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Purpose

In this talk we will briefly discuss

unisolvence of unsymmetric random Kansa collocation.

introduce some basics on the topic;

show the results that we have proved.
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Some RBF

In this short talk we will briefly
discuss unisolvence of unsymmetric random RBF-Kansa
collocation.
introduce some basics on the topic;
mention the results that we have proved.

Examples of RBF that will be considered are:
Thin Plate-Splines: ϕ(r) = r2ν log(r), ν ∈ N,
Multiquadrics: ϕ(r) =

√
1 + r2,

Generalized Inverse MultiQuadrics: ϕ(r) = (1 + r2)β , β < 0

Gaussians: ϕ(r) = e−r2 ,

Matérn: ϕ(r) = 21−ν

Γ(ν) r
νKν(r).

For each of them one can defined the scaled version ϕε(r) = ϕ(εr).
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Poisson equation

We consider the Poisson equation with Dirichlet boundary
conditions {

∆u(P) = f (P) , P ∈ Ω ,
u(P) = g(P) , P ∈ ∂Ω ,

(1)

where Ω ⊂ Rd is a bounded domain (connected open set),
P = (x1, . . . , xd) and ∆ = ∂2/∂x2

1 + · · ·+ ∂2/∂x2
d is the Laplacian.

Depending on the cases in analysis we will consider additional
assumptions.
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Unsymmetric Kansa collocation

Unsymmetric Kansa collocation consists in seeking a function

uN(P) =
n∑
j=1

cj ϕj(P) +
m∑
k=1

dk ψk(P) , N = n+m , (2)

where
ϕj(P) = ϕε(∥P − Pj∥2) , {P1, . . . , Pn} ⊂ Ω , (3)

ψk(P) = ϕε(∥P − Qk∥2) , {Q1, . . . ,Qm} ⊂ ∂Ω , (4)

such that {
∆uN(Pi) = f (Pi) , i = 1, . . . , n
uN(Qh) = g(Qh) , h = 1, . . . ,m .

(5)
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Unsymmetric Kansa collocation

Kansa collocation can be rewritten in matrix form as ∆Φ ∆Ψ

Φ Ψ

 c

d

 =

 f

g

 (6)

where the N × N block matrix is

KN = KN({Pi}, {Qh}) =

 ∆Φ ∆Ψ

Φ Ψ

 =

 (∆ϕj(Pi)) (∆ψk(Pi))

(ϕj(Qh)) (ψk(Qh))


and

f = {f (Pi)},
g = {g(Qh)}, 1 ≤ i, j ≤ n, 1 ≤ h, k ≤ m.
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Unsymmetric Kansa collocation

A main issue is to show if the Kansa collocation matrix

KN = KN({Pi}, {Qh}) =

 ∆Φ ∆Ψ

Φ Ψ

 (7)

is non-singular.
Existence of sufficient conditions ensuring invertibility of
unsymmetric Kansa collocation matrices is still a substantially
open problem (Hon and Schaback in 2001 has showed that
there exist point configurations leading to singularity of the
collocation matrices).
The lack of well-posedness conditions has been considered
one of the main drawbacks of unsymmetric Kansa collocation,
despite its manifest effectiveness in many applications.
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Some results: TPS

For Thin-Plates splines ϕ(r) = r2ν log(r), ν ∈ N we proved the
following.

Theorem (F.Dell’Accio, A.Sommariva, M.Vianello, 2024)

Assume that Ω ⊂ R2 is a domain whose boundary curve has an
analytic parametrization (namely a curve γ : [a, b] → R2 , γ(a) = γ(b),
that is analytic and regular, i.e. γ′(t) ̸= (0, 0) for every t ∈ (a, b)).
Let KN be the TPS-Kansa collocation matrix defined above, with
N = NI + NB ≥ 2, where

(a) {Pj} is a sequence of independent uniformly distributed random
points in Ω,

(b) {Qh} a sequence of independent uniformly distributed points on
∂Ω

Then for every N ≥ 2 the matrix KN is a.s. (almost surely) nonsingular.
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Some results: MultiQuadrics and Inverse MultiQuadrics

For MultiQuadrics (MQ) ϕε(r) =
√

1 + (εr)2 and Inverse
MultiQuadrics (IMQ) ϕε(r) = 1√

1+(εr)2
the following result holds.

Theorem (R.Cavoretto, F.Dell’Accio, A.De Rossi, A.Sommariva, M.Vianello, 2024)

Let Kn be the MQ or IMQ Kansa collocation matrix where
(a) {Pj} is a sequence of i.i.d. (independent and identically

distributed) random points in Ω with respect to any probability
density σ ∈ L1

+(Ω),
(b) {Qh} is any fixed set of m distinct points on ∂Ω

Then for every m ≥ 1 and for every n ≥ 0 the matrix Kn is a.s.
(almost surely) nonsingular.

Remark
There is no restrictive assumption on ∂Ω, except for the usual ones that guarantee
well-posedness and regularity of the solution (like e.g. that the boundary is Lipschitz).
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Some results for regular RBF

Theorem (A.Sommariva, M.Vianello, 2024)

Let ϕ : [0,+∞) → R be a radial function such that:
(i) ϕ ∈ C2([0,+∞)) ∩ H((0,+∞)), limr→∞ ϕ(r) = 0;
(ii) ℓ(r) = ϕ′′(r) + ϕ′(r)/r is continuous at r = 0, ℓ(0) ̸= 0,

limr→∞ ℓ(r) = 0;
(iii) the RBF interpolation matrix Vm = ϕε(∥Qh − Qk∥), 1 ≤ h, k ≤ m,

is nonsingular for every set of distinct points {Q1, . . . ,Qm} ⊂ Rd .
Let
(a) {Pi} is a sequence of i.i.d. (independent and identically

distributed) random points in Ω with respect to any probability
density σ ∈ L1

+(Ω);
(b) {Qh} is any fixed set of m distinct points on ∂Ω.

Then for every m ≥ 1 and for every n ≥ 0 the collocation matrix Kn is
a.s. (almost surely) nonsingular.
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Some results for regular RBF

RBFs that fulfil the assumptions of this theorem are:

Gaussians: ϕ(r) = e−r2 ;
Generalized Inverse MultiQuadrics: ϕ(r) = (1 + r2)β , β < 0;

Matérn: ϕ(r) = 21−ν

Γ(ν) r
νKν(r), where Kν is the modified Bessel

function of the second kind or Macdonald function of order
ν > 0.

Of course the theorem is valid also for their scaled version ϕε.
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Potential directions

We are considering the investigation of similar results for
other classes of RBF (e.g. RBF with compact support);
other differential equations;
other boundary conditions (e.g. Neumann, Robin, mixed-type);
other different pointsets (e.g. QMC).

At present we believe that all these topics are not trivial and will
make us sweat a lot (any help is welcome)!
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