Metodi iterativi

26 febbraio 2008

1 Introduzione

Sia A una matrice reale avente n righe ed n colonne, b un vettore colonna avente
n righe e si supponga di voler risolvere il sistema lineare Ax = b. Come noto, se il
determinante della matrice & diverso da 0 (cioé la matrice A & non singolare) allora
il problema Ax = b ha una ed una sola soluzione.

Ricordiamo che in Matlab/Octave la soluzione puo essere calcolata con il metodo
LU, utilizzando il comando \. Un esempio:

>> A=[1 2 4; 2 4 16; 3 9 81];
>> b=ones(3,1);

>> x=A\b

>> norm(A*x-b)

ans = 9.9301le-16

>> det (A)

ans = -24.000

Uno dei principali problemi del metodo LU & legato all’alto costo computazionale.
Se A € una generica matrice quadrata di ordine » infatti necessitano circa

(5 +%)
ol—+=—
32

operazioni moltiplicative, che possono risultare eccessive nel caso di matrici di grandi
dimensioni. Per ovviare a questo problema si usano metodi iterativi (stazionari) del
tipo

kD =px® e k=0,1,...

con P dipendente da A e ¢ dipendente da A e b (ma non da k). A differenza dei
metodi diretti (come ad esempio il metodo LU), in genere un metodo iterativo stazionario
convergente calcola usualmente solo un approssimazione della soluzione x (a meno
diuna tolleranza prefissata). Se m & il numero di iterazioni necessarie, visto che ogni
iterazione ha un costo O(n?) dovuto al prodotto matrice-vettore P x'X), ci si augura

che il costo computazionale O(m n?) del metodo iterativo sia di gran lunga inferiore

a O(%S + "72) di un metodo diretto quale LU.

Metodi iterativi

1.1 ImetodidiJacobi, Gauss-Seidel e SOR

Sia A= M - N con M non singolare, un generico metodo iterativo stazionario €
del tipo
D = NG ® o+ M, o)

La matrice P = M~! N & usualmente chiamata matrice di iterazione del metodo
iterativo stazionario definito da M, N. Osserviamo che posto ¢ = M~'b, il metodo
sopracitato e ovviamente tystazionario essendo

x(k+l) — Px(k) +c 2

con P e c indipendenti da k.

Questa definizione dei metodi stazionari, forse un po’ astratta, ha il vantaggio di
offrire una rappresentazione compatta degli stessi ed € comunemente utilizzata in
letteratura.

Sia ora A = D - E - F con D matrice diagonale, E, F rispettivamente triangolare
inferiore e superiore con elementi diagonali nulli.

Nel caso del metodo di Jacobi (1845) si ha

M=D, N=E+F 3
e quindi
P=M'N=D YWE+F)=D'D-D+E+F)=D'(D-A=I-D'A4 @

Si osservi che se D & non singolare allora il metodo di Jacobi, almeno in questa ver-
sione di base, non puo essere utilizzato visto che in (7) non ha senso la scrittura DL
Qualora sia a;; # 0 per ogni i = 1,..., n, il metodo di Jacobi puo essere descritto
come
(k+1) = k) - (k)
X; :(b,-—Za,-jxj — Z al-jxj) ai;, i=1,...,n. (5)
j=1 j=i+l
Un codice Matlab/Octave del metodo di Jacobi,fornito in internet presso il sito
di Netlib

http://www.netlib.org/templates/matlab/

e il seguente

function [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

% -- Iterative template routine --

yA Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

A Details of this algorithm are described in "Templates for the
yA Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicationmns,

Metodi iterativi

A 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
% [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

% jacobi.m solves the linear system Ax=b using the Jacobi Method.

% input A REAL matrix

yA X REAL initial guess vector

YA b REAL right hand side vector

A max_it INTEGER maximum number of iterations

YA tol REAL error tolerance

YA

% output x REAL solution vector

yA error REAL error norm

yA iter INTEGER number of iterations performed

YA flag INTEGER: O = solution found to tolerance

YA 1 = no convergence given max_it
iter = 0; % initialization
flag = 0;

bnrm2 = norm(b);
if (bnrm2 == 0.0), bnrm2 = 1.0; end

r = b - Axx;
error = norm(r) / bnrm2;
if (error < tol) return, end

[m,n]=size(A);

[M, N1 =split(A, b, 1.0, 1); % matrix splitting
for iter = 1:max_it, % begin iteration
x_1 = x;
x =M\ (Nxx + b); % update approximation
error = norm(x - x_1) / norm(x); % compute error
if (error <= tol), break, end % check convergence
end
if (error > tol) flag = 1; end % no convergence

Il codice di jacobi utilizza una funzione split che serve per calcolare le matrici
M, N che definiscono l'iterazione del metodo di Jacobi:

function [M, N, b] = split(A, b, w, flag)

%

% function [M, N, b] = split_matrix(A, b, w, flag)
%

Metodi iterativi

split.m sets up the matrix splitting for the statiomary
iterative methods: jacobi and sor (gauss-seidel when w = 1.0)

input A DOUBLE PRECISION matrix
b DOUBLE PRECISION right hand side vector (for SOR)
w DOUBLE PRECISION relaxation scalar
flag INTEGER flag for method: 1 = jacobi
2 = sor
output M DOUBLE PRECISION matrix
N DOUBLE PRECISION matrix such that A = M - N
b DOUBLE PRECISION rhs vector (altered for SOR)
[m,n] = size(A);
if (flag == 1), % jacobi splitting
M = diag(diag(A));
N = diag(diag(A)) - A;
elseif (flag == 2), % sor/gauss-seidel splitting
b =w *x b;

M= wx* tril(A, -1) + diag(diag(A));
N=-wx*triu(A, 1) + (1.0 - w) * diag(diag(A));

end;

END split.m

Ricordiamo che la funzione split non coincide con quella predefinita nelle

ultime releases di Matlab/Octave. Qualora la funzione split che vogliamo utiliz-

Z

are sia salvata della directory corrente, una volta richiamata, i workspace di Mat-

lab/Octave utilizzano proprio questa e non quella descritta per altri usi in Mat-
lab/Octave. Inoltre per quanto riguarda tril e triu in split dall’help di Matlab
si capisce che estraggono rispettivamente la parte triangolare inferiore e superiore
di una matrice:

>

>

> help tril

TRIL Extract lower triangular part.
TRIL(X) is the lower triangular part of X.
TRIL(X,K) is the elements on and below the K-th diagonal
of X . K =0 is the main diagonal, K > O is above the
main diagonal and K < O is below the main diagonal.

See also TRIU, DIAG.

> help triu

Metodi iterativi

TRIU Extract upper triangular part.
TRIU(X) is the upper triangular part of X.
TRIU(X,K) is the elements on and above the K-th diagonal of
X. K =0 is the main diagonal, K > O is above the main
diagonal and K < O is below the main diagonal.

See also TRIL, DIAG.

>> A=[123; 456; 7 8 9]

A =
1 2 3
4 5 6
7 8 9
>> tril(A)
ans =
1 0 0
4 5 0
7 8 9
>> triu(h)
ans =
1 2 3
0 5 6
0 0 9
>>

La routine jacobi € scritta da esperti di algebra lineare e si interrompe quando

lanorma 2 dello step relativo
e ®H — W,

I x(k+1) 2

éinferiore ad una tolleranza tol prefissata oppure un numero massimo di iterazioni
max_it e raggiunto. Ricordiamo che se v = (v;);=1,.,» € un elemento di R” allora

n
— 2
||v||z—\/_21vi.
1=

Problema: cosa succede quando la matrice diagonale estratta da A & singolare?
cosa succede quando partendo da xg # 0, si ha per qualche indice k > 0 che x; = 0?
Un altro metodo di particolare interesse é quello di Gauss-Seidel (1874) per cui

M=D-E,N=F (6)

e quindi
P=M'N=D-E7'F %)

Similmente al metodo di Jacobi, possiamo riscrivere piti semplicemente anche
Gauss-Seidel come

i-1 n
(k+1) _ (k+1) (k)
X; =|b;— E aijx; - Z aijx; lai;. 8)
j=1 j=i+l

Metodi iterativi

Da (8) si capisce perche tale metodo € noto anche come metodo delle sostituzioni
successive.

Per accelerare la cosidetta velocitd di convergenza si introducono, per un oppor-
tuno parametro w, la versione rilassata del metodo di Jacobi

** = (1—wD ' A)x® + wD b ©)

e di Gauss-Seidel

-1
(2] (3
w w

D _1
D+F x(k)+(——E) b. (10)
w

Lidea di fondo di questi metodi rilassati € la seguente [2, p. 261]. Ogni metodo
precedentemente esposto puo essere scritto come

kD — (B ()

ove r'® &la correzione da apportare per passare da x©) a x**1, Nei metodi rilassati,
se 7™ & 1a correzione di Jacobi o Gauss-Seidel, si considera quale correzione w - r®
e quindi

D = B gy 0

Si osservi che i metodi di Jacobi e Gauss-Seidel si ottengono rispettivamente da
(9) e (10) per la scelta w = 1. Esistono delle buone scelte di tale parametro w detto
di rilassamento? La risposta € affermativa. Sia p(P) il massimo degli autovalori in
modulo della matrice di iterazione P = M~!N (il cosidetto raggio spettrale). Si di-
mostra che un metodo iterativo (stazionario) definito da P converge per ogni vettore
iniziale xj se e solo se p(P) < 1. Se

R(P) =—-In(p(P))

¢ la cosidetta velocita di convergenza asintotica del metodo iterativo relativo a P,
si puo dimostrare che il numero di iterazioni k necessarie per ridurre I'errore di un
fattore € verifica la disuguaglianza

—In(e)
= .
R(P)

Conseguentemente minore € p(P) necessariamente ¢ maggiore R(P) e si puo sti-
mare il numero di iterazioni per ridurre 1'errore di un fattore €. Si desidera quindi
cercare metodi con p(P) piu piccolo possibile.

La versione di Gauss-Seidel con la scelta del parametro w € nota in letteratura
come SOR, acronimo di successive over relaxation. Una versione di SOR scaricabile
presso il sito di Netlib [6] & la seguente

function [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)
% -- Iterative template routine --

A Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

Metodi iterativi

Details of this algorithm are described in "Templates for the
Solution of Linear Systems: Building Blocks for Iterative
Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,
Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicationmns,
1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

[x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

sor.m solves the linear system Ax=b using th

e

Successive Over-Relaxation Method (Gauss-Seidel method when omega =

input A REAL matrix

X REAL initial guess vector

b REAL right hand side vector

w REAL relaxation scalar

max_it INTEGER maximum number of iterations

tol REAL error tolerance
output x REAL solution vector

error REAL error norm

iter INTEGER number of iterations performed

flag INTEGER: O = solution found to tolerance

1 = no convergence given max_it

flag = 0; % initialization
iter = 0;

bnrm2 = norm(b);
if (bnrm2 == 0.0), bnrm2

1.0; end
r = b - Axx;

error = norm(r) / bnrm2;

if (error < tol) return, end

[M, N, b] = split(A, b, w, 2);

for iter = 1l:max_it

x_1 = x;
x =M\ (N*x + b);

error = norm(x - x_1) / norm(x);
if (error <= tol), break, end

end
b=b/ w;

if (error > tol) flag = 1; end;

=

%

matrix splitting

begin iteration

update approximation
compute error

check convergence
restore rhs

no convergence

1).

Come per il metodo di Jacobi, il processo si interrompe quando la norma 2 dello

Metodi iterativi

step relativo
||x(k+1) —x® Il

(Bl P
einferiore ad una tolleranza tol prefissata oppure un numero massimo di iterazioni

max_it e raggiunto.
Per ulteriori dettagli si consulti ad esempio [3, p. 313-339].

1.2 Convergenza dei Jacobi, Gauss-Seidel ed SOR

Lo studio della convergenza dei metodi di Jacobi, Gauss-Seidel ed SOR & un
proposito complicato e ci limiteremo a citare, senza dimostrazione, alcuni classici
risultati [2, p. 231-315].

Il metodo di Jacobi risulta convergente in uno dei seguenti casi [2, p. 247]:

1. Aeéapredominanza diagonale in senso stretto;

2. Aeéapredominanza diagonale ed & irriducibile;

3. Aeéapredominanza diagonale in senso stretto per colonne;

4. A e apredominanza diagonale per colonne ed ¢ irriducibile.

Il metodo di Gauss-Seidel risulta convergente in uno dei seguenti casi [2, p. 249]:
1. Aeéapredominanza diagonale in senso stretto.

2. Sia A una matrice simmetrica definita positiva, non singolare con elementi
principali a; ; # 0. Allora Gauss-Seidel € convergente se e solo se A & definita
positiva.

Per matrici tridiagonali (a blocchi) A = (a;,;) con componenti diagonali non
nulle, i metodi di Jacobi e Gauss-Seidel sono o entrambi convergenti o divergenti e
il tasso di convergenza del metodo di Gauss-Seidel & il doppio di quello del metodo
di Jacobi (il che vuol dire che asintoticamente sono necessarie meta iterazioni del
metodo di Gauss-Seidel per ottenere la stessa precisione del metodo di Jacobi).

Ricordiamo che

1. Aeapredominanza diagonale (per righe) se per ogni i = 1,..., n risulta
n
laiilz Y. laijl
J=1j#s
e per almeno un indice s si abbia

n

|as,s| > Z |as,j|-
j=1,j#s

Ad esempio la matrice

Metodi iterativi

4 -4 0
A= -1 4 -1
0 -4 4

& apredominanza diagonale (per righe).

. A & a predominanza diagonale in senso stretto (per righe) se per ogni i =

1,...,nrisulta
n

laiil> Y. laijl.

j=1,j#i
Ad esempio la matrice
4 -1 0
A=| -1 4 -1
0 -1 4

¢ a predominanza diagonale in senso stretto (per righe).

. A ¢ a predominanza diagonale per colonne (in senso stretto) se A’ & a pre-
dominanza diagonale per righe (in senso stretto).

. Aétridiagonale se a;,; = 0 per |i — j| > 1. Ad esempio la matrice

4 -1 O 0

-1 4 -1 0
A=l 0 -1 4

0 e |

0 0 -1 4

e tridiagonale.

. A e definita positiva se e solo se i suoi autovalori sono positivi.

La matrice
4 -1 0
A= -1 4 -1
0o -1 4

¢ definita positiva come si puo vedere usando i seguenti comandi Matlab/Octave

>> A=[4 -1 0; -1 4 -1; 0 -1 4]

A=
4 -1 0
-1 4 -1
0 -1 4

>> eig(h)

ans =
2.5858

Metodi iterativi

4.0000
5.4142
>>

6. A di ordine n = 2 e riducibile se esiste una matrice di permutazione IT e un
intero k con 0 < k < n, tale che
Al Alg
B=mAn"=| "~ !
(0 Ag]g

in cui A1 € CK*k, Ay, € C"0*(1=0) " Se A non & riducibile si dice che A &
irriducibile.

2 Matrici simmetriche definite positive: il metodo del
gradiente coniugato

I metodo del gradiente coniugato (di cui forniremo solo il codice e alcuni brevi
indicazioni) fu descritto nel 1952 da Hestenes e Stiefel ma per quanto destasse subito
I'interesse dell’ambiente matematico non venne molto utilizzato fino al 1971, quando
Reid suggeri il suo utilizzo per la risoluzione di sistemi sparsi (cioé con molte com-
ponenti nulle) di grandi dimensioni [2].

Se A & una matrice simmetrica e definita positiva di ordine #, si pud dimostrare
che il metodo € convergente e fornisce in aritmetica esatta la soluzione del sistema
Ax = b in al massimo n iterazioni. Questo teorema tradisce un po’ le attese, sia
perche in generale i calcoli non sono compiuti in aritmetica esatta, sia perche in
molti casi della modellistica matematica » risulta essere molto alto. Comunque si
puo dimostrare [2, p. 279] in queste ipotesi che se

lxlla=VxTAx

e
ep=x*—x®
allora .
ekl <(L§§Qiif|wu
MA@ +1 olA-

Questo risultato stabilisce che la convergenza del gradiente coniugato & lenta qualora
si abbiano alti numeri di condizionamento
- max; |
Ka(A):= Al A™ 2 = ————=
min;|A|
(ove al solito {A;} sono gli autovalori di A). Esistono varie versioni di questa disug-
uaglianza. Ad esempio in [7, p. 151]:

2ck
lexlla=| "~ [leolla

10

Metodi iterativi

dove

oo V@ -1
- VKA +1
Lanalisi del metodo e piuttosto complessa. Qualora interessati si confronti con
[1, p. 562-569], [2, p. 272-283], [3, p. 340-356], [7, p. 145-153].
Per quanto riguarda il codice del Gradiente Coniugato, un esempio e il file cg.m
tratto da Netlib [6]:

function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

% -- Iterative template routine --

yA Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

A Details of this algorithm are described in "Templates for the
YA Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

% [x, error, iter, flag]l = cg(A, x, b, M, max_it, tol)

% cg.m solves the symmetric positive definite linear system Ax=b
% using the Conjugate Gradient method with preconditioning.

% input A REAL symmetric positive definite matrix

yA X REAL initial guess vector

YA b REAL right hand side vector

YA M REAL preconditioner matrix

YA max_it INTEGER maximum number of iterations

YA tol REAL error tolerance

h

% output x REAL solution vector

YA error REAL error norm

YA iter INTEGER number of iterations performed

A flag INTEGER: O = solution found to tolerance

YA 1 = no convergence given max_it
flag = 0; % initialization
iter = 0;

bnrm2 = norm(b);
if (bnrm2 == 0.0), bnrm2 = 1.0; end

r =b - Axx;
error = norm(r) / bnrm2;

if (error < tol) return, end

for iter = 1l:max_it % begin iteration

11

Metodi iterativi

z =M\ r;
rho = (r’*z);

if (iter > 1), % direction vector
beta = rho / rho_1;
p = z + betax*p;

else
P =2z
end
q = A*p;
alpha = rho / (p’*q);
X = x + alpha * p; % update approximation vector
r = r - alphax*q; % compute residual
error = norm(r) / bnrm2; % check convergence

if (error <= tol), break, end

rho_1 = rho;
end
if (error > tol) flag = 1; end % no convergence
% END cg.m

Osserviamo che il procedimento itera finche un numero massimo di iterazioni e
raggiunto oppure la norma 2 del residuo (relativo)

Ib—Ax®|,
Ibll

immagazzinata nella variabile error risulta inferiore ad una tolleranza prefissata
tol. In questo caso il criterio d’arresto del metodo del gradiente coniugato e diverso
da quello dello step relativo utilizzato nelle precedenti versioni di Jacobi ed SOR.

3 Unesperimento numerico

Consideriamo il sistema lineare Ax = b dove A € la matrice tridiagonale a blocchi (di
Poisson)

B -1 0 .. O
-I B -I .. O
A= 0 —-I B
o -1
o o .. -I B

12

Metodi iterativi

con
4 -1 O 0
-1 4 -1 0
B=] 0 -1 4
0o -1
0 o .. -1 4

La matrice A e facilmente esprimibile utilizzando la funzione makef ish scarica-
bile in [6]

function mat = makefish(siz);
% make a Poisson matrix

leng = siz*siz;
dia = zeros(siz,siz);
off = -eye(siz,siz);
for i=1:siz, dia(i,i)=4; end;
for i=1:siz-1, dia(i,i+1)=-1; dia(i+1,i)=-1; end;
mat = zeros(leng,leng);
for ib=1:siz,
mat (1+(ib-1)*siz:ib*siz,1+(ib-1)*siz:ib*siz) = dia; end;
for ib=1:siz-1,
mat (1+(ib-1)*siz:ib*siz,1+ib*siz: (ib+1)*siz) = off;
mat (1+ib*siz: (ib+1)*siz,1+(ib-1)*siz:ib*siz) = off; end;
return;

Vediamo un esempio:

>> makefish(3)

ans =
4 -1 0 -1 0 0 0 0 0
-1 4 -1 0 -1 0 0 0 0
0 -1 4 0 0 -1 0 0 0
-1 0 0 4 -1 0 -1 0 0
0 -1 0 -1 4 -1 0 -1 0
0 0 -1 0 -1 4 0 0 -1
0 0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4 -1
0 0 0 0 0 -1 0 -1 4

>>

B= 4 -1 0
-1 4 -1
0 -1 4

13

Metodi iterativi

Per ulteriori dettagli sulle origini della matrice di Poisson, si considerino ad es-
empio [1, p. 557], [2, p. 283], [3, p. 334]. Le matrici di Poisson sono evidentemente
simmetriche, tridiagonali a blocchi, diagonalmente dominanti e dal primo e dal sec-
ondo teorema di Gerschgorin [2, p. 76-80], [3, p. 955] si pud provare che sono non
singolari. In particolare si puo mostrare che A & definita positiva. Per accertarsene,
calcoliamo il minimo autovalore della matrice di Poisson con B € .45, semplice-
mente digitando sulla shell di Matlab-Octave

>> A=makefish(5);
>> m=min(eig(A))
m =

0.5359
>>

Tale matrice di Poisson non & malcondizionata essendo

>> A=makefish(5);
>> cond(A)
ans =
13.9282
>>
Poniamo ora
b=ones(size(A,1),1);
erisolviamo il sistema Ax = b digitando

x_sol=A\b;

Nota la soluzione esatta confrontiamo i vari metodi risolvendo il sistema lineare
con un numero massimo di iterazioni maxit e una tolleranza tol come segue

maxit=200; tol=10"(-8);
A tal proposito consideriamo I'm-file
demo_algebra_lineare.m

contenente il codice

maxit=200; tol=10"(-8);

siz=5;

A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

x_sol=A\b; % SOLUZIONE ESATTA. METODO LU.

norm_x_sol=norm(x_sol);
if norm(x_sol) ==

14

Metodi iterativi

norm_x_sol=1;
end

x=zeros (size(b)); % VALORE INIZIALE.

% JACOBI.
[x_j, error_j, iter_j, flag_jl = jacobi(A, x, b, maxit, tol);

fprintf(°\t \n [JACOBI] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:
%2.2e’ ,error_j,norm(x_j-x_sol)/norm_x_sol);
fprintf (°\t \n [ITER.]: %3.0f [FLAG]: %1.0f \n’,iter_j,flag_j);

% GAUSS-SEIDEL.
w=1;
[x_gs, error_gs, iter_gs, flag_gs] = sor(4, x, b, w, maxit, tol);

fprintf(°\t \n [GAU.SEI.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:
%2.2e’ ,error_gs,norm(x_gs-x_sol)/norm_x_sol);

fprintf (’\t \n [ITER.]: %3.0f [FLAG]: %1.0f
\n’,iter_gs,flag_gs);

% SOR.
w_vett=0.8:0.025:2;

for index=1:length(w_vett)

w=w_vett (index) ;

[x_sor, error_sor(index), iter_sor(index), flag_sor(index)] = sor(A,
x, b, w, maxit, tol);

relerr (index)=norm(x_sor-x_sol)/norm_x_sol;
end

[min_iter_sor, min_index]=min(iter_sor);

fprintf(°’\t \n [SOR OTT.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:
%2.2e’ ,error_sor(min_index) ,relerr(min_index));

fprintf (’\t \n [ITER.]: %3.0f [FLAG]: %1.0f [w]l: %2.3f
\n’,min_iter_sor,flag_sor(min_index) ,w_vett(min_index));

plot(w_vett,iter_sor,’r-’);

% GRADIENTE CONIUGATO.
M=eye(size(A));
[x_gc, error_gc, iter_gc, flag_gcl = cg(A, x, b, M, maxit, tol);

fprintf(°’\t \n [GRA.CON.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:
%2.2e’ ,error_gc,norm(x_gc-x_sol)/norm_x_sol);

fprintf (’\t \n [ITER.]: %3.0f [FLAG]: %1.0f
\n’,iter_gc,flag_gc);

15

Metodi iterativi

Lanciamo la demo nella shell di Matlab-Octave e otteniamo

>> demo_algebra_lineare

[JACOBI] [STEP REL., NORMA 2]: 8.73e-009 [REL.ERR.]: 5.65e-008
[ITER.]: 116 [FLAG]: O

[GAU.SEI.] [STEP REL., NORMA 2]: 9.22e-009 [REL.ERR.]: 2.76e-008
[ITER.]: 61 [FLAG]: O

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-009 [REL.ERR.]: 1.10e-009
[ITER.]: 21 [FLAG]: O [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.41e-017 [REL.ERR.]: 2.21e-016
[ITER.]: 5 [FLAG]: O
>>

Una breve analisi ci dice che

1. Come previsto dalla teoria, il metodo di Gauss-Seidel converge in approssi-
mativamente meta iterazioni di Jacobi;

2. Il metodo SOR ha quale costante quasi ottimale w = 1.350;

3. Il metodo del gradiente coniugato converge in meno iterazioni rispetto agli al-
tri metodi (solo 5 iterazioni, ma si osservi il test d’arresto differente). Essendo
la matrice di Poisson di ordine 25, in effetti cid accade in meno di 25 iterazioni
come previsto. Vediamo cosa succede dopo 25 iterazioni:

>> maxit=25; tol=0;
>> siz=5; A = makefish(siz); b=ones(size(A,1),1);
>> [x_gc, error_gc, iter_gc, flag_gc]l = cg(A, x, b, M, maxit, tol);
>> error_gc
error_gc =
3.6287e-039
>>

Il residuo relativo, seppur non nullo € molto piccolo.

Un punto delicato riguarda la scelta del parametro w ottimale (cioé minimiz-
zante il raggio spettrale di SOR). Sia questo valore uguale a w*. Nel nostro codice
abbiamo calcolato per forza bruta w*, tra i numeri reali w* < 2 del tipo w; = 0.8+ j -
0.025 quello per cui venivano compiute meno iterazioni.

E’ possibile calcolare w* matematicamente? Nel caso della matrice di Poisson la
risposta e affermativa. Da [3, Teor.5.10, p.333]

. 2

T 1+V1-2B)

16

Metodi iterativi

e il raggio spettrale della matrice di iterazione vale w* — 1. dove p(S) € il massimo
degli autovalori in modulo della matrice S (il cosidetto raggio spettrale) e B; la ma-
trice di iterazione di Jacobi. Vediamo di calcolare questo valore nel caso della so-
pracitata matrice di Poisson. Dalla teoria, con ovvie notazioni,

By=I-D'A
e quindi

>> format long;
>> D=diag(diag(4));
>> BJ=eye(size(A))-inv(D)*4;
>> s=eig(BJ);
>> s_abs=abs(s);
>> rho=max(s_abs);
>> w=2/(1+sqrt (1-rho~2))
W=
1.33333333333333
>> maxit=50; tol=10"(-8);
>> b=ones(size(A,1),1);
>> [x_sor, error_sor, iter_sor, flag_sor] = sor(A, x, b, w, maxit, tol);
>> iter_sor
iter_sor =
22
>>

Si rimane un po’ sorpresi dal fatto che per w = 1.350 il numero di iterazioni fosse
inferiore di quello fornito dal valore ottimale teorico w* = 1.333.... 1l fatto & che
questo e ottenuto cercando di massimizzare la velocita asintotica di convergenza.
Purtroppo questo minimizza una stima del numero di iterazioni k minime da com-
piere e non quello effettivo.

Abbiamo detto che un punto chiave é la grandezza del raggio spettrale delle ma-
trici di iterazione e che € desiderabile che questo numero oltre ad essere stretta-
mente minore di uno sia il pit1 piccolo possibile. Vediamo i raggi spettrali dei metodi
esposti.

Salviamo in raggispettrali.m il seguente programma principale

maxit=50; tol=0;

siz=b;

A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

[M, N] = split(A , b, 1.0, 1); % JACOBI.

P=inv (M) *N;

rho_J=max(abs(eig(P)));

fprintf (’\n \t [RAGGIO SPETTRALE] [JACOBI]: %2.15f’,rho_J);

[M, N, b] = split(A, b, 1, 2); % GS.

17

Metodi iterativi

P=inv (M) *N;
rho_gs=max (abs(eig(P)));
fprintf(’\n \t [RAGGIO SPETTRALE] [GAUSS-SEIDEL]: %2.15f’,rho_gs);

D=diag(diag(A));

E=-(tril(A)-D);

F=-(triu(A)-D);

w=1.350;

M=D/w-E; N=(1/w-1)*D+F;

P=inv (M) *N;

rho_sor=max (abs(eig(P)));

fprintf (’\n \t [RAGGIO SPETTRALE] [SOR BEST]: %2.15f’,rho_sor);

w=1.33333333333333;

[M, N, b] = split(A, b, w, 2); % SOR OPT.

M=D/w-E; N=(1/w-1)*D+F;

P=inv (M) *N;

rho_sor_opt=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE] [SOR OPT]: %2.15f’,rho_sor_opt);

Di seguito:

>> raggispettrali
[RAGGIO SPETTRALE] [JACOBI]: 0.866025403784438
[RAGGIO SPETTRALE] [GAUSS-SEIDEL]: 0.750000000000000
[RAGGIO SPETTRALE] [SOR BEST]: 0.350000000000001
[RAGGIO SPETTRALE] [SOR OPT]: 0.333333380707781

>>

Il valore del raggio spettrale della matrice di iterazione del metodo SOR per parametro
ottimale, per quanto visto anticipatamente vale w* — 1, e I'esperimento numerico lo
conferma.

Abbiamo poi osservato che in questo caso la velocita di convergenza del metodo di
Gauss-Seidel ¢ il doppio di quella di Jacobi. Poste Bgs, By le rispettive matrici di
iterazione, e detta R la velocita di convergenza, osserviamo che da

R(Bj) := —ln(p(B])) (11
R(Bgs) := -In(p(Bgs)) (12)
R(Bgs) := 2R(Bj) (13)

siha
~In(p(Bgs)) = R(Bgs) = 2R(B)) = —2In(p(B)) = ~In (p(B))*
da cui essendo il logaritmo una funzione invertibile

p(Bgs) = (p(By)%.

Il raggio spettrale della matrice di iterazione di Gauss-Seidel coincide quindi col
quadrato di quella di Jacobi ed infatti come ¢ facile verificare

18

Metodi iterativi

>> 0.866025403784438°2
ans =

0.75000000000000
>>

Al momento non consideriamo il metodo del gradiente coniugato poiché non &
di tipo stazionario.

4 Facoltativo: Il metodo di Richardson

Come visto nella precedente lezione i metodi di Jacobi e di Gauss-Seidel e le loro
versioni rilassate sono metodi iterativi del tipo

Mx* D = Nx® + b, (14)
per opportune scelte della matrici M, N tali che
A=M-N. (15)

Se
r® =p—Ax® (16)

¢ il residuo alla k-sima iterazione allora da (14) e (15)
M - x0) = Nx® 4+ p— Mx® = p— Ax® = r® 17)

Per un opportuno parametro di accelerazione a > 0 (da non confondersi con
quello di SOR), si puo fornire un’ovvia generalizzazione del metodo (17)

MV — x®y = g @ k>0, (18)

Evidentemente (17) corrisponde alla scelta a = 1.
Il parametro a > 0 viene scelto cosi da minimizzare il raggio spettrale della ma-
trice di iterazione. In questo caso si vede che da

M(x(k+1) _x(k)) — a(b—Ax(k)) 19)
necessariamente
Mx®V = Mx® 4 a(b- Ax®) = (M- aa)xP +ab, (20)
e quindi la matrice di iterazione diventa
Ro=M'M-aA)=I-aM A 1)

Se M~ A& definita positiva e A,,;,, € Amax SONO rispettivamente il minimo e mas-
simo autovalore di M~! 4, allora il valore ottimale del parametro « &

2
Aot = ———— 22
ott Amin +Amax (22)

19

Metodi iterativi

ed in corrispondenza si ha che la matrice di iterazione Ry ott ha raggio spettrale

Amax _Amin 23)

a =
ot Amin + /lmax

Si osservi che la scelta di @ non dipende dall’iterazione; di conseguenza (18)
definisce il cosidetto metodo di Richardson stazionario, per distinguerlo dal metodo
di Richardson non stazionario

Mu*+D Z x 0y = g (h— Ax®), (24)

con aj che non & necessariamente costante.
Se M1 A é definita positiva, una classica scelta di aj e

T
T 0

= 25
£ 2w gz @)

5 Facoltativo: Esercizi sui metodi di Richardson
Il metodo di Richardson si pu6é implementare come segue:
1. assegnato x©, si ponga r® = b— Ax©.
2. siconsidera per k = 0lo schema:
Mz® = o,

xk+D = x4 g 70, (26)
r(k+1) — r(k) _ LKAZ(k);

Il metodo di Richardson con parametro aj definito da (25) € una semplice vari-
ante di (26) in cui a; viene assegnato subito dopo aver calcolato z(®.

1. Implementare in Matlab le due routines

richardson

richardsonmodificato
definito da (25).

2. Dato il problema Ax = b definito dallo schema alle differenze utilizzato nella
lezione precedente per risolvere un problema di Poisson, definire i metodi di
Richardson associati ai metodi di Jacobi e Gauss-Seidel. Applicare i rispet-
tivi metodi di Richardson ottimali e osservare sia i (possibili) miglioramenti in
termini di errore dopo un numero prefissato di iterazioni sia il miglior raggio
spettrale della matrice di iterazione. Utilizzare il residuo assoluto in norma 2

r® .= 1b- AxP|, < toll 27)

20

Metodi iterativi

quale test di arresto. Implementare in alternativa una versione basata sul
residuo relativo in norma 2

r;’é)lzz b= Ax® |, /1Bl < toll, 08)

o lo step relativo in norma 2

A = 15D — 2O /1Dl < toll 29)

. Data la matrice di Hilbert di ordine 12 (che denotiamo con H;3), calcolarne
gli autovettori. E’ questa matrice definita positiva? Ricordiamo che Hj, pu6
essere generata dal comando Matlab hilb(12). Usare la routine Matlab cond
per calcolarne il numero di condizionamento K3 (A) in norma 2, cioé la quan-
tita

Ka(A) = Al A7 l2. (30)

E’ una matrice definita positiva? Si pué affermare che i metodi di Jacobi e
Gauss-Seidel sono convergenti? Applicare i metodi Jacobi, Gauss-Seidel e le
rispettive versioni ottimali per risolvere il sistema Hy»x = b con b; = fol xi-1
per i =1,...,12. Si osservi I'errore compiuto sapendo che la soluzione del
problema ¢’ il primo vettore della base canonica di R" (per convincersene
scrivere la riga di comando Matlab x = A\b ove A = Hj,). Eseguire lo stesso
esercizio per Hyg e b € R? definita come sopra.

. Si consideri la matrice a blocchi

B -1 0
A=| -1 B -I 31
0 -I B
dove I é la matrice identica e
4 -1 0
B=| -1 4 0 (32)
0 -1 4

Applicare i metodi di Jacobi, Gauss-Seidel e i rispettivi metodi di Richard-
son (nella versione stazionaria a parametro ottimale, e non stazionaria con
parametro a definito in (25)) per calcolare la soluzione del problema Ax = b,
dove b = (1,0,...,0) € R%. E’ possibile stabilire a priori che i metodi di Jacobi
e Gauss-Seidel sono convergenti? Calcolare il raggio spettrale delle matrici
di iterazione di tali metodi utilizzando il comando eig di Matlab . Fissata
una tolleranza di tol= 1078, arrestare le iterazioni quando il residuo relativo in
norma 2 € inferiore ditol. Quale di questi metodi converge in meno iterazioni?
Questo risultato e coerente con il valore del raggio spettrale delle matrici di
iterazione?

21

Metodi iterativi

6 Facoltativo: Altre matrici interessanti. La matrice di

Hilbert.

Per vedere alcuni comandi di base aiutiamoci con delle matrici predefinite in
Matlab/Octave. Digitiamo nella shell di Matlab/Octave >> help elmat. In Matlab

6.5 abbiamo
>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.

Zeros -
ones -
eye -
repmat -
rand -
randn -
linspace -
logspace -
fregspace -
meshgrid -

Zeros array.

Ones array.

Identity matrix.

Replicate and tile array.

Uniformly distributed random numbers.
Normally distributed random numbers.
Linearly spaced vector.

Logarithmically spaced vector.

Frequency spacing for frequency response.
X and Y arrays for 3-D plots.

Regularly spaced vector and index into matrix.

Specialized matrices.

compan -
gallery -
hadamard -
hankel -
hilb -
invhilb -
magic -
pascal -
rosser -
toeplitz -
vander -
wilkinson -

Companion matrix.

Higham test matrices.

Hadamard matrix.

Hankel matrix.

Hilbert matrix.

Inverse Hilbert matrix.

Magic square.

Pascal matrix.

Classic symmetric eigenvalue test problem.
Toeplitz matrix.

Vandermonde matrix.

Wilkinson’s eigenvalue test matrix.

Questo ci dice che Matlab ha predefinito un set di matrici di particolare inter-
esse. Se possibile si suggerisce di provare i metodi che andremo ad introdurre con
una matrice facente parte della gallery di Matlab. Cido non appare possibile nelle
recenti releases di Octave, come GNU Octave 2.1.73. Da Matlab 6.5

>> help gallery

GALLERY Higham test matrices.

[outl,out2,...

] = GALLERY (matname, paraml, param2, ...)

22

Metodi iterativi

takes matname, a string that is the name of a matrix family, and

the family’s input parameters. See the listing below for available
matrix families. Most of the functions take an input argument

that specifies the order of the matrix, and unless otherwise

stated, return a single output.

For additional information, type "help private/matname", where matname
is the name of the matrix family.

cauchy
chebspec
chebvand
chow
circul

poisson
prolate
randcolu
values.

randcorr
randhess
rando
randsvd

redheff
riemann
ris
smoke
toeppd
toeppen
tridiag
triw
wathen
entries) .
wilk

Cauchy matrix.

Chebyshev spectral differentiation matrix.

Vandermonde-like matrix for the Chebyshev polynomials.

Chow matrix -- a singular Toeplitz lower Hessenberg matrix.
Circulant matrix.

Block tridiagonal matrix from Poisson’s equation (sparse).
Prolate matrix -- symmetric, ill-conditioned Toeplitz matrix.
Random matrix with normalized cols and specified singular

Random correlation matrix with specified eigenvalues.
Random, orthogonal upper Hessenberg matrix.

Random matrix with elements -1, 0 or 1.

Random matrix with pre-assigned singular values and specified
bandwidth.

Matrix of Os and 1s of Redheffer.

Matrix associated with the Riemann hypothesis.

Ris matrix -- a symmetric Hankel matrix.

Smoke matrix -- complex, with a "smoke ring" pseudospectrum.
Symmetric positive definite Toeplitz matrix.

Pentadiagonal Toeplitz matrix (sparse).

Tridiagonal matrix (sparse).

Upper triangular matrix discussed by Wilkinson and others.
Wathen matrix -- a finite element matrix (sparse, random

Various specific matrices devised/discussed by Wilkinson.
(Two output arguments)

GALLERY(3) is a badly conditioned 3-by-3 matrix.
GALLERY(5) is an interesting eigenvalue problem. Try to find
its EXACT eigenvalues and eigenvectors.

See also

MAGIC, HILB, INVHILB, HADAMARD, WILKINSON, ROSSER, VANDER.

23

Metodi iterativi

7 Facoltativo: Altre matrici interessanti. La matrice di

Hilbert.

Rivediamo gli esperimenti in una recente release di Octave, come GNU Octave

2.1.73.
octave:12> makefish(3)
ans =

octave:13> A=makefish(5);
octave:14> m=min(eig(A))

m = 0.53590

octave:15> cond(A)

ans = 13.928

octave:16> b=ones(size(A,1),1);
octave:17> demo_algebra_lineare

[JACOBI] [STEP REL., NORMA 2]:

[ITER.]: 116 [FLAG]:

[GAU.SEI.] [STEP REL., NORMA 2]:

[ITER.]: 61 [FLAG]:

[SOR OTT.] [STEP REL., NORMA 2]:

[ITER.]: 21 [FLAG]:

[GRA.CON.] [STEP REL., NORMA 2]:

[ITER.]: 5 [FLAG]:
octave:18> format long;
octave:19> D=diag(diag(A));
octave:20> size(D)
ans =

25 25

8.73e-09 [REL.ERR.]:

0

9.22e-09 [REL.ERR.]:

0

2.31e-09 [REL.ERR.]:

0 [w]: 1.350

4.67e-17 [REL.ERR.]:

0

octave:21> BJ=eye(size(A))-inv(D)*A;

octave:22> s=eig(BJ);

octave:23> s_abs=abs(s);
octave:24> rho=max(s_abs);
octave:25> w=2/(1+sqrt(1-rho~2))

24

5.65e-08

2.76e-08

1.10e-09

1.85e-16

Metodi iterativi

w =

1.33333333333333

octave:26> maxit=50; tol=10"(-8);

octave:27> b=ones(size(A,1),1);

octave:28> [x_sor,error_sor,iter_sor,flag_sor]=sor(A,x,b,w,maxit,tol);
octave:29> iter_sor

iter_sor = 22

octave:30> raggispettrali

[RAGGIO SPETTRALE] [JACOBI]: 0.866025403784439
[RAGGIO SPETTRALE] [GAUSS-SEIDEL]: 0.750000000000000
[RAGGIO SPETTRALE] [SOR BEST]: 0.350000000000000
[RAGGIO SPETTRALE] [SOR OPT]: 0.333333380472264

octave:31> 0.86602540378443972

ans

= 0.750000000000001

octave:32>

References

K. Atkinson, Introduction to Numerical Analysis, Wiley, 1989.

D. Bini, M. Capovani e O. Menchi, Metodi numerici per I'algebra lineare,
Zanichelli, 1988.

V. Comincioli, Analisi Numerica, metodi modelli applicazioni, Mc Graw-Hill,
1990.

S.D. Conte e C. de Boor, Elementary Numerical Analysis, 3rd Edition, Mc Graw-
Hill, 1980.

The MathWorks Inc., Numerical Computing with Matlab,
http://www.mathworks.com/moler.

Netlib, http://www.netlib.org/templates/matlab/.

A. Quarteroni e E Saleri, Introduzione al calcolo scientifico, Springer Verlag,
2006.

A. Suli e D. Mayers, An Introduction to Numerical Analysis, Cambridge Univer-
sity Press, 2003.

25

