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1 Introduzione

Sia A una matrice reale avente n righe ed n colonne, b un vettore colonna avente

n righe e si supponga di voler risolvere il sistema lineare Ax = b. Come noto, se il

determinante della matrice è diverso da 0 (cioè la matrice A è non singolare) allora

il problema Ax = b ha una ed una sola soluzione.

Ricordiamo che in Matlab/Octave la soluzione può essere calcolata con il metodo

LU, utilizzando il comando \. Un esempio:

>> A=[1 2 4; 2 4 16; 3 9 81];

>> b=ones(3,1);

>> x=A\b

>> norm(A*x-b)

ans = 9.9301e-16

>> det(A)

ans = -24.000

Uno dei principali problemi del metodo LU è legato all’alto costo computazionale.

Se A è una generica matrice quadrata di ordine n infatti necessitano circa

O

(

n3

3
+

n2

2

)

operazioni moltiplicative, che possono risultare eccessive nel caso di matrici di grandi

dimensioni. Per ovviare a questo problema si usano metodi iterativi (stazionari) del

tipo

x(k+1) = P x(k) + c, k = 0,1, . . .

con P dipendente da A e c dipendente da A e b (ma non da k). A differenza dei

metodi diretti (come ad esempio il metodo LU), in genere un metodo iterativo stazionario

convergente calcola usualmente solo un approssimazione della soluzione x (a meno

di una tolleranza prefissata). Se m è il numero di iterazioni necessarie, visto che ogni

iterazione ha un costo O(n2) dovuto al prodotto matrice-vettore P x(k), ci si augura

che il costo computazionale O(m n2) del metodo iterativo sia di gran lunga inferiore

a O( n3

3
+ n2

2
) di un metodo diretto quale LU.

1



Metodi iterativi

1.1 I metodi di Jacobi, Gauss-Seidel e SOR

Sia A = M −N con M non singolare, un generico metodo iterativo stazionario e’

del tipo

x(k+1) = M−1N x(k) +M−1b. (1)

La matrice P = M−1N è usualmente chiamata matrice di iterazione del metodo

iterativo stazionario definito da M , N . Osserviamo che posto c = M−1b, il metodo

sopracitato è ovviamente tystazionario essendo

x(k+1) = P x(k) + c (2)

con P e c indipendenti da k.

Questa definizione dei metodi stazionari, forse un po’ astratta, ha il vantaggio di

offrire una rappresentazione compatta degli stessi ed è comunemente utilizzata in

letteratura.

Sia ora A = D − E − F con D matrice diagonale, E , F rispettivamente triangolare

inferiore e superiore con elementi diagonali nulli.

Nel caso del metodo di Jacobi (1845) si ha

M = D, N = E +F (3)

e quindi

P = M−1N = D−1(E +F ) = D−1(D −D +E +F ) = D−1(D − A) = I −D−1 A (4)

Si osservi che se D è non singolare allora il metodo di Jacobi, almeno in questa ver-

sione di base, non può essere utilizzato visto che in (7) non ha senso la scrittura D−1.

Qualora sia ai i 6= 0 per ogni i = 1, . . . ,n, il metodo di Jacobi può essere descritto

come

x(k+1)
i

= (bi −
i−1
∑

j=1

ai j x(k)
j

−
n
∑

j=i+1

ai j x(k)
j

)/ai i , i = 1, . . . ,n. (5)

Un codice Matlab/Octave del metodo di Jacobi,fornito in internet presso il sito

di Netlib

http://www.netlib.org/templates/matlab/

è il seguente

function [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

% -- Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for the

% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,
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% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

%

% [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

%

% jacobi.m solves the linear system Ax=b using the Jacobi Method.

%

% input A REAL matrix

% x REAL initial guess vector

% b REAL right hand side vector

% max_it INTEGER maximum number of iterations

% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed

% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it

iter = 0; % initialization

flag = 0;

bnrm2 = norm( b );

if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r = b - A*x;

error = norm( r ) / bnrm2;

if ( error < tol ) return, end

[m,n]=size(A);

[ M, N ] = split( A , b, 1.0, 1 ); % matrix splitting

for iter = 1:max_it, % begin iteration

x_1 = x;

x = M \ (N*x + b); % update approximation

error = norm( x - x_1 ) / norm( x ); % compute error

if ( error <= tol ), break, end % check convergence

end

if ( error > tol ) flag = 1; end % no convergence

Il codice di jacobi utilizza una funzione split che serve per calcolare le matrici

M , N che definiscono l’iterazione del metodo di Jacobi:

function [ M, N, b ] = split( A, b, w, flag )

%

% function [ M, N, b ] = split_matrix( A, b, w, flag )

%
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% split.m sets up the matrix splitting for the stationary

% iterative methods: jacobi and sor (gauss-seidel when w = 1.0 )

%

% input A DOUBLE PRECISION matrix

% b DOUBLE PRECISION right hand side vector (for SOR)

% w DOUBLE PRECISION relaxation scalar

% flag INTEGER flag for method: 1 = jacobi

% 2 = sor

%

% output M DOUBLE PRECISION matrix

% N DOUBLE PRECISION matrix such that A = M - N

% b DOUBLE PRECISION rhs vector ( altered for SOR )

[m,n] = size( A );

if ( flag == 1 ), % jacobi splitting

M = diag(diag(A));

N = diag(diag(A)) - A;

elseif ( flag == 2 ), % sor/gauss-seidel splitting

b = w * b;

M = w * tril( A, -1 ) + diag(diag( A ));

N = -w * triu( A, 1 ) + ( 1.0 - w ) * diag(diag( A ));

end;

% END split.m

Ricordiamo che la funzione split non coincide con quella predefinita nelle

ultime releases di Matlab/Octave. Qualora la funzione split che vogliamo utiliz-

zare sia salvata della directory corrente, una volta richiamata, i workspace di Mat-

lab/Octave utilizzano proprio questa e non quella descritta per altri usi in Mat-

lab/Octave. Inoltre per quanto riguarda tril e triu in split dall’help di Matlab

si capisce che estraggono rispettivamente la parte triangolare inferiore e superiore

di una matrice:

>> help tril

TRIL Extract lower triangular part.

TRIL(X) is the lower triangular part of X.

TRIL(X,K) is the elements on and below the K-th diagonal

of X . K = 0 is the main diagonal, K > 0 is above the

main diagonal and K < 0 is below the main diagonal.

See also TRIU, DIAG.

>> help triu
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TRIU Extract upper triangular part.

TRIU(X) is the upper triangular part of X.

TRIU(X,K) is the elements on and above the K-th diagonal of

X. K = 0 is the main diagonal, K > 0 is above the main

diagonal and K < 0 is below the main diagonal.

See also TRIL, DIAG.

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> tril(A)

ans =

1 0 0

4 5 0

7 8 9

>> triu(A)

ans =

1 2 3

0 5 6

0 0 9

>>

La routine jacobi è scritta da esperti di algebra lineare e si interrompe quando

la norma 2 dello step relativo

‖x(k+1) −x(k)‖2

‖x(k+1)‖2

è inferiore ad una tolleranza tol prefissata oppure un numero massimo di iterazioni

max_it è raggiunto. Ricordiamo che se v = (vi )i=1,...,n è un elemento di Rn allora

‖v‖2 =

√

n
∑

i=1

v2
i

.

Problema: cosa succede quando la matrice diagonale estratta da A è singolare?

cosa succede quando partendo da x0 6= 0, si ha per qualche indice k > 0 che xk = 0?

Un altro metodo di particolare interesse é quello di Gauss-Seidel (1874) per cui

M = D −E , N = F (6)

e quindi

P = M−1N = (D −E)−1F (7)

Similmente al metodo di Jacobi, possiamo riscrivere più semplicemente anche

Gauss-Seidel come

x(k+1)
i

=
(

bi −
i−1
∑

j=1

ai j x(k+1)
j

−
n
∑

j=i+1

ai j x(k)
j

)

/ai i . (8)
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Da (8) si capisce perchè tale metodo è noto anche come metodo delle sostituzioni

successive.

Per accelerare la cosidetta velocitá di convergenza si introducono, per un oppor-

tuno parametro ω, la versione rilassata del metodo di Jacobi

x(k+1) = (I −ωD−1 A)x(k) +ωD−1b (9)

e di Gauss-Seidel

x(k+1) =
(

D

ω
−E

)−1 ((

1

ω
−1

)

D +F

)

x(k) +
(

D

ω
−E

)−1

b. (10)

L’idea di fondo di questi metodi rilassati è la seguente [2, p. 261]. Ogni metodo

precedentemente esposto può essere scritto come

x(k+1) = x(k) + r (k)

ove r (k) è la correzione da apportare per passare da x(k) a x(k+1). Nei metodi rilassati,

se r (k) è la correzione di Jacobi o Gauss-Seidel, si considera quale correzione w · r (k)

e quindi

x(k+1) = x(k) +w · r (k).

Si osservi che i metodi di Jacobi e Gauss-Seidel si ottengono rispettivamente da

(9) e (10) per la scelta ω = 1. Esistono delle buone scelte di tale parametro ω detto

di rilassamento? La risposta è affermativa. Sia ρ(P ) il massimo degli autovalori in

modulo della matrice di iterazione P = M−1N (il cosidetto raggio spettrale). Si di-

mostra che un metodo iterativo (stazionario) definito da P converge per ogni vettore

iniziale x0 se e solo se ρ(P ) < 1. Se

R(P ) =− ln(ρ(P ))

è la cosidetta velocità di convergenza asintotica del metodo iterativo relativo a P ,

si può dimostrare che il numero di iterazioni k necessarie per ridurre l’errore di un

fattore ǫ verifica la disuguaglianza

k ≥
− ln(ǫ)

R(P )
.

Conseguentemente minore è ρ(P ) necessariamente è maggiore R(P ) e si può sti-

mare il numero di iterazioni per ridurre l’errore di un fattore ǫ. Si desidera quindi

cercare metodi con ρ(P ) più piccolo possibile.

La versione di Gauss-Seidel con la scelta del parametro ω è nota in letteratura

come SOR, acronimo di successive over relaxation. Una versione di SOR scaricabile

presso il sito di Netlib [6] è la seguente

function [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

% -- Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

6



Metodi iterativi

% Details of this algorithm are described in "Templates for the

% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,

% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

%

% [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

%

% sor.m solves the linear system Ax=b using the

% Successive Over-Relaxation Method (Gauss-Seidel method when omega = 1 ).

%

% input A REAL matrix

% x REAL initial guess vector

% b REAL right hand side vector

% w REAL relaxation scalar

% max_it INTEGER maximum number of iterations

% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed

% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it

flag = 0; % initialization

iter = 0;

bnrm2 = norm( b );

if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r = b - A*x;

error = norm( r ) / bnrm2;

if ( error < tol ) return, end

[ M, N, b ] = split( A, b, w, 2 ); % matrix splitting

for iter = 1:max_it % begin iteration

x_1 = x;

x = M \ ( N*x + b ); % update approximation

error = norm( x - x_1 ) / norm( x ); % compute error

if ( error <= tol ), break, end % check convergence

end

b = b / w; % restore rhs

if ( error > tol ) flag = 1; end; % no convergence

Come per il metodo di Jacobi, il processo si interrompe quando la norma 2 dello
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step relativo

‖x(k+1) −x(k)‖2

‖x(k+1)‖2

è inferiore ad una tolleranza tol prefissata oppure un numero massimo di iterazioni

max_it è raggiunto.

Per ulteriori dettagli si consulti ad esempio [3, p. 313-339].

1.2 Convergenza dei Jacobi, Gauss-Seidel ed SOR

Lo studio della convergenza dei metodi di Jacobi, Gauss-Seidel ed SOR è un

proposito complicato e ci limiteremo a citare, senza dimostrazione, alcuni classici

risultati [2, p. 231-315].

Il metodo di Jacobi risulta convergente in uno dei seguenti casi [2, p. 247]:

1. A è a predominanza diagonale in senso stretto;

2. A è a predominanza diagonale ed è irriducibile;

3. A è a predominanza diagonale in senso stretto per colonne;

4. A è a predominanza diagonale per colonne ed è irriducibile.

Il metodo di Gauss-Seidel risulta convergente in uno dei seguenti casi [2, p. 249]:

1. A è a predominanza diagonale in senso stretto.

2. Sia A una matrice simmetrica definita positiva, non singolare con elementi

principali ai ,i 6= 0. Allora Gauss-Seidel è convergente se e solo se A è definita

positiva.

Per matrici tridiagonali (a blocchi) A = (ai , j ) con componenti diagonali non

nulle, i metodi di Jacobi e Gauss-Seidel sono o entrambi convergenti o divergenti e

il tasso di convergenza del metodo di Gauss-Seidel è il doppio di quello del metodo

di Jacobi (il che vuol dire che asintoticamente sono necessarie metà iterazioni del

metodo di Gauss-Seidel per ottenere la stessa precisione del metodo di Jacobi).

Ricordiamo che

1. A è a predominanza diagonale (per righe) se per ogni i = 1, . . . ,n risulta

|ai ,i | ≥
n
∑

j=1, j 6=s

|ai , j |

e per almeno un indice s si abbia

|as,s | >
n
∑

j=1, j 6=s

|as, j |.

Ad esempio la matrice
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A =





4 −4 0

−1 4 −1

0 −4 4





è a predominanza diagonale (per righe).

2. A è a predominanza diagonale in senso stretto (per righe) se per ogni i =
1, . . . ,n risulta

|ai ,i | >
n
∑

j=1, j 6=i

|ai , j |.

Ad esempio la matrice

A =





4 −1 0

−1 4 −1

0 −1 4





è a predominanza diagonale in senso stretto (per righe).

3. A è a predominanza diagonale per colonne (in senso stretto) se AT è a pre-

dominanza diagonale per righe (in senso stretto).

4. A è tridiagonale se ai , j = 0 per |i − j | > 1. Ad esempio la matrice

A =













4 −1 0 . . . 0

−1 4 −1 . . . 0

0 −1 4 . . . . . .

0 . . . . . . . . . −1

0 0 . . . −1 4













è tridiagonale.

5. A è definita positiva se e solo se i suoi autovalori sono positivi.

La matrice

A =





4 −1 0

−1 4 −1

0 −1 4





è definita positiva come si può vedere usando i seguenti comandi Matlab/Octave

>> A=[4 -1 0; -1 4 -1; 0 -1 4]

A =

4 -1 0

-1 4 -1

0 -1 4

>> eig(A)

ans =

2.5858
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4.0000

5.4142

>>

6. A di ordine n ≥ 2 è riducibile se esiste una matrice di permutazione Π e un

intero k con 0 < k < n, tale che

B =ΠAΠT =
(

A1,1 A1,2

0 A2,2

)

in cui A1,1 ∈ C k×k , A2,2 ∈ C (n−k)×(n−k). Se A non è riducibile si dice che A è

irriducibile.

2 Matrici simmetriche definite positive: il metodo del

gradiente coniugato

Il metodo del gradiente coniugato (di cui forniremo solo il codice e alcuni brevi

indicazioni) fu descritto nel 1952 da Hestenes e Stiefel ma per quanto destasse subito

l’interesse dell’ambiente matematico non venne molto utilizzato fino al 1971, quando

Reid suggerì il suo utilizzo per la risoluzione di sistemi sparsi (cioè con molte com-

ponenti nulle) di grandi dimensioni [2].

Se A è una matrice simmetrica e definita positiva di ordine n, si può dimostrare

che il metodo è convergente e fornisce in aritmetica esatta la soluzione del sistema

Ax = b in al massimo n iterazioni. Questo teorema tradisce un po’ le attese, sia

perchè in generale i calcoli non sono compiuti in aritmetica esatta, sia perchè in

molti casi della modellistica matematica n risulta essere molto alto. Comunque si

può dimostrare [2, p. 279] in queste ipotesi che se

‖x‖A =
√

xT Ax

e

ek = x∗−x(k)

allora

‖ek‖A ≤
(
p

K2(A)−1
p

K2(A)+1

)2k

‖e0‖A .

Questo risultato stabilisce che la convergenza del gradiente coniugato è lenta qualora

si abbiano alti numeri di condizionamento

K2(A) := ‖A‖2‖A−1‖2 =
maxi |λi |
min j |λ j |

(ove al solito {λi } sono gli autovalori di A). Esistono varie versioni di questa disug-

uaglianza. Ad esempio in [7, p. 151]:

‖ek‖A ≤
(

2ck

1+2ck

)

‖e0‖A
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dove

c :=
p

K2(A)−1
p

K2(A)+1
.

L’analisi del metodo è piuttosto complessa. Qualora interessati si confronti con

[1, p. 562-569], [2, p. 272-283], [3, p. 340-356], [7, p. 145-153].

Per quanto riguarda il codice del Gradiente Coniugato, un esempio è il file cg.m

tratto da Netlib [6]:

function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

% -- Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for the

% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,

% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

%

% [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

%

% cg.m solves the symmetric positive definite linear system Ax=b

% using the Conjugate Gradient method with preconditioning.

%

% input A REAL symmetric positive definite matrix

% x REAL initial guess vector

% b REAL right hand side vector

% M REAL preconditioner matrix

% max_it INTEGER maximum number of iterations

% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed

% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it

flag = 0; % initialization

iter = 0;

bnrm2 = norm( b );

if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r = b - A*x;

error = norm( r ) / bnrm2;

if ( error < tol ) return, end

for iter = 1:max_it % begin iteration
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z = M \ r;

rho = (r’*z);

if ( iter > 1 ), % direction vector

beta = rho / rho_1;

p = z + beta*p;

else

p = z;

end

q = A*p;

alpha = rho / (p’*q );

x = x + alpha * p; % update approximation vector

r = r - alpha*q; % compute residual

error = norm( r ) / bnrm2; % check convergence

if ( error <= tol ), break, end

rho_1 = rho;

end

if ( error > tol ) flag = 1; end % no convergence

% END cg.m

Osserviamo che il procedimento itera finchè un numero massimo di iterazioni è

raggiunto oppure la norma 2 del residuo (relativo)

‖b − Ax(k)‖2

‖b‖2

immagazzinata nella variabile error risulta inferiore ad una tolleranza prefissata

tol. In questo caso il criterio d’arresto del metodo del gradiente coniugato è diverso

da quello dello step relativo utilizzato nelle precedenti versioni di Jacobi ed SOR.

3 Un esperimento numerico

Consideriamo il sistema lineare Ax = b dove A è la matrice tridiagonale a blocchi (di

Poisson)

A =













B −I 0 . . . 0

−I B −I . . . 0

0 −I B . . . . . .

0 . . . . . . . . . −I

0 0 . . . −I B













12



Metodi iterativi

con

B =













4 −1 0 . . . 0

−1 4 −1 . . . 0

0 −1 4 . . . . . .

0 . . . . . . . . . −1

0 0 . . . −1 4













La matrice A è facilmente esprimibile utilizzando la funzione makefish scarica-

bile in [6]

function mat = makefish(siz);

% make a Poisson matrix

leng = siz*siz;

dia = zeros(siz,siz);

off = -eye(siz,siz);

for i=1:siz, dia(i,i)=4; end;

for i=1:siz-1, dia(i,i+1)=-1; dia(i+1,i)=-1; end;

mat = zeros(leng,leng);

for ib=1:siz,

mat(1+(ib-1)*siz:ib*siz,1+(ib-1)*siz:ib*siz) = dia; end;

for ib=1:siz-1,

mat(1+(ib-1)*siz:ib*siz,1+ib*siz:(ib+1)*siz) = off;

mat(1+ib*siz:(ib+1)*siz,1+(ib-1)*siz:ib*siz) = off; end;

return;

Vediamo un esempio:

>> makefish(3)

ans =

4 -1 0 -1 0 0 0 0 0

-1 4 -1 0 -1 0 0 0 0

0 -1 4 0 0 -1 0 0 0

-1 0 0 4 -1 0 -1 0 0

0 -1 0 -1 4 -1 0 -1 0

0 0 -1 0 -1 4 0 0 -1

0 0 0 -1 0 0 4 -1 0

0 0 0 0 -1 0 -1 4 -1

0 0 0 0 0 -1 0 -1 4

>>

che evidentemente è una matrice di Poisson con B matrice quadrata di ordine 3

B = 4 -1 0

-1 4 -1

0 -1 4
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Per ulteriori dettagli sulle origini della matrice di Poisson, si considerino ad es-

empio [1, p. 557], [2, p. 283], [3, p. 334]. Le matrici di Poisson sono evidentemente

simmetriche, tridiagonali a blocchi, diagonalmente dominanti e dal primo e dal sec-

ondo teorema di Gerschgorin [2, p. 76-80], [3, p. 955] si può provare che sono non

singolari. In particolare si può mostrare che A è definita positiva. Per accertarsene,

calcoliamo il minimo autovalore della matrice di Poisson con B ∈ M 5, semplice-

mente digitando sulla shell di Matlab-Octave

>> A=makefish(5);

>> m=min(eig(A))

m =

0.5359

>>

Tale matrice di Poisson non è malcondizionata essendo

>> A=makefish(5);

>> cond(A)

ans =

13.9282

>>

Poniamo ora

b=ones(size(A,1),1);

e risolviamo il sistema Ax = b digitando

x_sol=A\b;

Nota la soluzione esatta confrontiamo i vari metodi risolvendo il sistema lineare

con un numero massimo di iterazioni maxit e una tolleranza tol come segue

maxit=200; tol=10^(-8);

A tal proposito consideriamo l’m-file

demo_algebra_lineare.m

contenente il codice

maxit=200; tol=10^(-8);

siz=5;

A = makefish(siz); % MATRICE DI POISSON.

b=ones(size(A,1),1); % TERMINE NOTO.

x_sol=A\b; % SOLUZIONE ESATTA. METODO LU.

norm_x_sol=norm(x_sol);

if norm(x_sol) == 0
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norm_x_sol=1;

end

x=zeros(size(b)); % VALORE INIZIALE.

% JACOBI.

[x_j, error_j, iter_j, flag_j] = jacobi(A, x, b, maxit, tol);

fprintf(’\t \n [JACOBI ] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’,error_j,norm(x_j-x_sol)/norm_x_sol);

fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f \n’,iter_j,flag_j);

% GAUSS-SEIDEL.

w=1;

[x_gs, error_gs, iter_gs, flag_gs] = sor(A, x, b, w, maxit, tol);

fprintf(’\t \n [GAU.SEI.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’,error_gs,norm(x_gs-x_sol)/norm_x_sol);

fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f

\n’,iter_gs,flag_gs);

% SOR.

w_vett=0.8:0.025:2;

for index=1:length(w_vett)

w=w_vett(index);

[x_sor, error_sor(index), iter_sor(index), flag_sor(index)] = sor(A,

x, b, w, maxit, tol);

relerr(index)=norm(x_sor-x_sol)/norm_x_sol;

end

[min_iter_sor, min_index]=min(iter_sor);

fprintf(’\t \n [SOR OTT.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’,error_sor(min_index),relerr(min_index));

fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f [w]: %2.3f

\n’,min_iter_sor,flag_sor(min_index),w_vett(min_index));

plot(w_vett,iter_sor,’r-’);

% GRADIENTE CONIUGATO.

M=eye(size(A));

[x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, tol);

fprintf(’\t \n [GRA.CON.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’,error_gc,norm(x_gc-x_sol)/norm_x_sol);

fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f

\n’,iter_gc,flag_gc);
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Lanciamo la demo nella shell di Matlab-Octave e otteniamo

>> demo_algebra_lineare

[JACOBI ] [STEP REL., NORMA 2]: 8.73e-009 [REL.ERR.]: 5.65e-008

[ITER.]: 116 [FLAG]: 0

[GAU.SEI.] [STEP REL., NORMA 2]: 9.22e-009 [REL.ERR.]: 2.76e-008

[ITER.]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-009 [REL.ERR.]: 1.10e-009

[ITER.]: 21 [FLAG]: 0 [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.41e-017 [REL.ERR.]: 2.21e-016

[ITER.]: 5 [FLAG]: 0

>>

Una breve analisi ci dice che

1. Come previsto dalla teoria, il metodo di Gauss-Seidel converge in approssi-

mativamente metà iterazioni di Jacobi;

2. Il metodo SOR ha quale costante quasi ottimale w = 1.350;

3. Il metodo del gradiente coniugato converge in meno iterazioni rispetto agli al-

tri metodi (solo 5 iterazioni, ma si osservi il test d’arresto differente). Essendo

la matrice di Poisson di ordine 25, in effetti ciò accade in meno di 25 iterazioni

come previsto. Vediamo cosa succede dopo 25 iterazioni:

>> maxit=25; tol=0;

>> siz=5; A = makefish(siz); b=ones(size(A,1),1);

>> [x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, tol);

>> error_gc

error_gc =

3.6287e-039

>>

Il residuo relativo, seppur non nullo è molto piccolo.

Un punto delicato riguarda la scelta del parametro ω ottimale (cioè minimiz-

zante il raggio spettrale di SOR). Sia questo valore uguale a ω∗. Nel nostro codice

abbiamo calcolato per forza bruta ω+, tra i numeri reali ω+ ≤ 2 del tipo w j = 0.8+ j ·
0.025 quello per cui venivano compiute meno iterazioni.

E’ possibile calcolare ω∗ matematicamente? Nel caso della matrice di Poisson la

risposta è affermativa. Da [3, Teor.5.10, p.333]

ω∗ =
2

1+
√

1−ρ2(B J )
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e il raggio spettrale della matrice di iterazione vale ω∗− 1. dove ρ(S) è il massimo

degli autovalori in modulo della matrice S (il cosidetto raggio spettrale) e B J la ma-

trice di iterazione di Jacobi. Vediamo di calcolare questo valore nel caso della so-

pracitata matrice di Poisson. Dalla teoria, con ovvie notazioni,

B J = I −D−1 A

e quindi

>> format long;

>> D=diag(diag(A));

>> BJ=eye(size(A))-inv(D)*A;

>> s=eig(BJ);

>> s_abs=abs(s);

>> rho=max(s_abs);

>> w=2/(1+sqrt(1-rho^2))

w =

1.33333333333333

>> maxit=50; tol=10^(-8);

>> b=ones(size(A,1),1);

>> [x_sor, error_sor, iter_sor, flag_sor] = sor(A, x, b, w, maxit, tol);

>> iter_sor

iter_sor =

22

>>

Si rimane un po’ sorpresi dal fatto che per w = 1.350 il numero di iterazioni fosse

inferiore di quello fornito dal valore ottimale teorico w∗ = 1.333. . .. Il fatto è che

questo è ottenuto cercando di massimizzare la velocità asintotica di convergenza.

Purtroppo questo minimizza una stima del numero di iterazioni k minime da com-

piere e non quello effettivo.

Abbiamo detto che un punto chiave è la grandezza del raggio spettrale delle ma-

trici di iterazione e che è desiderabile che questo numero oltre ad essere stretta-

mente minore di uno sia il più piccolo possibile. Vediamo i raggi spettrali dei metodi

esposti.

Salviamo in raggispettrali.m il seguente programma principale

maxit=50; tol=0;

siz=5;

A = makefish(siz); % MATRICE DI POISSON.

b=ones(size(A,1),1); % TERMINE NOTO.

[ M, N ] = split( A , b, 1.0, 1 ); % JACOBI.

P=inv(M)*N;

rho_J=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][JACOBI]: %2.15f’,rho_J);

[ M, N, b ] = split( A, b, 1, 2 ); % GS.
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P=inv(M)*N;

rho_gs=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][GAUSS-SEIDEL]: %2.15f’,rho_gs);

D=diag(diag(A));

E=-(tril(A)-D);

F=-(triu(A)-D);

w=1.350;

M=D/w-E; N=(1/w-1)*D+F;

P=inv(M)*N;

rho_sor=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][SOR BEST]: %2.15f’,rho_sor);

w=1.33333333333333;

[ M, N, b ] = split( A, b, w, 2 ); % SOR OPT.

M=D/w-E; N=(1/w-1)*D+F;

P=inv(M)*N;

rho_sor_opt=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][SOR OPT]: %2.15f’,rho_sor_opt);

Di seguito:

>> raggispettrali

[RAGGIO SPETTRALE][JACOBI]: 0.866025403784438

[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000

[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000001

[RAGGIO SPETTRALE][SOR OPT]: 0.333333380707781

>>

Il valore del raggio spettrale della matrice di iterazione del metodo SOR per parametro

ottimale, per quanto visto anticipatamente vale ω∗−1, e l’esperimento numerico lo

conferma.

Abbiamo poi osservato che in questo caso la velocità di convergenza del metodo di

Gauss-Seidel è il doppio di quella di Jacobi. Poste BGS , B J le rispettive matrici di

iterazione, e detta R la velocità di convergenza, osserviamo che da

R(B J ) := − ln(ρ(B J )) (11)

R(BGS ) := − ln(ρ(BGS )) (12)

R(BGS ) := 2R(B J ) (13)

si ha

− ln(ρ(BGS )) = R(BGS ) = 2R(B J ) =−2ln(ρ(B J )) =− ln(ρ(B J ))2

da cui essendo il logaritmo una funzione invertibile

ρ(BGS ) = (ρ(B J ))2.

Il raggio spettrale della matrice di iterazione di Gauss-Seidel coincide quindi col

quadrato di quella di Jacobi ed infatti come è facile verificare
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>> 0.866025403784438^2

ans =

0.75000000000000

>>

Al momento non consideriamo il metodo del gradiente coniugato poichè non è

di tipo stazionario.

4 Facoltativo: Il metodo di Richardson

Come visto nella precedente lezione i metodi di Jacobi e di Gauss-Seidel e le loro

versioni rilassate sono metodi iterativi del tipo

M x(k+1) = N x(k) +b, (14)

per opportune scelte della matrici M , N tali che

A = M −N . (15)

Se

r (k) = b − Ax(k) (16)

è il residuo alla k-sima iterazione allora da (14) e (15)

M(x(k+1) −x(k)) = N x(k) +b −M x(k) = b − Ax(k) = r (k) (17)

Per un opportuno parametro di accelerazione α > 0 (da non confondersi con

quello di SOR), si può fornire un’ovvia generalizzazione del metodo (17)

M(x(k+1) −x(k)) =αr (k), k ≥ 0. (18)

Evidentemente (17) corrisponde alla scelta α= 1.

Il parametro α> 0 viene scelto cosí da minimizzare il raggio spettrale della ma-

trice di iterazione. In questo caso si vede che da

M(x(k+1) −x(k)) =α (b − Ax(k)) (19)

necessariamente

M x(k+1) = M x(k) +α (b − Ax(k)) = (M −αA)x(k) +αb, (20)

e quindi la matrice di iterazione diventa

Rα = M−1(M −α A) = I −αM−1 A. (21)

Se M−1 A è definita positiva eλmi n eλmax sono rispettivamente il minimo e mas-

simo autovalore di M−1 A, allora il valore ottimale del parametro α è

αott =
2

λmi n +λmax
(22)
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ed in corrispondenza si ha che la matrice di iterazione Rαott ha raggio spettrale

αott =
λmax −λmi n

λmi n +λmax
(23)

Si osservi che la scelta di α non dipende dall’iterazione; di conseguenza (18)

definisce il cosidetto metodo di Richardson stazionario, per distinguerlo dal metodo

di Richardson non stazionario

M(x(k+1) −x(k)) =αk (b − Ax(k)). (24)

con αk che non è necessariamente costante.

Se M−1 A é definita positiva, una classica scelta di αk è

αk =
r (k)T

z(k)

z(k)T
Az(k)

. (25)

5 Facoltativo: Esercizi sui metodi di Richardson

Il metodo di Richardson si puó implementare come segue:

1. assegnato x(0), si ponga r (0) = b − Ax(0).

2. si considera per k ≥ 0 lo schema:







M z(k) = r (k);

x(k+1) = x(k) +αz(k);

r (k+1) = r (k) −αAz(k);

(26)

Il metodo di Richardson con parametro αk definito da (25) è una semplice vari-

ante di (26) in cui αk viene assegnato subito dopo aver calcolato z(k).

1. Implementare in Matlab le due routines

richardson

e

richardsonmodificato

definito da (25).

2. Dato il problema Ax = b definito dallo schema alle differenze utilizzato nella

lezione precedente per risolvere un problema di Poisson, definire i metodi di

Richardson associati ai metodi di Jacobi e Gauss-Seidel. Applicare i rispet-

tivi metodi di Richardson ottimali e osservare sia i (possibili) miglioramenti in

termini di errore dopo un numero prefissato di iterazioni sia il miglior raggio

spettrale della matrice di iterazione. Utilizzare il residuo assoluto in norma 2

r (k) := ‖b − Ax(k)‖2 < toll (27)
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quale test di arresto. Implementare in alternativa una versione basata sul

residuo relativo in norma 2

r (k)

rel
:= ‖b − Ax(k)‖2/‖b‖2 < toll, (28)

o lo step relativo in norma 2

∆
(k)

rel
:= ‖x(k+1) −x(k)‖2/‖b‖2 < toll. (29)

3. Data la matrice di Hilbert di ordine 12 (che denotiamo con H12), calcolarne

gli autovettori. E’ questa matrice definita positiva? Ricordiamo che H12 puó

essere generata dal comando Matlab hilb(12). Usare la routine Matlab cond

per calcolarne il numero di condizionamento K2(A) in norma 2, cioé la quan-

titá

K2(A) = ‖A‖2‖A−1‖2. (30)

E’ una matrice definita positiva? Si puó affermare che i metodi di Jacobi e

Gauss-Seidel sono convergenti? Applicare i metodi Jacobi, Gauss-Seidel e le

rispettive versioni ottimali per risolvere il sistema H12x = b con bi =
∫1

0 xi−1

per i = 1, . . . ,12. Si osservi l’errore compiuto sapendo che la soluzione del

problema e’ il primo vettore della base canonica di Rn (per convincersene

scrivere la riga di comando Matlab x = A\b ove A = H12). Eseguire lo stesso

esercizio per H20 e b ∈ R20 definita come sopra.

4. Si consideri la matrice a blocchi

A =





B −I 0

−I B −I

0 −I B



 (31)

dove I é la matrice identica e

B =





4 −1 0

−1 4 0

0 −1 4



 (32)

Applicare i metodi di Jacobi, Gauss-Seidel e i rispettivi metodi di Richard-

son (nella versione stazionaria a parametro ottimale, e non stazionaria con

parametro αk definito in (25)) per calcolare la soluzione del problema Ax = b,

dove b = (1,0, . . . ,0) ∈ R9. E’ possibile stabilire a priori che i metodi di Jacobi

e Gauss-Seidel sono convergenti? Calcolare il raggio spettrale delle matrici

di iterazione di tali metodi utilizzando il comando eig di Matlab . Fissata

una tolleranza di tol= 10−8, arrestare le iterazioni quando il residuo relativo in

norma 2 é inferiore ditol. Quale di questi metodi converge in meno iterazioni?

Questo risultato è coerente con il valore del raggio spettrale delle matrici di

iterazione?
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6 Facoltativo: Altre matrici interessanti. La matrice di

Hilbert.

Per vedere alcuni comandi di base aiutiamoci con delle matrici predefinite in

Matlab/Octave. Digitiamo nella shell di Matlab/Octave >> help elmat. In Matlab

6.5 abbiamo
>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.

zeros - Zeros array.

ones - Ones array.

eye - Identity matrix.

repmat - Replicate and tile array.

rand - Uniformly distributed random numbers.

randn - Normally distributed random numbers.

linspace - Linearly spaced vector.

logspace - Logarithmically spaced vector.

freqspace - Frequency spacing for frequency response.

meshgrid - X and Y arrays for 3-D plots.

: - Regularly spaced vector and index into matrix.

...

Specialized matrices.

compan - Companion matrix.

gallery - Higham test matrices.

hadamard - Hadamard matrix.

hankel - Hankel matrix.

hilb - Hilbert matrix.

invhilb - Inverse Hilbert matrix.

magic - Magic square.

pascal - Pascal matrix.

rosser - Classic symmetric eigenvalue test problem.

toeplitz - Toeplitz matrix.

vander - Vandermonde matrix.

wilkinson - Wilkinson’s eigenvalue test matrix.

Questo ci dice che Matlab ha predefinito un set di matrici di particolare inter-

esse. Se possibile si suggerisce di provare i metodi che andremo ad introdurre con

una matrice facente parte della gallery di Matlab. Ciò non appare possibile nelle

recenti releases di Octave, come GNU Octave 2.1.73. Da Matlab 6.5

>> help gallery

GALLERY Higham test matrices.

[out1,out2,...] = GALLERY(matname, param1, param2, ...)
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takes matname, a string that is the name of a matrix family, and

the family’s input parameters. See the listing below for available

matrix families. Most of the functions take an input argument

that specifies the order of the matrix, and unless otherwise

stated, return a single output.

For additional information, type "help private/matname", where matname

is the name of the matrix family.

cauchy Cauchy matrix.

chebspec Chebyshev spectral differentiation matrix.

chebvand Vandermonde-like matrix for the Chebyshev polynomials.

chow Chow matrix -- a singular Toeplitz lower Hessenberg matrix.

circul Circulant matrix.

...

poisson Block tridiagonal matrix from Poisson’s equation (sparse).

prolate Prolate matrix -- symmetric, ill-conditioned Toeplitz matrix.

randcolu Random matrix with normalized cols and specified singular

values.

randcorr Random correlation matrix with specified eigenvalues.

randhess Random, orthogonal upper Hessenberg matrix.

rando Random matrix with elements -1, 0 or 1.

randsvd Random matrix with pre-assigned singular values and specified

bandwidth.

redheff Matrix of 0s and 1s of Redheffer.

riemann Matrix associated with the Riemann hypothesis.

ris Ris matrix -- a symmetric Hankel matrix.

smoke Smoke matrix -- complex, with a "smoke ring" pseudospectrum.

toeppd Symmetric positive definite Toeplitz matrix.

toeppen Pentadiagonal Toeplitz matrix (sparse).

tridiag Tridiagonal matrix (sparse).

triw Upper triangular matrix discussed by Wilkinson and others.

wathen Wathen matrix -- a finite element matrix (sparse, random

entries).

wilk Various specific matrices devised/discussed by Wilkinson.

(Two output arguments)

GALLERY(3) is a badly conditioned 3-by-3 matrix.

GALLERY(5) is an interesting eigenvalue problem. Try to find

its EXACT eigenvalues and eigenvectors.

See also MAGIC, HILB, INVHILB, HADAMARD, WILKINSON, ROSSER, VANDER.
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7 Facoltativo: Altre matrici interessanti. La matrice di

Hilbert.

Rivediamo gli esperimenti in una recente release di Octave, come GNU Octave

2.1.73.
octave:12> makefish(3)

ans =

4 -1 0 -1 -0 -0 0 0 0

-1 4 -1 -0 -1 -0 0 0 0

0 -1 4 -0 -0 -1 0 0 0

-1 -0 -0 4 -1 0 -1 -0 -0

-0 -1 -0 -1 4 -1 -0 -1 -0

-0 -0 -1 0 -1 4 -0 -0 -1

0 0 0 -1 -0 -0 4 -1 0

0 0 0 -0 -1 -0 -1 4 -1

0 0 0 -0 -0 -1 0 -1 4

octave:13> A=makefish(5);

octave:14> m=min(eig(A))

m = 0.53590

octave:15> cond(A)

ans = 13.928

octave:16> b=ones(size(A,1),1);

octave:17> demo_algebra_lineare

[JACOBI ] [STEP REL., NORMA 2]: 8.73e-09 [REL.ERR.]: 5.65e-08

[ITER.]: 116 [FLAG]: 0

[GAU.SEI.] [STEP REL., NORMA 2]: 9.22e-09 [REL.ERR.]: 2.76e-08

[ITER.]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-09 [REL.ERR.]: 1.10e-09

[ITER.]: 21 [FLAG]: 0 [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.67e-17 [REL.ERR.]: 1.85e-16

[ITER.]: 5 [FLAG]: 0

octave:18> format long;

octave:19> D=diag(diag(A));

octave:20> size(D)

ans =

25 25

octave:21> BJ=eye(size(A))-inv(D)*A;

octave:22> s=eig(BJ);

octave:23> s_abs=abs(s);

octave:24> rho=max(s_abs);

octave:25> w=2/(1+sqrt(1-rho^2))

24



Metodi iterativi

w = 1.33333333333333

octave:26> maxit=50; tol=10^(-8);

octave:27> b=ones(size(A,1),1);

octave:28> [x_sor,error_sor,iter_sor,flag_sor]=sor(A,x,b,w,maxit,tol);

octave:29> iter_sor

iter_sor = 22

octave:30> raggispettrali

[RAGGIO SPETTRALE][JACOBI]: 0.866025403784439

[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000

[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000000

[RAGGIO SPETTRALE][SOR OPT]: 0.333333380472264

octave:31> 0.866025403784439^2

ans = 0.750000000000001

octave:32>
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