on each Ωi must be
available, it may not be a trivial task!);
determine from these X (i)

R , i = 1, . . . ,M the required sequence
XΩ on Ω as well as an approximation of µ(Ω);
choose N points {Pi}i=1,...,N in XΩ and from samplings of f
compute

∫
Ω f (x)dΩ ≈ µ(Ω)

N
∑N

i=1 f (Pi).
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Monte Carlo type methods: example
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Figure: Intersection Ω of a polygonal minion with a disk. N∗ = 10000 points in
the bounding box R ≈ [−0.5000, 0.5000]× [−0.6741, 0.7077] of which N = 4741
are in Ω. Thus µ(Ω) ≈ µ(R) · 4741/10000 ≈ 0.6551.
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Monte Carlo type methods: example

Pros:
if indomains routines are available it may provide results even
in complicated geometries without tracking the boundaries.
many results in high dimensional spaces (curse of
dimensionality!).

Cons:
The basic version provides slow convergence to the integral.
Some advantages using special sequences (Quasi-Monte Carlo
methods). (see Koksma–Hlawka inequality).

If you are interested in this topic see

J. Dick, F.Y. Kuo and I.H. Sloan,
High-dimensional integration: The quasi-Monte Carlo way,
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https://en.wikipedia.org/wiki/Low-discrepancy_sequence
https://www.cambridge.org/core/journals/acta-numerica/article/abs/highdimensional-integration-the-quasimonte-carlo-way/03F126DDF465F915B22D5D709CD28946


Numerical cubature by RBF: outline

Suppose that we have to approximate numerically∫
Ω
f (P)dΩ, f ∈ C(Ω)

being available the samplings of f at scattered data Pk ∈ Ω,
k = 1, . . . ,N.

In this part of the talk we
give a short introduction of Radial Basis Functions (RBF),
we show how to achieve specific cubature rules;
introduce methods on certain domains as sphere and
polygons;
finish showing some new promising techniques.

For details about RBF see e.g. the monography

H. Wendland,
Scattered Data Approximation.
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Numerical cubature by RBF: introduction

We will denote by Pdm the vector space of d−variate real valued
polynomials of total degree not exceeding m.

Definition (RBF Strictly positive definite)

A Radial Basis Function ϕ(r) : [0,+∞) → R, is strictly positive
definite in Rd (sometimes referred as SPD), if for

any N pairwise different points P1, . . . , PN ∈ Rd

c1, . . . , cN ∈ R,

N∑
j=1

N∑
k=1

cjckϕ(∥Pj − Pk∥2) ≥ 0 (1)

being the quadratic form (1) null only when c1 = . . . = cN = 0.

Some classical examples, just to mention some:
Inverse Multiquadric: 1

1+r2 ,
Wendland W2: (1 + 4r) · (max(0, (1 − r)))4, (compact support!),
Gaussian: exp(−r2). 12/1



Numerical cubature by RBF: introduction

One can prove the following important result.

Theorem (Uniqueness of the RBF interpolant)
Setting

ϕi(P) := ϕ(∥P − Pi∥2)

for any choice of N distinct points P1, . . . , PN ∈ Rd , there is a unique
interpolant

s(P) =
N∑
i=1

ciϕi(P),

of the data {(Pi , fi)}i=1,...,N , i.e. such that

s(Pi) = fi for i = 1, . . . ,N.
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Numerical cubature by RBF: introduction

Definition (RBF strictly conditionally positive of order m)
The RBF function ϕ is strictly conditionally positive of order m (often
shortened as SCPD), if

N∑
j=1

N∑
k=1

cjckϕ(∥Pj − Pk∥2) ≥ 0 (2)

holds
for any N distinct points P1, . . . , PN ∈ Rd ,
c1, . . . , cN ∈ R satisfying

∑N
i=1 cip(Pi) = 0 for any real valued

polynomial p ∈ Pdm−1,
with the quadratic form (2) null only when c1 = . . . = cN = 0.

Some classical examples:
Multiquadric:

√
1 + r2 (order 1),

Thin-Plate Spline: r2 log(r) (order 2),
Radial Powers: rβ, β ̸∈ 2N (order m = ⌈β/2⌉).
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Numerical cubature by RBF: introduction

Theorem (Uniqueness of the RBF interpolant)
If ϕ is a strictly conditionally positive RBF of order m then there exists
a unique interpolant

s(P) =
N∑
i=1

ciϕi(P) + π(P), π ∈ Pdm−1(Ω) (3)

of the data X = {(Pi , fi)}i=1,...,N .

Consequently, as in the case of algebraic rules of interpolatory type∫
Ω
f (P)dΩ ≈

∫
Ω
s(P)dΩ =

∑
i=1,...,N

ci
∫
Ω
ϕi(P)dΩ+

∫
Ω
π(P)dΩ.

Thus is fundamental to approximate the moments∫
Ω ϕi(P)dΩ, i = 1, . . . ,N,∫
Ω πk(P)dΩ, being {πk(P)}k a basis of Pdm−1(Ω).
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Numerical cubature by RBF: cubature weights

As in the case of algebraic interpolatory formula, one does not directly
compute the interpolant, but the weights wi , i = 1, . . . ,N such that∫

Ω

f (P)dΩ ≈
N∑
i=1

wif (Pi).

To this purpose, one determines

1 the column vector of the moments, I = [
∫
Ω
ϕi(P)dΩ;

∫
Ω
πk(P)dΩ]T ;

2 the generalized Vandermonde symmetric matrix

A :=

[
A B
BT 0M×M

]
where Ai,j = ϕ(∥Pi − Pj∥), Bi,k = πk(Pi),

3 solve the square linear system

AW = I , W =

[
w
z

]
(moment matching system); (4)

4 extract the first N components w of the solution W.
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Numerical cubature by RBF: error estimate

Theorem
Denote by

Ĩ ≈ I the approximate RBF moments,

W̃ and w̃ the corresponding perturbed weights,

by f̃ ≈ f the noisy functional data at {Pi}i=1,...,N ,

h = maxP∈Ω min1≤i≤n |P − Pi | is the fill distance;

q = minj ̸=i {|Pj − Pi |} ≤ 2h is the separation distance,

α(h) ↓ 0 as h→ 0,

λ(q) ↓ 0 as q → 0.

Then the cubature error E(f ) = |
∫
Ω
f (P)dΩ−

∑N
i=1 w̃i f̃i | is such that

E(f ) ≤ O (α(h)) +O
(

1
λ(q)

)
∥I− Ĩ∥2 + ∥f− f̃∥∞

N∑
i=1

|w̃i |.
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Numerical cubature by RBF: error estimate

From

E(f ) ≤ O (α(h)) +O
(

1
λ(q)

)
∥I− Ĩ∥2 + ∥f− f̃∥∞

N∑
i=1

|w̃i |.

and
α(h) ↓ 0 as h→ 0,
λ(q) ↓ 0 as q → 0.

we understand that
1 small fill distance h may help;
2 small separation distance q may harm when small and a not

too precise computation of moments;
3 negative weights harms in case of noisy function evaluations.

More details can be found in the seminal paper

A. Sommariva, M. Vianello

Numerical cubature on scattered data by Radial Basis Func-
tions
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http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3349&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3349&rep=rep1&type=pdf


Numerical cubature by RBF: numerical considerations

Though everything seems straightforward theoretically, things are
more complicated on the numerical side.

the linear system may be severely ill-conditioned, depending
on the choosen RBF, on its scaling factor and on the nodes;
the computation of the moments must be accurate and fast.

Remark
The last item is particularly difficult, depending on the RBF and on the
shape of the domain since we need to compute numerically∫

Ω ϕi(P)dΩ :=
∫
Ω ϕ(∥P − Pi∥2)dΩ, i = 1, . . . ,N,∫

Ω πk(P)dΩ, being {πk(P)}k a basis of P
d
m−1(Ω) (mandatory

only on conditionally positive RBFs).

As example, think about the case of N ≈ 1000 and Ω a polygon with
complicate geometry: one has to quickly compute all those integrals
close to machine precision.
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Numerical cubature by RBF: numerical considerations

Figure: A domain Ω given by a polygonal minion and 100 centers (red dots).

From the figure above, one understands how complicated is to compute in the
TPS case, on many RBF centers Pi , integrals of the form∫

Ω

∥P − Pi∥2
2 log(∥P − Pi∥2)dΩ.

1. It becomes more challenging to compute them quickly and with high precision.
2. Issues for RBF with compact support supp(ϕ) (role of Ω ∩ supp(ϕ)).
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Unit-sphere and moments computation

Let Ω = S2 be the unit-sphere and suppose we have to compute
the moments

1
∫
S2 ϕi(P)dS2, i = 1, . . . ,N,

2
∫
S2 πk(P)dS2, being {πk(P)}k a basis of Pdm−1(S2) (mandatory

only on conditionally positive RBFs).

The second problem above is easily solvable by means of one of
the many algebraic rules available on the sphere (see, e.g. those
suggested by R.S. Womersley).

Consequently, we focus our attention on the computation of RBF
moments, varying the centers Pi , i = 1, . . . ,N.
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Unit-sphere

Using the spherical coordinates

x = cos(ψ) sin(θ), y = sin(ψ) sin(θ), z = cos(θ),

with 0 ≤ ψ < 2π,0 ≤ θ ≤ π and taking into account the jacobian
determinant,∫

S2
ϕi(P)dS2 =

∫
S2
ϕ(∥P − Pi∥2)dS2

=

∫ 2π

0

∫ π

0
ϕ(
√

2(1 − cos(θ))) sin(θ)dθdψ

= π

∫ 4

0
ϕ(
√
s)ds (5)

Remark
The last integral is available explictly for a large class of RBFs on the
sphere and independent of the center, thus the computation of the
RBF moments is particularly simple.
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Unit-sphere

Remark
In the previous example, we have considered the distance of two
points on the sphere as in R3.

One can do similar computations based on the geodesic distance, for
those that are known as SRBF (acronym of spherical RBFs).

For additional details and considerations see

A. Sommariva and R.S. Womersley

Integration by RBF over the Sphere.
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Polygonal regions

Let Ω ⊂ R2 be a polygonal region and suppose we have to compute
the moments∫

Ω ϕi(P)dΩ, i = 1, . . . ,N,∫
Ω πk(P)dΩ, being {πk(P)}k a basis of Pdm−1(Ω) (mandatory

only on conditionally positive RBFs).

Again, we focus our attention on the computation of the integrals∫
Ω
ϕi(P)dΩ =

∫
Ω
ϕ(∥P − Pi∥2)dΩ, i = 1, . . . ,N.

since there exist formulas with low cardinality that compute the
polynomial moments.
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Polygonal regions: first approach

As first approach one can
subdivide the polygonal region in a minimal number of
triangles {Tk}k=1,...,L (use e.g. Matlab environment
polyshape);
compute all the moments over the triangles, i.e.∫

Tk
ϕ(∥P − Pi∥2)dTk for i = 1 . . . ,N, k = 1, . . . , L;

sum up the contributions to get the moments∫
Ω
ϕ(∥P − Pi∥2)dΩ, for i = 1 . . . ,N.

The key point is that we have reduced the problem to the moment
computation over triangles.

Notice that, using the notation above, une has to compute NL
integrals.
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Polygonal regions: first approach

In the paper

A. Sommariva, M. Vianello,
RBF moment computation and meshless cubature on general
polygonal regions,

we have provided an algorithm (not trivial!) to compute explicitly
these integrals for a large class of RBF including

Thin-Plate Splines,
Multiquadrics,
Inverse Multiquadrics,
Wendland W0, W2, W4, W6,
Radial Powers,
Gaussians.

The corresponding mathematical formulas are too long to be
included in this talk but can be found in the Matlab codes available
at the author’s homepage.
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Polygonal regions: first approach

Figure: A polygonal minion with 99 vertices, a center (in green) and a
minimal triangulation of the domain (97 triangles).

In the example above, since the polygonal minion can be obtained as union of 97
triangles (with non overlapping interior), if there are 1000 centers, then one has to
compute 97000 integrals to determine the RBF moments over the centers.
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Polygonal regions: second approach

As second approach one may compute the RBF moments over Ω
by means of Gauss-Green formula (no need of subvidiving the
domain in triangles!).

∫
Ω
ϕ(∥P − Pi∥2)dP =

∮
∂Ω

(∫
ϕ(∥P − Pi∥2)dx

)
dy, P = (x, y). (6)

We suppose that the polygon Ω

is simple, i.e. without self-intersections,
has vertices Vj , j = 1, . . . , n+ 1 (ordered counterclockwise),
with Vn+1 = V1, denoting by
VjVj+1 the segment connecting Vj with Vj+1.
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Polygonal regions: second approach

We sketch our procedure:
compute an explicit primitive

Φi(P) =
∫
ϕ(∥P − Pi∥2)dx;

since∫
Ω
ϕ(∥P − Pi∥2)dP =

∮
∂Ω

(∫
ϕ(∥P − Pi∥2)dx

)
dy

=

∮
∂Ω

Φi(P)dy =
n∑
j=1

∫
VjVj+1

Φi(P)dy,

we focus on the computation of each
∫
VjVj+1

Φi(P)dy, for
j = 1, . . . , n and i = 1, . . .N.
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Polygonal regions: second approach

The key point is that, also in this case, each integral∫
VjVj+1

Φk(P)dy, j = 1, . . . , n, k = 1, . . .N

can be explictly determined for a wide class of RBF including
Multiquadrics,
Inverse Multiquadrics,
Thin-Plate Splines,
Radial Powers of the form ϕ(r) = rk with k = 3, 5, 7,
RBFs with compact support as W0, W2, W4, W6.

For
Gaussian,
the Matérn,

we were only able to determine Φk and compute the required
integrals by high order shifted Gauss-Legendre rules.
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On the RBF scaling (technical!)

Sometimes, for achieving a better approximation quality, for some
RBF one may use its scaled version

ϕϵ(r) := ϕ(ϵ r)

with ϵ > 0 choosen in view of the centers and function evaluations.

All the previous techniques can be adopted. By means of a specific
algorithm, known in literature as LOOCV, one can compute a certain
scale ϵ so to

get highly reliable and precise results for any kind of RBF, even
infinity smooth;
reduce the cubature error for those finite regularity RBFs, such
as W2, for which an optimal choice of ϵ is noteworthy.

For the interested reader, we have explored this subject in

R. Cavoretto, A. De Rossi, A. Sommariva, M. Vianello,
RBFCUB: a numerical package for near-optimal meshless cuba-
ture on general polygons.

31/1
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Numerical example

Figure: Minion: 800 random points. Approach via Gauss-Green and TPS.
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Numerical example

Figure: Minion: 800 random points. Approach via triangulation and
Gauss-Green on IMQ.
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Cubature on scattered data via algebraic formulas

In the recent paper

R.Cavoretto, A. De Rossi, F. Dell’Accio, F. Di Tommaso, N. Siar, A. Sommariva, M

Vianello,
Numerical cubature on scattered data by adaptive interpolation,

we have used an alternative approach.

We observed that for many complex domains
the RBF moments computation can be difficult,
yet, an algebraic rule with degree of exactness ADE = δ is
available.

We will take advantage of this to compute integrals on complicated
regions, where the RBF techniques previously shown are not
directly applicable.
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Cubature on scattered data via algebraic formulas

Basic idea: one can
determine an approximant ψ of the integrand f , based on the
scattered data {Pi}i=1,...,N ;
evaluate ψ on the nodes {Qk}k=1,...,L of the algebraic formula,
evaluate the algebraic formula with degree of exactness
ADE = δ, ∫

Ω
f (P)dΩ ≈

Nδ∑
i=1

wif (Qi) ≈
Nδ∑
i=1

wiψ(Qi),

providing the required approximation of the integral.
We easily have the following error estimate

|
∫
Ω
f (P)dΩ−

Nδ∑
i=1

wiψ(Qi)| ≤ µ(Ω)

(
2Eδ(f ) + max

i=1,...,Nδ
(|f (Qi)− ψ(Qi)|)

)
where Eδ(f ) is the best approximation error in ∞ norm of f in Pδ .
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Cubature on scattered data via algebraic formulas

Problem: we said

determine an approximant ψ ≈ f , based on the scattered
data {Pi}i=1,...,N and evaluate ψ on the nodes {Qk}k=1,...,L of
the algebraic formula

In literature there are many approximants on scattered data, as
Matlab basic routine Scattered Interpolation (SCATTINT),
adaptive moving interpolation Disc,
RBF with LOOCV (choice of a good shape parameter ϵ), e.g. via
Multiquadrics,
methods in the family of Partition of unity known as adaptive
RBF-PUM,
methods in the family of Shepard methods known as
multinode Shepard methods,

just to mention some.
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Cubature on scattered data via algebraic formulas: numerical examples, I

As illustration, we consider the numerical integration over certain
squares Ω of the functions

1 Franke’s test function

f1(x, y) =
3
4
exp

(
−
(9x − 2)2 + (9y − 2)2

4

)
+

3
4
exp

(
−

(
(9x + 1)2

49
+

9y + 1
10

))
+

1
2
exp

(
−
(9x − 7)2 + (9y − 3)2

4

)
−

1
5
exp(−((9x − 4)2 + (9y − 7)2)),

2 f2(x, y) = 1
(1+x2)(1+y2)

;

3 f3(x, y) = ((x − 0, 5)2 + (y − 0.5)2)3/2,

4 f4(x, y) = ((x − 0.5)2 + (y − 0.5)2)7/2.

As for the domains Ω we considered
the square [0, 1]× [0, 1] for f1, f3, f4,
the square [−1, 1]× [1, 1] for f2.

Algebraic rules are taken from those of almost minimal cardinality .
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Cubature on scattered data via algebraic formulas: numerical examples, I
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Comparison of scattered cubature methods on 800 Halton points for f1 ;
horizontal lines: RBFCUB with MultiQuadrics and LS-CF method;
grey dotted line: algebraic rule with exact function values;
x-axis: degree of exactness dex of the underlying (almost-)minimal algebraic rule;
y-axis: relative cubature errors in the logarithmic scale (log(erel)).
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Cubature on scattered data via algebraic formulas: numerical examples, I
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Comparison of scattered cubature methods on 800 Halton points for f2;
horizontal lines: RBFCUB with MultiQuadrics and LS-CF method;
grey dotted line: algebraic rule with exact function values;
x-axis: degree of exactness dex of the underlying (almost-)minimal algebraic rule;
y-axis: relative cubature errors in the logarithmic scale (log(erel)).
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Cubature on scattered data via algebraic formulas: numerical examples, I
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Comparison of scattered cubature methods on 800 Halton points for f3;
horizontal lines: RBFCUB with MultiQuadrics and LS-CF method;
grey dotted line: algebraic rule with exact function values;
x-axis: degree of exactness dex of the underlying (almost-)minimal algebraic
rule;
y-axis: relative cubature errors in the logarithmic scale (log(erel)). 40/1



Cubature on scattered data via algebraic formulas: numerical examples, I
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Comparison of scattered cubature methods on 800 Halton points for f4
horizontal lines: RBFCUB with MultiQuadrics and LS-CF method;
grey dotted line: algebraic rule with exact function values;
x-axis: degree of exactness dex of the underlying (almost-)minimal algebraic
rule;
y-axis: relative cubature errors in the logarithmic scale (log(erel)). 41/1



Cubature on scattered data via algebraic formulas: numerical examples, II

As second battery of tests, we consider the numerical integration
over two nonstandard domains with curved boundaries,

a circular lune (non-convex domain),
an asymmetric circular annulus (multiply connected domain).

of the functions f1, f2, f3, f4

-0.2 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure: Halton points on a circular lune and an asymmetric circular
annulus (black dots), and cubature nodes of an algebraic rule of degree 12
(in magenta).
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Cubature on scattered data via algebraic formulas: numerical examples, II

Some observations:
Algebraic cubature rules are available (via subperiodic
trigonometric Gaussian quadrature);
our routine RBFCUB with LOOCV is not applicable, being for
the moment restricted to linear polygons;
we have modified the codes LS-CF, based on a work by
Glaubitz, to work with the appropriate polynomial moments on
such curved domains (this option is not present in the original
package of the author);
in the presence of a very high number of scattered points,
PUM and LS-CF are faster and could be methods of choice in
order to control the computing time.
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Comparison of scattered cubature methods on 800 Halton points for f1 (left) and f2
(right) with Ω being a circular lune;

the horizontal line correspond to LS-CF method;

grey dotted line: algebraic rule with exact function values;

x-axis: degree of exactness dex of the underlying (almost-)minimal algebraic rule;

y-axis: relative cubature errors in the logarithmic scale (log(erel)).
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Comparison of scattered cubature methods on 800 Halton points for f3 (left) and f4
(right) with Ω being a circular lune;

the horizontal line correspond to LS-CF method;

grey dotted line: algebraic rule with exact function values;

x-axis: degree of exactness dex of the underlying (almost-)minimal algebraic rule;

y-axis: relative cubature errors in the logarithmic scale (log(erel)).
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Comparison of scattered cubature methods on 800 Halton points for f1 (left) and f2
(right) with Ω being a circular annulus;

the horizontal line correspond to LS-CF method;

grey dotted line: algebraic rule with exact function values;

x-axis: degree of exactness dex of the underlying (almost-)minimal algebraic rule;

y-axis: relative cubature errors in the logarithmic scale (log(erel)).
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Comparison of scattered cubature methods on 800 Halton points for f3 (left) and f4
(right) with Ω being a circular annulus;

the horizontal line correspond to LS-CF method;

grey dotted line: algebraic rule with exact function values;

x-axis: degree of exactness dex of the underlying (almost-)minimal algebraic rule;

y-axis: relative cubature errors in the logarithmic scale (log(erel)).
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Cubature on scattered data via algebraic formulas: numerical examples, II

1 A hidden difficulty, not to be disregarded, is that it is not trivial
to set all the parameters of the approximants over scattered
data as PUMs or RBFs interpolants or Shepard-type methods;

2 complicated domains can be treated, e.g. those whose
boundary can be tracked by bivariate NURBS;

3 all the codes are available open-source at the author’s
homepage.
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Present research

The research of our group, at present focuses on
implementing these methods for domains in R3 as polyhedra
and spherical polygons;
improving the approximation quality and speed of PUMs or
methods of Shepard-type;
determining numerically estimates of cubature errors.

In this direction we are preparing

R. Cavoretto, A. De Rossi, G. Elefante, A. Sommariva and M. Vianello

Adaptive RBF cubature by scattered data on spherical polygons

using TPS and radial powers,
a LOOCV-like algorithm to compute the approximation via an
optimal RBF (search for the best power of ϕ(r) = r2k+1);
estimate of the integration error via LOOCV error estimates.
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Questions

Q: Are adaptive codes available for polynomial interpolation? Have
you used them for comparisons?

A: Yes, there are many, from the interval (see integral) as well as
in bivariate/trivariate hyper-rectangles (see integral2,
integral3). These routines may help to compute specific integrals
on many other domains (e.g. disks or sphere).

Also Chebfun environment allows that for the same domains (see,
e.g., sumdisk, sum2).

In our homepage Alvise Sommariva, software, you may find
these routines for polygons and spherical polygons. They are used
for reference results over polygonal regions.
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Questions

A: Is it important the property triangulation of the polygons (like for
PDEs)?

No, it is important to be minimal so to have low cardinality rules
based on formula on a reference triangle then applying barycentric
coordinates. In order to decrease the cardinality of the rule, one
can use compression of the rule (see Alvise Sommariva,

software, for already implemented routines).
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