Interpolazione polinomiale

Sia P, lo sp. vett. dei polinomi di grado nin R. Date n+ 1 coppie
(x0.Y0), -+ (Xn,Yn) con x; # xi se j # k, si calcoli p, € P, t.c.
Pn(Xk):}/ka kzO,...,n

Tali polinomi p, si dicono interpolare {(xk, yx)}k=o,...n Oppure
interpolare i valori y, nei nodi x.

Figura: Grafico che illustra I'interpolazione di cos(x) in [—5, 5] su nodi
equispaziati xx = -5+2-k (k=0,...,5).
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Questioni legate all'interpolazione polinomiale

Alcune questioni risultano di importanza fondamentale:

» Esiste tale polinomio?
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Questioni legate all'interpolazione polinomiale

Alcune questioni risultano di importanza fondamentale:

vV v v Vv

Esiste tale polinomio?
Se esiste & unico?
Se esiste ed & unico, & possibile calcolarlo?

Se f € C([a, b]), esistono {xx}k=0....n € [a, b] che
rappresentano una scelta migliore di altre, nel senso che il
polinomio interpolante (xk,f(xx)) (k =0,...,n) approssima
meglio la funzione?
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Qualche esempio

» n=1: dati due punti (xo,y0), (x1,y1) trovare un polinomio di
grado 1 che passi per i due punti. Equivale a dire: calcolare
retta che passa per due punti assegnati.
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Qualche esempio

» n=1: dati due punti (xo,y0), (x1,y1) trovare un polinomio di
grado 1 che passi per i due punti. Equivale a dire: calcolare
retta che passa per due punti assegnati.

» n=2: dati tre punti (x0,¥0), (x1,¥1), (x2,y2) trovare un
polinomio di grado 2 che passi per i tre punti. Equivale a dire:
calcolare parabola

y = alx2 + arx + a3

che passa per tre punti assegnati.
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Polinomi di Lagrange ed esistenza polinomio interpolatore

Consideriamo i polinomi di Lagrange L, € P, (rel. {xx}k=0,..n)

(x —=x0) v (x = Xxk—1) - (X = Xk31) -+ - - (x — Xn)
(Xk—Xo)'...'(Xk—Xk_]_)'(Xk—Xk+1)'...-(Xk—Xn)

Li(x) =
Detto 6y j I'operatore di Kronecker, Ly(xs) = 6 s cioe

Lk(Xk) =1
Lk(XJ) = 07 sek;«éj.

Allora ha le proprieta desiderate il polinomio p, di grado n

n

pr(x) = yili(x)

k=0

poiche pn(Xs) = ZZ:() YkLk(Xs) = ZZ:() }/kak,s = Ys per
s=0,...,n. Sinoti che {Ly}k=0,.. n & basediP,.
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Unicita polinomio interpolatore

Supponiamo pp, g, € P, siano tali che

pn(Xk) = qn(Xk) = Yk k = Oa"'un'

Allora s, =p, — g, € P, ed &

sn(xk) = pn(xk) — qn(xk) =0, k=0,...,n
per cui
sn(x) =a(x —xp) ... (x — xp).
Se o # 0 allora s, € P41, cosa assurda. Quindi o =0, il che
implica p, — g, = s, = 0 cioé p, = g,. Deduciamo cosi che il

polinomio p, € P, interpolante {(xk, yk)}k=o,.n (con xx # xs se
k # s) non solo esiste ma & pure unico ed &

pn(x) =D yiLi(x).
k=0
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Calcoliamo il polinomio di grado 2 che assume nei nodi xg = —2,

x1 = 1, xp = 3 rispettivamente i valori fp = =2, f =11, £, = 17.

Lo(x) = (x — x1)(x — x2) _ (x —1)(x —3) _ (x —1)(x — 3)
(Xo — Xl)(Xo - X2) (—2 - 1)(—2 - 3) 15

L(x) = (x=x)x—x) (x—=(=2))(x-3) (x+2)(x—-3)
(1 —x0)0a —x)  (1—(=2))(1-3) —6

Lo(x) = (x=x)x—x1) (x=(=2))x-1) (x+2)(x—-1)
(e —x)0e—x) (B3-(-2)B-1) 10

Si vede subito che Lg, L1, Lo € P> che

Lo(Xo) = Lo(—2) = ]., Lo(Xl) = Lo(].) = 0, Lo(X2) = L0(3) =0

1 Ll(Xo) = Ll(—2) = 0, Ll(X2) = L1(3) =0
L2(X2) = L2(3) = 1, L2(X0) = L2(—2) = 0, L2(X1) = Lz(l) =0




Posto po(x) = —2 Lo(x) + 11 L1(x) + 17 L»(x) abbiamo
p(Xo) = -2 Lo(Xo)—I—].]. Ll(X0)+17 L2(X0) = —2.1411.0+17-0 = =2 = yp,

p(Xl) =-2 Lo(Xl)—I—].]. Ll(X1)+17 L2(X1) = —2.0+11-14+17-0 = 11 = y,
p(Xz) =-2 Lo(Xz)-l-].]. L1(X2)+17 L2(X2) = —2-04+11-04+17-1 =17 = Y.

cioe ps interpola le coppie {(xk, Yk)}k=0,1,2-
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Utilizzo polinomio interpolatore

Usualmente i dati yj corrispondono alla valutazione di una
funzione f € C([a, b]) in nodi xx € [a, b]. Si desidera che il
polinomio interpolatore p,, approssimi la funzione f. Risulta quindi
importante stimare |'errore compiuto. A tal proposito vale il
seguente teorema detto del resto.

Teorema. Sia f € C("*1)(a, b) e sia p, il polinomio che interpola

le coppie {(Xk, Yk)}k=0,...n CON Xk # xs se k # s. Allora

() = palo) = 0+ Lol ) (1)

dove £ € T con 7 il piu piccolo intervallo aperto contenente
X0y.--5Xn-
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Alcune scelte dei nodi

Consideriamo l'intervallo chiuso e limitato [a, b]. Vediamo alcuni
sets di nodi.

» Equispaziati: xx =a+ k&2 k=o0,....n

n
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Alcune scelte dei nodi

Consideriamo l'intervallo chiuso e limitato [a, b]. Vediamo alcuni

sets di nodi.
» Equispaziati: x, = a+ k (b;a), k=0,...,n.
» Gauss-Chebyshev (scalati): fissato n, i punti sono

(a+b) (b—a)

= + ty, k=0,... 2
Xk 2 5 ks ) , 1 ()
con 2k +1
+
ty = |, k=0,...,m
k= o8 <2n +2 ) ’ O G)
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Alcune scelte dei nodi

Consideriamo l'intervallo chiuso e limitato [a, b]. Vediamo alcuni
sets di nodi.

» Equispaziati: x, = a+ k (b;a), k=0,...,n.

» Gauss-Chebyshev (scalati): fissato n, i punti sono

b b—
O G B Clnk) B S (2)
2 2
con okt 1
+
tk—cos<2n+27r>,k—0,...,n, (3)
» Gauss-Chebyshev-Lobatto (scalati): fissato n, i punti sono
P Cheul) S Cluut) YA (4)
2 2
con .
tk:—cos<7ﬂ>,k:0,...,n. (5)
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Convergenza ed esempio di Runge

L'interpolante polinomiale in un set di nodi prefissati non converge
sempre puntualmente alla funzione da approssimare. Infatti, per la
funzione di Runge

f(x) = x € [-5,5] (6)

1+x%
si ha che il polinomio interpolatore p, in nodi equispaziati non
converge (puntualmente) a f. Fortunatamente cio non succede per
i nodi di Gauss-Chebyshev(-Lobatto).

Purtroppo, per un teorema dovuto a Faber, esistono comunque
funzioni continue f (ma non C!!) tali che I'interpolante p, nei
nodi di Gauss-Chebyshev(-Lobatto) non converge puntualmente a
f. Questo teorema € generalizzabile ad una famiglia arbitraria di
nodi.
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Esempio di Runge

Runge
m— EqUuisp.

Gauss—Cheb-Lob.

Figura: Grafico della funzione di Runge 1/(1 + x2) nell'intervallo [-5, 5]
e delle sue interpolanti di grado 12 nei nodi equispaziati e di
Gauss-Chebyshev-Lobatto.
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Esempio di Runge

Equisp.

3.5F Gauss—Cheb-Lob.

3
25

2
15

1
0.5

P e R .S
0

Figura: Grafico errore della funzione di Runge 1/(1 + x2) nell’'intervallo
[—5,5] con le sue interpolanti di grado 12 nei nodi equispaziati e di
Chebyshev-Gauss-Lobatto.
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Esempio di Runge

Se p, € P, & polinomio intp. nei nodi eqsp. o di G.-C.-L., vediamo
al variare del grado quali sono gli errori [|1/(1 4+ x2) — pn(x)||oo:

Deg

Err. Egs.

Err. GCL

O ~NO Ol WN

9
10
11
12
13
14

6.46e — 001
7.07e — 001
4.38e — 001
4.33e — 001
6.09e — 001
2.47e — 001
1.04e + 000
2.99e — 001
1.92e + 000
5.57e — 001
3.66e + 000
1.07e + 000
7.15e 4000

9.62e — 001
6.46e — 001
8.29e — 001
4.58e — 001
6.39e — 001
3.11e — 001
4.60e — 001
2.04e — 001
3.19e — 001
1.32e — 001
2.18e — 001
8.41e — 002
1.47e — 001
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Esempio di Runge

Importante: I'esempio di Runge mostra che esiste una funzione
C*°([-5,5]) tale che al crescere del numero di nodi equispaziati n
non sia garantita nemmeno la convergenza puntuale!

D'altra parte sussiste il seguente teorema dovuto a Bernstein:
Teorema. Se f € C1([a, b]) con [a, b] intervallo limitato e chiuso
della retta reale, il polinomio p, di grado n di interpolazione della
funzione f nei nodi di Chebyshev-Gauss di grado n+ 1 converge

uniformemente a f su [a, b], per n — oco. Se inoltre f € C2([a, b])
si ha la seguente stima dell’errore

If = pallos = O(n™*72).
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Interpolazione di Newton

Supponiamo note le coppie (xp,f(X0)), - -, (Xn,f(Xn)) con xx # x;

se k # j. Allora posto wy(x) = (x —xp) - ...« (x — xk—-1),
flxic1,...,xs] — f[x;i, ..., Xs—

g, o] = DL 2 P el gy )

Xs — Xj

si dimostra che il polinomio p, € P, interpolante le coppie citate e

n

pa(x) =D wic(x)f[xo, . -, Xi]-

k=0

Il vantaggio di questa scrittura & che se aggiungiamo un nuovo
punto da interpolare, diciamo (xpt+1,f(Xn+1)):

n+1 n
pri1(x) = D wi()flxo,- o xi] =Y wi(x)flxo, ] +
k=0 k=0
+ Wag1f[x0, .o Xag1] = pa(X) + Wagif[xo, ..., Xnt1]

Alvise Sommariva Interpolazione polinomiale. 15/ 24



Differenze divise

Le quantita f[x;, ..., xs] si chiamano differenze divise. Di solito le
quantita utili f[xo, ..., xk] per il calcolo del polinomio
interpolatore, si scrivono per via tabulare. Esempio:

X0
X1
X2

Xn

fxo]

f[Xl] f[Xo,Xl]

fl] flx,x] f[x0, x1, x2]

Flxo] Flxm 1, %0] Flxo 20 12%0] - FlX0r -2 0]
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Differenze divise

Se vogliamo intp. le coppie dell’esempio precedente, cioe (x,y) ove

x=1[-2,1;3],y =[-2;11;17]
otteniamo la tabella

)
11|43
17 (3.0/—0.26

e il polinomio intp. po risulta

p(x)=—-2+43 - (x+2)—026-(x+2)(x —1)

In effetti pp(—2) = -2, po(1) = —2+43-3-026-0=11e
p2(3) = —2+43-5-0.26-10 = —2+21.6 — 2.6 = 17.
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Interpolazione in Matlab/Octave

Supponiamo di dover interpolare le coppie {(xk, Yk)}k=o0,...n €
supponiamo sia X = [xg, ..., Xa], ¥ = [V0,- .-, ¥n]. | coefficienti del
polinomio interpolatore sono ottenibili dal comando polyfit. A
tal proposito I'help di Matlab suggerisce:

>> help polyfit

POLYFIT Fit polynomial to data.
POLYFIT(X,Y,N) finds the coefficients of a
polynomial P(X) of degree N that fits the

data, P(X(!1))"=Y(1l), in a least—squares sense.

See also POLY, POLYVAL, ROOTS.

>>
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Interpolazione in Matlab/Octave

Per capire qualcosa in pill eseguiamo il seguente codice
>> x=[-2 1 3];
>> y=[-2 11 17];
>> a=polyfit(x,y,2)
a =
—0.2667 4.0667 7.2000
>>

In effetti, calcolando manualmente il polinomio interpolatore si ha,
semplificando quando ottenuto coi polinomi di Lagrange che &

pa(x) = (—4/15) - x* +(61/15) - x +(36/5) ~ 0.26x> + 4.06x +7.2.

Quindi, se a = (ak)k=1,....3, abbiamo ps(x) = a1 x2+ayx+aze
pill in generale, se p, € il polinomio interpolatore di grado n, e
a = (ax) ¢ il vettore ottenuto utilizzando polyfit, allora

n—1

pn(x) =a1x"+axx""" + ...+ apt1.
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Interpolazione in Matlab/Octave

Per valutare in un vettore di ascisse X = [Xi]x=1,...m un polinomio
pn(x) = a1 x" + a2 x4 ant1

i cui coefficienti sono i coeff. di in un vettore P = [ay]k=1,.. n+1
usiamo il comando polyval. Dall'help:

>> help polyval

To get started , select "MATLAB Help” from the
Help menu.

POLYVAL Evaluate polynomial.

Y = POLYVAL(P,X), when P is a vector of length
N+1 whose elements are the coefficients of a
polynomial , is the value of the polynomial
evaluated at X.

V=P (1) %X NFP (2) X" (N—1)+...+P(N)xX+P (N+1)
>>
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Interpolazione in Matlab/Octave

Dati i vettori x = [xi|k=1,....n, ¥ = [Vk]k=1,....n Sia Pn—1(xk) = y«,
per k =1,...,n. Sia s = [sg]k=1,... m € desideriamo calcolare

t = [tklk=1,... m per cui tx = pp_1(Sk), per ogni k. A tal proposito
introduciamo la funzione:

function t=interpol(x,y,s)
m=length (x)—1;

coeff=polyfit(x,y,m);
t=polyval(coeff , s);
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Esempio di Runge

Interpoliamo la funzione di Runge 1/(1 + x?) in [-5, 5] sia su nodi
equispaziati che di tipo Gauss-Chebyshev-Lobatto. A tal proposito
definiamo la funzione di Runge

function [fx]=runge(x)
fx=1./(x."2+1);

e una funzione che genera n nodi di Gauss-Chebyshev-Lobatto
nell'intervallo [a, b]:

function xc=cheb(a,b,n)
for m=1:1:n

xc(m)=(a+b)/2—((b—a)/2)*cos(pi*x(m—1)/(n—1));

end
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Esempio di Runge

Quindi scriviamo il file esperimento.m

n=11; % GRADO.

% NODI TEST.

s=—5:10/(10%n):5;

% NODI EQSP.: ASCISSE/ORDINATE + INTP.TEST.
x=-5:10/n:5; y=runge(x);

t=interpol(x,y,s);

% NODI GCL.: ASCISSE/ORDINATEHINTP . TEST.
xgcl=cheb(—5,5,n+1); ygcl=runge(xgcl);

tt =interpol(xgcl, ygcl,s);

% PLOT INTP. VS RUNGE.

plot(s,runge(s),s,t,s,tt);

% ERRORI ASSOLUTI.
ee=norm(runge(s)—t,inf);ec=norm(runge(s)—tt,inf);
fprintf ("\n\t[ERR.][EQS]:%2.2e [GCL]:%2.2e",ee, ec);
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Esempio di Runge: risultati

Al variare di n:

» Otteniamo la tabella degli errori vista in precedenza.
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Esempio di Runge: risultati

Al variare di n:
» Otteniamo la tabella degli errori vista in precedenza.

» Notiamo che la scelta di n non puo essere eccessiva. Provare
n = 30!
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Esempio di Runge: risultati

Al variare di n:
» Otteniamo la tabella degli errori vista in precedenza.

» Notiamo che la scelta di n non puo essere eccessiva. Provare
n = 30!

» Risulta evidente che non sussiste la convergenza puntuale al
crescere di n, di p, a 1/(1 + x?).
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