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Introduction

In this talk we will briefly discuss cheap numerical cubature on multivariate domains

introduce some basics on the topic and theoretical results;

show the numerical advantages of this approach.
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Purpose

We intend to numerically approximate∫
Ω
f (x)dΩ ≈

NM∑
i=1

wif (Pi).

where
Ω is a domain of R2 or R3,
f ∈ C(Ω).

by a formula that has algebraic degree of exactness M, that is∫
Ω
f (x)dΩ =

NM∑
i=1

wif (Pi)

whenever f ∈ PM , i.e. is an algebraic polynomial of degree M.

Remark
Later, ADE is the algebraic degree of exactness M of the formula.
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Requests

The formula ∫
Ω
f (x)dΩ ≈

NM∑
i=1

wif (Pi).

is allowed to have nodes Pi external to Ω;
some weights may be negative, but the index of stability
named conditioning of the cubature formula

cond({wi}) :=
∑NM

i=1 |wi |∑NM
i=1 wi

tends to 1 when increasing the ADE M;
the determination of the nodes {Pi}i=1,...,NM and the weights
{wi}i=1,...,NM is fast;
the latter does not require the solution of a linear system.
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Key ideas

Our approach is based on the following:

compute a polynomial hyperinterpolant of the integrand f on a
hypercube containining the domain, e.g. a bounding box, (by
means of some rule with ADE = 2M, w.r.t. some weight function);
integrate the hyperinterpolant on the domain.

Remark (Nodes and weights)
As in the case of classical interpolatory rules, these ideas can be converted
in determining nodes and weights in the bounding box so that the rule has
degree of exactness M on the integration domain Ω.

Remark (Hyperinterpolation)
Hyperinterpolation is a Fourier-like orthogonal projection on a total-degree
polynomial space with respect to an absolutely continuous measure,
discretized by an algebraic quadrature formula with positive weights.
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Implementation on polyhedra

Suppose that the integration domain Ω is a polyhedron. Determine:
1 a Cartesian bounding box for the polyhedron;
2 the nodes {Pi} and weights u = {ui}, 1 ≤ i ≤ NM , of a

cubature formula exact for P2M for a given absolutely
continuous measure dµ = σ(P)dP on the bounding box;

3 an orthonormal basis {ϕ1, . . . , ϕν} of PM with respect to dµ,
4 the corresponding Lebesgue moments m = {m1, . . . ,mN},
mj =

∫
Ω ϕj(P) dP, e.g. by the divergence theorem;

5 the Vandermonde-like matrix

V = Vn({Pi}) = [ϕj(Pi)] ∈ RNM×ν

6 compute the weights as

w = diag(u)Vm ,

or in a Matlab-like notation w = u. ∗ Vm .
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Example
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On the left: quadrature nodes of the cheap rule on the nonconvex polyhedral element
Ω1 for degree 4, as red dots if the pertinent weight is negative, as green dots
otherwise. The size of the dots is visually proportional to the weight magnitude.
On the right, distribution of the weights in increasing order (in red: negative weights,
in green: positive weights). We report that the smaller weight is wmin ≈ −3.6 · 10−3,
the larger is wmax ≈ 2.1 · 10−2, and the smaller size is |w|min ≈ 2.6 · 10−5.
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Pro and cons

Pros:
Application to polytopal FEM (fast and stable computation of
the integrals of products of polynomials naturally arising on
arbitrary polyhedral elements, avoiding sub-tessellation into
tetrahedra);
moment computation does not require tesselation;
many computations can be done just once and repeated on
different integration domains;
w.r.t. techniques based on approximate Fekete points

cubature stability is ensured;
no QR factorization or linear system solution is involved.

Cons:
Though stability is ensured some weights may be negative;
the integrands require in general evaluations outside the
integration domain.
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Theoretical results

Theorem (Asymptotical optimal stability)

1 Let Ω ⊂ Rd be a compact subset, µ an absolutely continuous measure on Ω with
respect to the Lebesgue measure.

2 Denote by {ϕj}1≤j≤ν an orthonormal polynomial basis of PM for µ.

3 Let (X , u) = ({Pi}, {ui)}), 1 ≤ i ≤ NM , be the nodes and positive weights of a
quadrature formula for integration in dµ, exact on P2M (the polynomials with total degree
not exceeding 2M), and h ∈ L2

µ(K).

Then, the following algebraic product-like formula holds∫
Ω
h(P)f(P) dµ =

NM∑
i=1

wi f(Pi) , ∀f ∈ Pn , (1)

where the quadrature weights {wi} are defined by the product-like moments

wi = ui
ν∑
j=1

ϕj(Pi)mj , 1 ≤ i ≤ NM , mj =

∫
Ω
ϕj(P) h(P) dµ . (2)

Moreover, the formula is stable, since

lim
M→∞

NM∑
i=1

|wi | =
∫
Ω
|h(P)| dµ . (3)
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Numerical notes

We have implemented all these ideas in Matlab and in Python.
in a forthcoming paper we extend this approach to other
multivariate domains as

bivariate domains whose boundary can be tracked by
parametric splines,
multivariate domains with complicated gerometries in which
moments are computed by Quasi-Montecarlo methods.
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Numerical results

In this last section, we give some hints on what has been done
over polyhedra.

Figure: Examples of polyhedral domains. Left: Ω1 (nonconvex, 20 facets);
Center: Ω2 (convex, 760 facets); Right: Ω3 (multiply connected, 20 facets).
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Numerical results
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Figure: Relative errors E(gk) of the tetrahedra-free rule over 200
polynomial integrands of the form gk = (akx + bky + ckz + dk)n on the
three polyhedra of Figure 1, where ak , bk , ck , dk are uniform random
coefficients in [−1, 1] and n = 4, 6, 8, . . . , 20; the circles correspond to the
average logarithmic error

∑200
k=1 log(E(gk))/200.
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Numerical results

deg 4 6 8 10 12 14 16 18 20
Ω1 1.2e-03 1.4e-03 1.7e-03 2.3e-03 3.4e-03 5.1e-03 7.7e-03 1.9e-02 3.4e-02
Ω2 3.0e-02 3.4e-02 4.3e-02 5.9e-02 8.2e-02 1.2e-01 1.8e-01 4.4e-01 9.7e-01
Ω3 8.1e-04 9.0e-04 1.1e-03 1.7e-03 2.3e-03 3.5e-03 5.4e-03 1.3e-02 2.6e-02

Table: Average cputimes (in seconds) of CheapQ on the domains of Fig. 1,
varying the algebraic degree of exactness.
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Numerical results

deg n 4 6 8 10 12 14 16 18 20
Ω1 1.55 1.40 1.30 1.25 1.23 1.21 1.19 1.17 1.17
Ω2 1.30 1.14 1.21 1.12 1.13 1.12 1.10 1.10 1.09
Ω3 1.63 1.81 1.89 1.86 1.82 1.79 1.74 1.67 1.63

Table: Ratios
∑ν

j=1 |wj |/vol(Ωi) for CheapQ on the domains of Fig. 1,
varying the algebraic degree of exactness.
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