
Metodi iterativi

19 febbraio 2009

1 Introduzione

Sia A una matrice reale avente n righe ed n colonne, b un vettore colonna avente

n righe e si supponga di voler risolvere il sistema lineare Ax = b. Come noto, se il

determinante della matrice è diverso da 0 (cioè la matrice A è non singolare) allora

il problema Ax = b ha una ed una sola soluzione.

Ricordiamo che in Matlab/Octave la soluzione può essere calcolata con il metodo

LU, utilizzando il comando \. Un esempio:

>> A=[1 2 4; 2 4 16; 3 9 81];

>> b=ones(3,1);

>> x=A\b

>> norm(A*x-b)

ans = 9.9301e-16

>> det(A)

ans = -24.000

Uno dei principali problemi del metodo LU è legato all’alto costo computazionale.

Se A è una generica matrice quadrata di ordine n infatti necessitano circa

O

(

n3

3
+

n2

2

)

operazioni moltiplicative, che possono risultare eccessive nel caso di matrici di grandi

dimensioni. Per ovviare a questo problema si usano metodi iterativi (stazionari) del

tipo

x(k+1) = P x(k) +c, k = 0,1, . . .

con P dipendente da A e c dipendente da A e b (ma non da k). A differenza dei

metodi diretti (come ad esempio il metodo LU), in genere un metodo iterativo stazionario

convergente calcola usualmente solo un approssimazione della soluzione x (a meno

di una tolleranza prefissata). Se m è il numero di iterazioni necessarie, visto che ogni

iterazione ha un costo O(n2) dovuto al prodotto matrice-vettore P x(k), ci si augura

che il costo computazionale O(m n2) del metodo iterativo sia di gran lunga inferiore

a O(n3

3 + n2

2) di un metodo diretto quale LU.

Per una breve storia dell’algebra lineare si consulti [8].

1

Metodi iterativi

1.1 I metodi di Jacobi, Gauss-Seidel e SOR

Sia A = M −N con M non singolare, un generico metodo iterativo stazionario e’

del tipo

x(k+1) = M−1N x(k) +M−1b. (1)

La matrice P = M−1N è usualmente chiamata matrice di iterazione del metodo

iterativo stazionario definito da M , N . Osserviamo che posto c = M−1b, il metodo

sopracitato è ovviamente tystazionario essendo

x(k+1) = P x(k) +c (2)

con P e c indipendenti da k.

Questa definizione dei metodi stazionari, forse un po’ astratta, ha il vantaggio di

offrire una rappresentazione compatta degli stessi ed è comunemente utilizzata in

letteratura.

Sia ora A = D − E − F con D matrice diagonale, E , F rispettivamente triangolare

inferiore e superiore con elementi diagonali nulli.

1.2 Il metodo di Jacobi

Il metodo di Jacobi fu scoperto nel 1845, nell’ambito di alcune ricerche su prob-

lemi di piccole oscillazioni che comportavano alla risoluzione di sistemi lineari con

matrici diagonalmente dominanti [3, p.313].

Nel caso del metodo di Jacobi [15] si ha

M = D, N = E +F (3)

e quindi

P = M−1N = D−1(E +F) = D−1(D −D +E +F)= D−1(D − A) = I −D−1 A (4)

Si osservi che se D è non singolare allora il metodo di Jacobi, almeno in questa ver-

sione di base, non può essere utilizzato visto che in (7) non ha senso la scrittura D−1.

Qualora sia ai i 6= 0 per ogni i = 1, . . . ,n, il metodo di Jacobi può essere descritto

come

x(k+1)
i

= (bi −
i−1
∑

j=1

ai j x(k)
j

−
n
∑

j=i+1

ai j x(k)
j

)/ai i , i = 1, . . . ,n. (5)

1.3 Il metodo di Gauss-Seidel

Il metodo di Gauss-Seidel fu scoperto nel 1874, da studi preliminari di Gauss

(1823) completati dal suo allievo Seidel per lo studio di problemi ai minimi quadrati

del tipo Sx = f con S non quadrata, che venivano risolti quali soluzione del sistema

di equazioni normali ST SxST f . Mentre Gauss oltre a problemi di Astronomia era

interessato a problemi di Geodesia (triangolazione di Hannover usando una catena

di 26 triangoli), Seidel si interessava alla risoluzione di un sistema di equazioni con

72 incognite per uno studio di luminosità stellare.

2

Metodi iterativi

Il metodo di Gauss-Seidel [13] è definito quale metodo stazionario in cui

M = D −E , N = F (6)

e quindi

P = M−1N = (D −E)−1F (7)

Similmente al metodo di Jacobi, possiamo riscrivere più semplicemente anche

Gauss-Seidel come

x(k+1)
i

=
(

bi −
i−1
∑

j=1

ai j x(k+1)
j

−
n
∑

j=i+1

ai j x(k)
j

)

/ai i . (8)

Da (8) si capisce perchè tale metodo è noto anche come metodo delle sostituzioni

successive.

1.4 Generalizzazioni del metodo di Jacobi e Gauss-Seidel

Quali generalizzazioni del metodo di Jacobi e Gauss-Seidel si introducono, per

un opportuno parametro ω, la versione rilassata del metodo di Jacobi

x(k+1) = (I −ωD−1 A)x(k) +ωD−1b (9)

la versione rilassata del metodo di Gauss-Seidel

x(k+1) =
(

D

ω
−E

)−1 ((

1

ω
−1

)

D +F

)

x(k) +
(

D

ω
−E

)−1

b. (10)

L’idea di fondo di questi metodi rilassati è la seguente [3, p. 261], [16]. Ogni

metodo precedentemente esposto può essere scritto come

x(k+1) = x(k) + r (k)

ove r (k) è la correzione da apportare per passare da x(k) a x(k+1). Nei metodi rilassati,

se r (k) è la correzione di Jacobi o Gauss-Seidel, si considera quale correzione w · r (k)

e quindi

x(k+1) = x(k) +w · r (k).

Si osservi che i metodi di Jacobi e Gauss-Seidel si ottengono rispettivamente da

(9) e (10) per la scelta ω= 1.

2 Convergenza dei metodi iterativi

2.1 Norma di matrici

Sia ρ(P) il massimo degli autovalori in modulo della matrice di iterazione P = M−1N

(il cosidetto raggio spettrale).

Sia ‖ · ‖ : Rn → R+ una norma vettoriale. Definiamo norma naturale (in alcuni

testi norma indotta) di una matrice A ∈ Rn×n la quantità

‖A‖ := sup
x∈Rn ,x 6=0

‖Ax‖
‖x‖

.

3

Metodi iterativi

Si nota subito che questa definizione coincide con quella di norma di un operatore

lineare e continuo in spazi normati.

Vediamo alcuni esempi. Sia x un arbitrario elemento di Rn , A ∈ Rn×n .

• Si definisce ‖x‖1 :=
∑n

k=1
|xk | e si dimostra che la norma naturale corrispon-

dente è (cf. [4, p.26])

‖A‖1 = max
j

n
∑

i=1

|ai , j |.

• Si definisce ‖x‖∞ := maxk |xk | e si dimostra che la norma naturale corrispon-

dente è (cf. [4, p.26])

‖A‖∞ = max
i

n
∑

j=1

|ai , j |.

• Si definisce ‖x‖2 :=
(
∑n

k=1
|xk |2

)2
e si dimostra che la norma naturale corrispon-

dente è (cf. [4, p.27])

‖A‖2 = ρ1/2(AT A).

Per quanto riguarda un esempio chiarificatore in Matlab/Octave

>> A=[1 5; 7 13]

A =

1 5

7 13

>> norm(A,1)

ans =

18

>> norm(A,inf)

ans =

20

>> norm(A,2)

ans =

15.5563

>> eig(A*A’)

ans =

2

242

>> sqrt(242)

4

Metodi iterativi

ans =

15.5563

>> raggio_spettrale_A=max(abs(eig(A)))

raggio_spettrale_A =

15.4261

>>

Si dimostra che (cf. [4, p.28])

Teorema 2.1 Per ogni norma naturale ‖ · ‖ e ogni matrice quadrata A si ha ρ(A) ≤
‖A‖. Inoltre per ogni matrice A di ordine n e per ogni ǫ> 0 esiste una norma naturale

‖ ·‖ tale che

ρ(A) ≤ ‖A‖≤ ρ(A)+ǫ.

e inoltre (cf. [4, p.29], [3, p.232])

Teorema 2.2 Fissata una norma naturale ‖ ·‖, i seguenti asserti sono equivalenti

1. Am → 0;

2. ‖Am‖→ 0;

3. ρ(A) < 1.

Nota.

1. Ricordiamo che il raggio spettrale non è una norma. Infatti la matrice

(

0 1

0 0

)

ha raggio spettrale nullo, ma non è la matrice nulla.

2. Osserviamo che dagli esempi il raggio spettrale di una matrice A non coincide

in generale con la norma 1, 2, ∞, ma che a volte ρ(A) = ‖A‖2 come nel caso di

una matrice diagonale A.

2.2 Il teorema di Hensel e la convergenza di un metodo iterativo

stazionario

Consideriamo un metodo iterativo stazionario x(k+1) = P x(k) + c in cui scelto x(0) si

abbia

x∗− x(0) =
n
∑

s=1

cs us

dove {uk }k è una base di autovettori di P avente autovalori {λk }k . Questo accade

se e solo se A è diagonalizzabile, cioè simile a una matrice diagonale (cf. [3, p.57]).

5

Metodi iterativi

Figura 1: Kurt Wilhelm Sebastian Hensel (1861-1941).

Se il metodo è consistente, cioè x∗ = P x∗ + c abbiamo x(k) − x∗ = P (x(k−1) − x∗) =
P k (x0 − x∗) =

∑n
s=1 csP k us =

∑n
s=1 csλ

k
s us e quindi se |λk | < 1 per ogni k abbiamo

‖x(k) − x∗‖= ‖
n
∑

s=1

csλ
k
s us‖≤

n
∑

s=1

|cs ||λk
s |‖us‖→ 0

mentre se per qualche k si ha |λk | ≥ 1 e ck 6= 0 allora ‖x(k) − x∗‖ non converge a 0

al crescere di k. Infatti, se λl ≥ 1 è l’autovalore di massimo modulo, abbiamo che

la componente clλ
l
s relativa all’autovettore us non tende a 0 e quindi x(k) − x∗ non

tende a 0. Di conseguenza non è vero che il metodo è convergente per qualsiasi

scelta del vettore x(0).

Di conseguenza

Teorema 2.3 Se P è diagonalizzabile allora un metodo iterativo stazionario consis-

tente x(k+1) = P x(k) +c converge per ogni vettore iniziale x0 se e solo se ρ(P) < 1.

Dimostriamo ora una sua generalizzazione, scoperta da Hensel nel 1926 [3, p.313].

Teorema 2.4 Un metodo iterativo stazionario consistente x(k+1) = P x(k) +c converge

per ogni vettore iniziale x0 se e solo se ρ(P) < 1.

Dimostrazione. (cf. [3, p.236])

• Se ρ(P) < 1, allora il problema x = P x + c ha una e una sola soluzione x∗.

Infatti,

x = P x +c ⇔ (I −P)x = c

e la matrice I −P ha autovalori 1−λk con k = 1, . . . ,n tali che

0 < |1−|λk |C|R ≤ |1−λk |C,

poichè |λk |C ≤ ρ(P) < 1 e quindi

det(I −P) =
n
∏

k=1

(1−λk) 6= 0,

6

Metodi iterativi

per cui la matrice I −P è invertibile e il sistema (I −P)x = c ha una e una sola

soluzione x∗.

Sia e(k) = x(k) − x∗. Come stabilito dal Teorema 2.1, sia inoltre una norma

naturale ‖ ·‖ tale che

ρ(A) ≤ ‖A‖= ρ(A)+ (1−ρ(A))/2 < 1.

Essendo x(k+1) = P x(k) + c e x = P x + c, sottraendo membro a membro le

equazioni si ottiene

e(k+1) = Pe(k+1) = P k e(0)

da cui

‖e(k+1)‖ = ‖Pe(k)‖ = ‖P k e(0)‖ ≤ ‖P k‖‖e(0)‖.

Poichè il raggio spettrale è minore di 1 allora ‖P k‖ → 0 da cui ‖e(k+1)‖ → 0 e

quindi per le proprietà delle norme e(k+1) → 0 cioè x(k) → 0.

Si noti che questa direzione della dimostrazione poteva essere vista come ap-

plicazione del teorema di punto fisso di Banach che stabilisce che se K è un

insieme non vuoto e chiuso di uno spazio di Banach V e T : K → K è una

mappa L contrattiva, cioè ‖T (x)−T (y)‖ < L‖x − y‖ con 0 ≤ L < 1, allora esiste

ed è unico x∗ ∈ K tale che x∗ = T (x∗) e inoltre per ogni x(0) ∈ K la sequenza

{x(k)}k ⊆ K definita da x(k+1) = T (x(k)), k = 0,1, . . . converge ad x∗. Per una di-

mostrazione si veda ad esempio [2, p.133], [4, p.133]. Il problema che stiamo

analizzando corrisponde a porre K =V =R
n dotati di una norma ‖ ·‖ tale che

ρ(A) ≤ ‖A‖= (1+ρ(A))/2 < 1,

e T (x) = P x +c. Certamente T è contrattiva in quanto

‖T (x)−T (y)‖= ‖P x+c −P y −c‖ ≤ ‖P (x− y)‖≤ ‖P‖‖x− y‖ =
1+ρ(A)

2
‖x− y‖.

Di conseguenza per ogni x(0) ∈R
n la sequenza x(k+1) = P x(k)+c converge a x∗

soluzione di x = P x +c.

• Supponiamo che la successione x(k+1) = P x(k) + c converga a x∗ per qualsiasi

x(0) ∈ R
n ma che sia ρ(P) ≥ 1. Sia λmax il massimo autovalore in modulo di P

e e(0) = x(0)−x∗ un suo autovettore. Essendo Pe(0) =λmaxe(0) e e(k+1) = P k e(0)

abbiamo che

e(k+1) =λk
maxe(0)

da cui, qualsiasi sia la norma ‖ ·‖,

‖e(k+1)‖ = |λk
max|C‖e(0)‖≥ ‖e(0)‖

il che comporta che la successione non è convergente.

7

Metodi iterativi

2.3 Sulla velocità di convergenza

Abbiamo visto che

‖e(k)‖ ≤ ‖P k‖‖e(0)‖, e(k) = x(k) − x∗ (11)

Se e(k−1) 6= 0, la quantità ‖e(k)‖/‖e(k−1)‖ esprime la riduzione dell’errore al k-simo

passo e

σk =
(

‖e(k)‖
‖e(k−1)‖

. . .
‖e(1)‖
‖e(0)‖

) 1
k

la riduzione media per passo dell’errore relativo ai primi k passi (cf. [3, p.239]).

Si dimostra che

Teorema 2.5 Sia A ∈C
n×n e ‖ ·‖ una norma naturale. Allora

lim
k

‖Ak‖
1
k = ρ(A)

Quindi per k sufficientemente grande si ha

‖P k‖≈ ρk (P).

Sotto queste ipotesi, se

‖e(k+m)‖≈ ‖P m‖‖e(k)‖ (12)

abbiamo

‖e(k+m)‖≈ ‖P m‖‖e(k)‖ ≈ ρ
1
m (P)‖e(k)‖ (13)

per cui affinchè

‖e(k+m)‖/‖e(k)‖≈ ρm (P) ≈ ǫ

applicando il logaritmo ln ad ambo i membri, si vede serve sia,

m ln (ρ(P))≈ lnǫ⇒m ≈
lnǫ

ln (ρ(P))

Se

R(P) =− ln(ρ(P))

è la cosidetta velocità di convergenza asintotica del metodo iterativo relativo a P , si

può così stimare che il numero di iterazioni m necessarie per ridurre l’errore di un

fattore ǫ è circa
⌈− ln(ǫ)

R(P)

⌉

.

Conseguentemente minore è ρ(P) necessariamente è maggiore R(P) e si può

stimare il numero di iterazioni per ridurre l’errore di un fattore ǫ. Si desidera quindi

cercare metodi con ρ(P) più piccolo possibile.

8

Metodi iterativi

3 I metodi di Richardson

Fissato α, la versione di base del metodo di Richardson consiste in un metodo iter-

ativo del tipo

x(k+1) − x(k) =αr (k). (14)

D’altra parte come visto precedentemente i metodi di Jacobi e di Gauss-Seidel e

le loro versioni rilassate sono metodi iterativi del tipo

M x(k+1) = N x(k) +b, (15)

per opportune scelte delle matrici M (che dev’essere invertibile), N tali che

A = M −N . (16)

Se

r (k) = b − Ax(k) (17)

è il residuo alla k-sima iterazione allora da (15) e (16)

M(x(k+1) − x(k)) = N x(k) +b −M x(k) = b − Ax(k) = r (k) (18)

Ne consegue che i metodi di Jacobi e di Gauss-Seidel e le loro versioni rilassate sono

generalizzazioni di un metodo di Richardson del tipo

M(x(k+1) − x(k)) =αr (k) (19)

in cui la matrice invertibile M è detta di precondizionamento.

3.1 Il metodo di Richardson precondizionato con parametro fisso

α ottimale

Per un opportuno parametro di accelerazione α > 0 (da non confondersi con

quello di SOR), si può fornire un’ovvia generalizzazione del metodo (18)

M(x(k+1) − x(k)) =αr (k), k ≥ 0. (20)

Evidentemente (18) corrisponde alla scelta α= 1.

Il parametro α > 0 viene scelto cosí da minimizzare il raggio spettrale della ma-

trice di iterazione. In questo caso si vede che da

M(x(k+1) − x(k)) =α(b − Ax(k)) (21)

necessariamente

M x(k+1) = M x(k) +α(b − Ax(k)) = (M −αA)x(k) +αb, (22)

e quindi con le precedenti notazioni

Mα =
M

α
, Nα =

M −αA

α
(23)

9

Metodi iterativi

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figura 2: Grafici di |1−αλmax | e |1−αλmin | (rispettivamente in rosso e in blu).

per cui la matrice di iterazione Rα = M−1
α Nα diventa

C = M−1(M −αA) = I −αM−1 A. (24)

Se M−1 A è definita positiva e λmin e λmax sono rispettivamente il minimo e

massimo autovalore di M−1 A, allora il valore ottimale del parametro α, cioè quello

per cui è minimo il raggio spettrale della matrice d’iterazione M −αA è

αott =
2

λmin +λmax
(25)

ed in corrispondenza si ha che la matrice di iterazione Rαott ha raggio spettrale

αott =
λmax −λmin
λmin +λmax

(26)

Per capirlo si dimostra dapprima che qualsiasi sia λ ∈ [λmin,λmax] si ha

|1−αλ| ≤ max(|1−αλmin |, |1−αλmax |)

e che

min
α∈R

max(|1−αλmin|, |1−αλmax |)

lo si ottiene quando la retta y = αλmax −1 interseca la retta y = 1−αλmin, che è

proprio per α=αott.

Si osservi che la scelta di α non dipende dall’iterazione; di conseguenza (20)

definisce il cosidetto metodo di Richardson stazionario precondizionato, per dis-

tinguerlo dal metodo di Richardson non stazionario precondizionato

M(x(k+1) − x(k)) =αk (b − Ax(k)). (27)

con αk che non è necessariamente costante.

3.2 Il metodo del gradiente coniugato

Un classico metodo di Richardson non stazionario è quello del gradiente (detto an-

che di discesa più ripida). Sia A una matrice simmetrica definita positiva. Si osserva

10

Metodi iterativi

che se x∗ è l’unica soluzione di Ax = b allora è pure il minimo del funzionale

φ(x) =
1

2
xT Ax −bT x, x ∈R

n

Un generico metodo di discesa consiste nel generare una successione

x(k+1) = x(k) +αk p(k)

dove p(k) è una direzione fissata secondo qualche criterio.

Si dimostra [4, p.341] che il parametro αk ottimale cosicchè φ(x(k+1)) sia minimo

una volta scelta p(k) è

αk =
(r (k))T p(k)

(p(k))T Ap(k)

Nel metodo del gradiente si sceglie quale direzione p(k) = grad(φ(x))|x=x(k) . Ma

se r (k) = b − Ax(k), allora

grad(φ(x))|x=x(k) =
1

2
grad(xT Ax)|x=x(k) −grad(bT x)|x=x(k)

= Ax(k) −b =−r (k) (28)

e quindi p(k) = r (k) (è essenziale la direzione ma non il segno e per convincersene

si calcoli la successione anche con segno opposto p(k) = −r (k) per parametro αk

ottimale).

Di conseguenza il metodo del gradiente è definito dalla successione tipica dei metodi

di Richardson non stazionari

x(k+1) = x(k) +αk r (k)

dove

αk =
(r (k))T p(k)

(p(k))T Ap(k)
=

‖r (k)‖2
2

(r (k))T Ar (k)
.

3.3 Una stima dell’errore per alcuni metodi di Richardson

Per quanto riguarda una stima d’errore, citiamo il seguente teorema (cf. [11, p.148]).

Teorema 3.1 Siano A e M due matrice simmetriche e definite positive e si consideri

un metodo di Richardson M(x(k+1) − x(k))=αk r (k), dove

1. M = I e

αk =
(z(k))T r (k)

(z(k))T Az(k)
, z(k) = M−1r (k)

2. oppure M invertibile con la scelta (non dinamica) del parametro αk

αk =αopt =
2

λmin +λmax
.

11

Metodi iterativi

Posto ‖v‖A :=
p

vT Av, e(k) = x(k) − x, si ha

‖e(k)‖A ≤
(

κ(M−1 A)−1

κ(M−1 A)+1

)k

‖e(0)‖A

dove κ(M−1 A) è il numero di condizionamento della matrice M−1 A.

Discutiamo l’asserto.

1. Nel caso del metodo del gradiente, che corrisponde alla scelta M = I e z(k) =
r (k), vale quindi la stima

‖e(k)‖A ≤
(

κ(A)−1

κ(A)+1

)k

‖e(0)‖A

che mostra che più grande è il numero di condizionamento κ(A) più è vi-

cino a 1 la quantità κ(A)−1
κ(A)+1

il che giustifica una possibile convergenza lenta

del metodo.

2. Nel caso del metodo precondizionato, si vede che una scelta quasi ottimale è

quella per cui κ(M−1 A) è vicino a 1. Osserviamo d’altra parte che non si può

scegliere M = A in quanto con facili calcoli ci si accorge che non si potrebbe

calcolare il valore x(k+1) a partire da x(k).

4 Matrici simmetriche definite positive: il metodo del

gradiente coniugato

Il metodo del gradiente coniugato (di cui forniremo solo il codice e alcune brevi

indicazioni) fu descritto nel 1952 da Hestenes e Stiefel ma per quanto destasse subito

l’interesse dell’ambiente matematico non venne molto utilizzato fino al 1971, quando

Reid suggerì il suo utilizzo per la risoluzione di sistemi sparsi (cioè con molte com-

ponenti nulle) di grandi dimensioni [3], [14].

La successione delle iterazioni del gradiente coniugato è quella propria dei metodi

di discesa,

x(k+1) = x(k) +αk p(k), αk =
(r (k))T r (k)

(p(k))T Ap(k)

dove p(0) = r (0) e

p(k) = r (k) +βk p(k−1), βk =
(r (k))T r (k)

(r (k−1))T r (k−1)
.

Con questa scelta si prova che

(p(k))T Ap(k−1) = 0,

12

Metodi iterativi

cioè i vettori p(k) e p(k−1) sono A-coniugati.

4.1 Convergenza del gradiente coniugato

Il metodo del gradiente coniugato ha molte proprietà particolari. Ne citiamo

alcune.

• Sia

K k = span(r (0), Ar (0), . . . , Ak−1r (0))

per k ≥ 1. Allora la k-sima iterata dal metodo del gradiente coniugato mini-

mizza il funzionale φ nell’insieme x(0) +Kk [7, p.12].

• Se A è una matrice simmetrica e definita positiva di ordine n, si può dimostrare

che il metodo è convergente e fornisce in aritmetica esatta la soluzione del sis-

tema Ax = b in al massimo n iterazioni.

Questo teorema tradisce un po’ le attese, sia perchè in generale i calcoli non

sono compiuti in aritmetica esatta, sia perchè in molti casi della modellistica

matematica n risulta essere molto alto.

• Si può dimostrare [3, p. 279] che se A è simmetrica e definita positiva,

‖x‖A =
√

xT Ax

e

ek = x∗− x(k)

allora

‖ek‖A ≤
(
p

K2(A)−1
p

K2(A)+1

)2k

‖e0‖A .

Questo risultato stabilisce che la convergenza del gradiente coniugato è lenta

qualora si abbiano alti numeri di condizionamento

K2(A) := ‖A‖2‖A−1‖2 =
maxi |λi |
min j |λ j |

(ove al solito {λi } sono gli autovalori di A). Esistono varie versioni di questa

disuguaglianza. Ad esempio in [11, p. 151]:

‖ek‖A ≤
(

2ck

1+2ck

)

‖e0‖A

dove

c :=
p

K2(A)−1
p

K2(A)+1
.

• Sia A simmetrica e definita positiva. Si supponga che ci siano esattamente k ≤
n autovalori distinti di A. Allora il metodo del gradiente coniugato converge

in al più k iterazioni.

13

Metodi iterativi

• Sia A simmetrica e definita positiva. Si supponga b sia combinazione lineare

di k ≤ n autovettori distinti di A. Allora il metodo del gradiente coniugato con

la scelta x(0) = 0 converge in al più k iterazioni.

L’analisi del metodo è piuttosto complessa. Qualora interessati si confronti con

[1, p. 562-569], [3, p. 272-283], [4, p. 340-356], [7, p. 11-29], [11, p. 145-153].

5 Convergenza dei Jacobi, Gauss-Seidel ed SOR

Lo studio della convergenza dei metodi di Jacobi, Gauss-Seidel ed SOR [16] è un

proposito complicato e ci limiteremo a citare, senza dimostrazione, alcuni classici

risultati [3, p. 231-315].

Ricordiamo che

1. A è a predominanza diagonale (per righe) se per ogni i = 1, . . . ,n risulta

|ai ,i | ≥
n
∑

j=1, j 6=s

|ai , j |

e per almeno un indice s si abbia

|as,s | >
n
∑

j=1, j 6=s

|as, j |.

Ad esempio la matrice

A =





4 −4 0

−1 4 −1

0 −4 4





è a predominanza diagonale (per righe).

2. A è a predominanza diagonale in senso stretto (per righe) se per ogni i =
1, . . . ,n risulta

|ai ,i | >
n
∑

j=1, j 6=i

|ai , j |.

Ad esempio la matrice

A =





4 −1 0

−1 4 −1

0 −1 4





è a predominanza diagonale in senso stretto (per righe).

3. A è a predominanza diagonale per colonne (in senso stretto) se AT è a pre-

dominanza diagonale per righe (in senso stretto).

14

Metodi iterativi

4. A è tridiagonale se ai , j = 0 per |i − j | > 1. Ad esempio la matrice

A =













4 −1 0 . . . 0

−1 4 −1 . . . 0

0 −1 4

0 −1

0 0 . . . −1 4













è tridiagonale.

5. A è definita positiva se e solo se i suoi autovalori sono positivi.

La matrice

A =





4 −1 0

−1 4 −1

0 −1 4





è definita positiva come si può vedere usando i seguenti comandi Matlab/Octave

>> A=[4 -1 0; -1 4 -1; 0 -1 4]

A =

4 -1 0

-1 4 -1

0 -1 4

>> eig(A)

ans =

2.5858

4.0000

5.4142

>>

6. A di ordine n ≥ 2 è riducibile se esiste una matrice di permutazione Π e un

intero k con 0< k < n, tale che

B =ΠAΠT =
(

A1,1 A1,2

0 A2,2

)

in cui A1,1 ∈ C k×k , A2,2 ∈ C (n−k)×(n−k). Se A non è riducibile si dice che A è

irriducibile.

Il metodo di Jacobi risulta convergente in uno dei seguenti casi [3, p. 247]:

1. A è a predominanza diagonale in senso stretto;

2. A è a predominanza diagonale ed è irriducibile;

3. A è a predominanza diagonale in senso stretto per colonne;

4. A è a predominanza diagonale per colonne ed è irriducibile.

15

Metodi iterativi

Teorema 5.1 Sia A una matrice quadrata a predominanza diagonale. Allora il metodo

di Jacobi converge alla soluzione di Ax = b, qualsiasi sia il punto x(0) iniziale.

Dimostrazione. Supponiamo che A sia a predominanza diagonale in senso stretto

per righe. Allora per ogni i = 1, . . . ,n risulta

|ai ,i | >
n
∑

j=1, j 6=i

|ai , j |.

Nel caso del metodo di Jacobi

M = D, N = E +F, P = M−1N = D−1(E +F), (29)

da cui

Pi , j =
{ ai , j

ai ,i
se i 6= j

0 se i = j

Di conseguenza

‖P‖∞ = max
i

n
∑

j=1

|Pi , j | = max
i

n
∑

j=1

|ai , j |
|ai ,i |

< 1

ed essendo ρ(P) ≤ ‖P‖1 < 1 abbiamo che il metodo di Jacobi è convergente.

Teorema 5.2 Il metodo di Gauss-Seidel risulta convergente in uno dei seguenti casi

[3, p. 249]:

1. A è a predominanza diagonale in senso stretto.

2. Sia A una matrice simmetrica definita positiva, non singolare con elementi

principali ai ,i 6= 0. Allora Gauss-Seidel è convergente se e solo se A è definita

positiva.

Teorema 5.3 Per matrici tridiagonali (a blocchi) A = (ai , j) con componenti diago-

nali non nulle, i metodi di Jacobi e Gauss-Seidel sono o entrambi convergenti o di-

vergenti e il tasso di convergenza del metodo di Gauss-Seidel è il doppio di quello del

metodo di Jacobi (il che vuol dire che asintoticamente sono necessarie metà iterazioni

del metodo di Gauss-Seidel per ottenere la stessa precisione del metodo di Jacobi).

Teorema 5.4 Sia A simmetrica con elementi diagonali positivi. Allora il metodo SOR

converge se e solo se 0< w < 2 e A è definita positiva [6, p.215].

6 Test d’arresto

Consideriamo il sistema lineare Ax = b avente un’unica soluzione x∗ e supponi-

amo di risolverlo numericamente con un metodo iterativo stazionario del tipo

x(k+1) = P x(k) +c,

16

Metodi iterativi

che sia consistente cioè

x∗ = P x∗+c.

6.1 Sul criterio dello step

Posto ∆
(k) := x(k+1)− x(k) e e(k) = x∗− x(k), essendo

e(k) = x∗− x(k) = (P x∗+c)− (P x(k) +c)

= P (x∗− x(k))= Pe(k−1) (30)

abbiamo

‖e(k)‖2 = ‖x∗− x(k)‖2 = ‖(x∗− x(k+1))+ (x(k+1) − x(k))‖2

= ‖e(k+1) +∆
(k)‖2 = ‖Pe(k) +∆

(k)‖2 ≤ ‖P‖2 · ‖e(k)‖2 +‖∆(k)‖2 (31)

Fissata dall’utente una tolleranza tol, si desidera interrompere il processo iterativo

quando |x∗−x(k)| ≤ tol. Non disponendo di x∗, il test dello step, consiste nell’interrompere

il metodo iterativo alla k +1-sima iterazione qualora |x(k+1) − x(k)| ≤ tol. Di seguito

desideriamo vedere quando tale criterio risulti attendibile cioè

|x(k+1) − x(k)| ≈ |x∗− x(k)|

Se P è simmetrica, allora esistono una matrice ortogonale U , cioè tale che U T =U−1,

e una matrice diagonale a coefficienti reali Λ per cui

P =UΛU T

ed essendo P e Λ simili hanno gli stessi autovalori {λk }k Di conseguenza, se P è

simmetrica

‖P‖2 =
√

ρ(PP T) =
√

ρ(UΛU T (UΛU T)T)

=
√

ρ(UΛ2U T) (32)

Essendo UΛ
2U T simile a Λ

2, UΛ
2U T e Λ

2 hanno gli stessi autovalori uguali a {λ2
k

}k

e di conseguenza lo stesso raggio spettrale, da cui

ρ(UΛ
2U T) = ρ(Λ2)

e quindi ricaviamo

‖P‖2 =
√

ρ(Λ2) =
√

max
k

|λ2
k
|

=
√

(max
k

|λk |2) =
√

(max
k

|λk |)2

= max
k

|λk | = ρ(P) (33)

17

Metodi iterativi

Di conseguenza da (31)

‖e(k)‖2 ≤ ‖P‖2 · ‖e(k)‖2 +‖∆(k)‖2

= ρ(P) · ‖e(k)‖2 +‖∆(k)‖2

(34)

e se ρ(P) < 1, cioè il metodo iterativo stazionario converge per qualsiasi scelta del

vettore iniziale, portando ρ(P) · ‖e(k)‖2 a primo membro e dividendo per 1−ρ(P)

deduciamo

‖x(k+1) − x(k)‖2 = ‖e(k)‖2 =
1

1−ρ(P)
‖∆(k)‖2 =

1

1−ρ(P)
‖x∗− x(k)‖2

da cui se P è simmetrica allora il criterio dello step è affidabile se ρ(P) è piccolo.

6.2 Sul criterio del residuo

Si definisce residuo alla k-sima iterazione la quantità

r (k) := b − Ax(k)

ed essendo b = Ax∗ abbiamo

b − Ax(k) = Ax∗− Ax(k) = A(x∗− x(k)) = Ae(k)

da cui

r (k) = Ae(k).

Interromperemo il processo iterativo quando r (k) ≤ tol, desiderando sia pure

‖x(k) − x∗‖
‖x∗‖

≤ tol

Notiamo che

1. essendo A invertibile e r (k) = Ae(k) ricaviamo e(k) = A−1r (k) da cui

‖e(k)‖= ‖A−1r (k)‖≤ ‖A−1‖‖r (k)‖;

2. poichè b = Ax∗ abbiamo ‖b‖ ≤ ‖A‖‖x∗‖ e quindi

1

‖x∗‖
≤

‖A‖
‖b‖

.

Di conseguenza, denotato conκ(A) = ‖A‖‖A−1‖ il numero di condizionamento (nec-

essariamente maggiore o uguale a 1), se x∗ 6= 0 abbiamo

‖e(k)‖
‖x∗‖

≤
‖A‖
‖b‖

‖e(k)‖≤
‖A‖
‖b‖

·‖A−1‖‖r (k)‖≤κ(A)
‖r (k)‖
‖b‖

Quindi

‖e(k)‖
‖x∗‖

≤κ(A)
‖r (k)‖
‖b‖

≤ tol.

Il criterio d’arresto ‖r (k)‖
‖b‖ ≤ tol è quindi molto conservativo quando κ(A) ≫ 1.

18

Metodi iterativi

7 Metodi iterativi in Matlab

7.1 Metodo di Jacobi in Matlab

Un codice Matlab/Octave del metodo di Jacobi,fornito in internet presso il sito

di Netlib

http://www.netlib.org/templates/matlab/

è il seguente

function [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

% -- Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for the

% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,

% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

%

% [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

%

% jacobi.m solves the linear system Ax=b using the Jacobi Method.

%

% input A REAL matrix

% x REAL initial guess vector

% b REAL right hand side vector

% max_it INTEGER maximum number of iterations

% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed

% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it

iter = 0; % initialization

flag = 0;

bnrm2 = norm(b);

if (bnrm2 == 0.0), bnrm2 = 1.0; end

r = b - A*x;

error = norm(r) / bnrm2;

if (error < tol) return, end

[m,n]=size(A);

19

Metodi iterativi

[M, N] = split(A , b, 1.0, 1); % matrix splitting

for iter = 1:max_it, % begin iteration

x_1 = x;

x = M \ (N*x + b); % update approximation

error = norm(x - x_1) / norm(x); % compute error

if (error <= tol), break, end % check convergence

end

if (error > tol) flag = 1; end % no convergence

Il codice di jacobi utilizza una funzione split che serve per calcolare le matrici

M , N che definiscono l’iterazione del metodo di Jacobi:

function [M, N, b] = split(A, b, w, flag)

%

% function [M, N, b] = split_matrix(A, b, w, flag)

%

% split.m sets up the matrix splitting for the stationary

% iterative methods: jacobi and sor (gauss-seidel when w = 1.0)

%

% input A DOUBLE PRECISION matrix

% b DOUBLE PRECISION right hand side vector (for SOR)

% w DOUBLE PRECISION relaxation scalar

% flag INTEGER flag for method: 1 = jacobi

% 2 = sor

%

% output M DOUBLE PRECISION matrix

% N DOUBLE PRECISION matrix such that A = M - N

% b DOUBLE PRECISION rhs vector (altered for SOR)

[m,n] = size(A);

if (flag == 1), % jacobi splitting

M = diag(diag(A));

N = diag(diag(A)) - A;

elseif (flag == 2), % sor/gauss-seidel splitting

b = w * b;

M = w * tril(A, -1) + diag(diag(A));

N = -w * triu(A, 1) + (1.0 - w) * diag(diag(A));

end;

% END split.m

20

Metodi iterativi

Ricordiamo che la funzione split non coincide con quella predefinita nelle

ultime releases di Matlab/Octave. Qualora la funzione split che vogliamo utiliz-

zare sia salvata della directory corrente, una volta richiamata, i workspace di Mat-

lab/Octave utilizzano proprio questa e non quella descritta per altri usi in Mat-

lab/Octave. Inoltre per quanto riguarda tril e triu in split dall’help di Matlab

si capisce che estraggono rispettivamente la parte triangolare inferiore e superiore

di una matrice:

>> help tril

TRIL Extract lower triangular part.

TRIL(X) is the lower triangular part of X.

TRIL(X,K) is the elements on and below the K-th diagonal

of X . K = 0 is the main diagonal, K > 0 is above the

main diagonal and K < 0 is below the main diagonal.

See also TRIU, DIAG.

>> help triu

TRIU Extract upper triangular part.

TRIU(X) is the upper triangular part of X.

TRIU(X,K) is the elements on and above the K-th diagonal of

X. K = 0 is the main diagonal, K > 0 is above the main

diagonal and K < 0 is below the main diagonal.

See also TRIL, DIAG.

>> A=[1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> tril(A)

ans =

1 0 0

4 5 0

7 8 9

>> triu(A)

ans =

1 2 3

0 5 6

0 0 9

>> tril(A,-1)

ans =

0 0 0

4 0 0

7 8 0

>> triu(A,1)

ans =

21

Metodi iterativi

0 2 3

0 0 6

0 0 0

>> triu(A,-1)

ans =

1 2 3

4 5 6

0 8 9

>>

La routine jacobi è scritta da esperti di algebra lineare e si interrompe quando

la norma 2 dello step relativo

‖x(k+1) − x(k)‖2

‖x(k+1)‖2

è inferiore ad una tolleranza tolprefissata oppure un numero massimo di iterazioni

max_it è raggiunto. Ricordiamo che se v = (vi)i=1,...,n è un elemento di Rn allora

‖v‖2 =

√

n
∑

i=1

v2
i

.

Problema: cosa succede quando la matrice diagonale estratta da A è singolare? cosa

succede quando partendo da x0 6= 0, si ha per qualche indice k > 0 che xk = 0?

7.2 Metodo di Gauss-Seidel in Matlab

La versione di Gauss-Seidel con la scelta del parametro ω è nota in letteratura

come SOR, acronimo di successive over relaxation. Una versione di SOR scaricabile

presso il sito di Netlib [10] è la seguente
function [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

% -- Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for the

% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,

% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

%

% [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

%

% sor.m solves the linear system Ax=b using the

% Successive Over-Relaxation Method (Gauss-Seidel method when omega = 1).

%

% input A REAL matrix

% x REAL initial guess vector

% b REAL right hand side vector

% w REAL relaxation scalar

22

Metodi iterativi

% max_it INTEGER maximum number of iterations

% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed

% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it

flag = 0; % initialization

iter = 0;

bnrm2 = norm(b);

if (bnrm2 == 0.0), bnrm2 = 1.0; end

r = b - A*x;

error = norm(r) / bnrm2;

if (error < tol) return, end

[M, N, b] = split(A, b, w, 2); % matrix splitting

for iter = 1:max_it % begin iteration

x_1 = x;

x = M \ (N*x + b); % update approximation

error = norm(x - x_1) / norm(x); % compute error

if (error <= tol), break, end % check convergence

end

b = b / w; % restore rhs

if (error > tol) flag = 1; end; % no convergence

Come per il metodo di Jacobi, il processo si interrompe quando la norma 2 dello

step relativo

‖x(k+1) − x(k)‖2

‖x(k+1)‖2

è inferiore ad una tolleranza tolprefissata oppure un numero massimo di iterazioni

max_it è raggiunto.

Per ulteriori dettagli si consulti ad esempio [4, p. 313-339].

7.3 Metodo del gradiente coniugato in Matlab

Per quanto riguarda il codice del Gradiente Coniugato, un esempio è il file cg.m

tratto da Netlib [10]:

function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

23

Metodi iterativi

% -- Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for the

% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publications,

% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

%

% [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

%

% cg.m solves the symmetric positive definite linear system Ax=b

% using the Conjugate Gradient method with preconditioning.

%

% input A REAL symmetric positive definite matrix

% x REAL initial guess vector

% b REAL right hand side vector

% M REAL preconditioner matrix

% max_it INTEGER maximum number of iterations

% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed

% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it

flag = 0; % initialization

iter = 0;

bnrm2 = norm(b);

if (bnrm2 == 0.0), bnrm2 = 1.0; end

r = b - A*x;

error = norm(r) / bnrm2;

if (error < tol) return, end

for iter = 1:max_it % begin iteration

z = M \ r;

rho = (r’*z);

if (iter > 1), % direction vector

beta = rho / rho_1;

p = z + beta*p;

else

p = z;

end

24

Metodi iterativi

q = A*p;

alpha = rho / (p’*q);

x = x + alpha * p; % update approximation vector

r = r - alpha*q; % compute residual

error = norm(r) / bnrm2; % check convergence

if (error <= tol), break, end

rho_1 = rho;

end

if (error > tol) flag = 1; end % no convergence

% END cg.m

Osserviamo che il procedimento itera finchè un numero massimo di iterazioni è

raggiunto oppure la norma 2 del residuo (relativo)

‖b − Ax(k)‖2

‖b‖2

immagazzinata nella variabile error risulta inferiore ad una tolleranza prefissata

tol. In questo caso il criterio d’arresto del metodo del gradiente coniugato è diverso

da quello dello step relativo utilizzato nelle precedenti versioni di Jacobi ed SOR.

8 Un esperimento numerico

Consideriamo il sistema lineare Ax = b dove A è la matrice tridiagonale a blocchi (di

Poisson)

A =













B −I 0 . . . 0

−I B −I . . . 0

0 −I B

0 −I

0 0 . . . −I B













con

B =













4 −1 0 . . . 0

−1 4 −1 . . . 0

0 −1 4

0 −1

0 0 . . . −1 4













La matrice A è facilmente esprimibile utilizzando la funzione makefish scarica-

bile in [10]

function mat = makefish(siz);

% make a Poisson matrix

25

Metodi iterativi

leng = siz*siz;

dia = zeros(siz,siz);

off = -eye(siz,siz);

for i=1:siz, dia(i,i)=4; end;

for i=1:siz-1, dia(i,i+1)=-1; dia(i+1,i)=-1; end;

mat = zeros(leng,leng);

for ib=1:siz,

mat(1+(ib-1)*siz:ib*siz,1+(ib-1)*siz:ib*siz) = dia; end;

for ib=1:siz-1,

mat(1+(ib-1)*siz:ib*siz,1+ib*siz:(ib+1)*siz) = off;

mat(1+ib*siz:(ib+1)*siz,1+(ib-1)*siz:ib*siz) = off; end;

return;

Vediamo un esempio:

>> makefish(3)

ans =

4 -1 0 -1 0 0 0 0 0

-1 4 -1 0 -1 0 0 0 0

0 -1 4 0 0 -1 0 0 0

-1 0 0 4 -1 0 -1 0 0

0 -1 0 -1 4 -1 0 -1 0

0 0 -1 0 -1 4 0 0 -1

0 0 0 -1 0 0 4 -1 0

0 0 0 0 -1 0 -1 4 -1

0 0 0 0 0 -1 0 -1 4

>>

che evidentemente è una matrice di Poisson con B matrice quadrata di ordine 3

B = 4 -1 0

-1 4 -1

0 -1 4

Per ulteriori dettagli sulle origini della matrice di Poisson, si considerino ad es-

empio [1, p. 557], [3, p. 283], [4, p. 334]. Le matrici di Poisson sono evidentemente

simmetriche, tridiagonali a blocchi, diagonalmente dominanti e dal primo e dal sec-

ondo teorema di Gerschgorin [3, p. 76-80], [4, p. 955] si può provare che sono non

singolari. In particolare si può mostrare che A è definita positiva. Per accertarsene,

calcoliamo il minimo autovalore della matrice di Poisson con B ∈ M5, semplice-

mente digitando sulla shell di Matlab-Octave

>> A=makefish(5);

>> m=min(eig(A))

m =

0.5359

>>

26

Metodi iterativi

Tale matrice di Poisson non è malcondizionata essendo

>> A=makefish(5);

>> cond(A)

ans =

13.9282

>>

Poniamo ora

b=ones(size(A,1),1);

e risolviamo il sistema Ax = b digitando

x_sol=A\b;

Nota la soluzione esatta confrontiamo i vari metodi risolvendo il sistema lineare

con un numero massimo di iterazioni maxit e una tolleranza tol come segue

maxit=200; tol=10^(-8);

A tal proposito consideriamo l’m-file

demo_algebra_lineare.m

contenente il codice

maxit=200; tol=10^(-8);

siz=5;

A = makefish(siz); % MATRICE DI POISSON.

b=ones(size(A,1),1); % TERMINE NOTO.

x_sol=A\b; % SOLUZIONE ESATTA. METODO LU.

norm_x_sol=norm(x_sol);

if norm(x_sol) == 0

norm_x_sol=1;

end

x=zeros(size(b)); % VALORE INIZIALE.

% JACOBI.

[x_j, error_j, iter_j, flag_j] = jacobi(A, x, b, maxit, tol);

fprintf(’\t \n [JACOBI] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’,error_j,norm(x_j-x_sol)/norm_x_sol);

fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f \n’,iter_j,flag_j);

% GAUSS-SEIDEL.

w=1;

27

Metodi iterativi

[x_gs, error_gs, iter_gs, flag_gs] = sor(A, x, b, w, maxit, tol);

fprintf(’\t \n [GAU.SEI.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’,error_gs,norm(x_gs-x_sol)/norm_x_sol);

fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f

\n’,iter_gs,flag_gs);

% SOR.

w_vett=0.8:0.025:2;

for index=1:length(w_vett)

w=w_vett(index);

[x_sor, error_sor(index), iter_sor(index), flag_sor(index)] = sor(A,

x, b, w, maxit, tol);

relerr(index)=norm(x_sor-x_sol)/norm_x_sol;

end

[min_iter_sor, min_index]=min(iter_sor);

fprintf(’\t \n [SOR OTT.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’,error_sor(min_index),relerr(min_index));

fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f [w]: %2.3f

\n’,min_iter_sor,flag_sor(min_index),w_vett(min_index));

plot(w_vett,iter_sor,’r-’);

% GRADIENTE CONIUGATO.

M=eye(size(A));

[x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, tol);

fprintf(’\t \n [GRA.CON.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’,error_gc,norm(x_gc-x_sol)/norm_x_sol);

fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f

\n’,iter_gc,flag_gc);

Lanciamo la demo nella shell di Matlab-Octave e otteniamo

>> demo_algebra_lineare

[JACOBI] [STEP REL., NORMA 2]: 8.73e-009 [REL.ERR.]: 5.65e-008

[ITER.]: 116 [FLAG]: 0

[GAU.SEI.] [STEP REL., NORMA 2]: 9.22e-009 [REL.ERR.]: 2.76e-008

[ITER.]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-009 [REL.ERR.]: 1.10e-009

[ITER.]: 21 [FLAG]: 0 [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.41e-017 [REL.ERR.]: 2.21e-016

28

Metodi iterativi

[ITER.]: 5 [FLAG]: 0

>>

Una breve analisi ci dice che

1. Come previsto dalla teoria, il metodo di Gauss-Seidel converge in approssi-

mativamente metà iterazioni di Jacobi;

2. Il metodo SOR ha quale costante quasi ottimale w = 1.350;

3. Il metodo del gradiente coniugato converge in meno iterazioni rispetto agli al-

tri metodi (solo 5 iterazioni, ma si osservi il test d’arresto differente). Essendo

la matrice di Poisson di ordine 25, in effetti ciò accade in meno di 25 iterazioni

come previsto. Vediamo cosa succede dopo 25 iterazioni:

>> maxit=25; tol=0;

>> siz=5; A = makefish(siz); b=ones(size(A,1),1);

>> [x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, tol);

>> error_gc

error_gc =

3.6287e-039

>>

Il residuo relativo, seppur non nullo è molto piccolo.

Un punto delicato riguarda la scelta del parametro ω ottimale (cioè minimiz-

zante il raggio spettrale di SOR). Sia questo valore uguale a ω∗. Nel nostro codice

abbiamo calcolato per forza bruta ω+, tra i numeri reali ω+ ≤ 2 del tipo w j = 0.8+ j ·
0.025 quello per cui venivano compiute meno iterazioni.

E’ possibile calcolare ω∗ matematicamente? Nel caso della matrice di Poisson la

risposta è affermativa. Da [4, Teor.5.10, p.333]

ω∗ =
2

1+
√

1−ρ2(B J)

e il raggio spettrale della matrice di iterazione vale ω∗−1. dove ρ(S) è il massimo

degli autovalori in modulo della matrice S (il cosidetto raggio spettrale) e B J la ma-

trice di iterazione di Jacobi. Vediamo di calcolare questo valore nel caso della so-

pracitata matrice di Poisson. Dalla teoria, con ovvie notazioni,

B J = I −D−1 A

e quindi

>> format long;

>> D=diag(diag(A));

>> BJ=eye(size(A))-inv(D)*A;

>> s=eig(BJ);

>> s_abs=abs(s);

>> rho=max(s_abs);

29

Metodi iterativi

>> w=2/(1+sqrt(1-rho^2))

w =

1.33333333333333

>> maxit=50; tol=10^(-8);

>> b=ones(size(A,1),1);

>> [x_sor, error_sor, iter_sor, flag_sor] = sor(A, x, b, w, maxit, tol);

>> iter_sor

iter_sor =

22

>>

Si rimane un po’ sorpresi dal fatto che per w = 1.350 il numero di iterazioni fosse

inferiore di quello fornito dal valore ottimale teorico w∗ = 1.333. . .. Il fatto è che

questo è ottenuto cercando di massimizzare la velocità asintotica di convergenza.

Purtroppo questo minimizza una stima del numero di iterazioni k minime da com-

piere e non quello effettivo.

Abbiamo detto che un punto chiave è la grandezza del raggio spettrale delle ma-

trici di iterazione e che è desiderabile che questo numero oltre ad essere stretta-

mente minore di uno sia il più piccolo possibile. Vediamo i raggi spettrali dei metodi

esposti.

Salviamo in raggispettrali.m il seguente programma principale

maxit=50; tol=0;

siz=5;

A = makefish(siz); % MATRICE DI POISSON.

b=ones(size(A,1),1); % TERMINE NOTO.

[M, N] = split(A , b, 1.0, 1); % JACOBI.

P=inv(M)*N;

rho_J=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][JACOBI]: %2.15f’,rho_J);

[M, N, b] = split(A, b, 1, 2); % GS.

P=inv(M)*N;

rho_gs=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][GAUSS-SEIDEL]: %2.15f’,rho_gs);

D=diag(diag(A));

E=-(tril(A)-D);

F=-(triu(A)-D);

w=1.350;

M=D/w-E; N=(1/w-1)*D+F;

P=inv(M)*N;

rho_sor=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][SOR BEST]: %2.15f’,rho_sor);

w=1.33333333333333;

30

Metodi iterativi

[M, N, b] = split(A, b, w, 2); % SOR OPT.

M=D/w-E; N=(1/w-1)*D+F;

P=inv(M)*N;

rho_sor_opt=max(abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][SOR OPT]: %2.15f’,rho_sor_opt);

Di seguito:

>> raggispettrali

[RAGGIO SPETTRALE][JACOBI]: 0.866025403784438

[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000

[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000001

[RAGGIO SPETTRALE][SOR OPT]: 0.333333380707781

>>

Il valore del raggio spettrale della matrice di iterazione del metodo SOR per parametro

ottimale, per quanto visto anticipatamente vale ω∗−1, e l’esperimento numerico lo

conferma.

Abbiamo poi osservato che in questo caso la velocità di convergenza del metodo di

Gauss-Seidel è il doppio di quella di Jacobi. Poste BGS , B J le rispettive matrici di

iterazione, e detta R la velocità di convergenza, osserviamo che da

R(B J) := − ln (ρ(B J)) (35)

R(BGS) := − ln (ρ(BGS)) (36)

R(BGS) := 2R(B J) (37)

si ha

− ln (ρ(BGS))= R(BGS) = 2R(B J) =−2ln (ρ(B J)) =− ln (ρ(B J))2

da cui essendo il logaritmo una funzione invertibile

ρ(BGS) = (ρ(B J))2.

Il raggio spettrale della matrice di iterazione di Gauss-Seidel coincide quindi col

quadrato di quella di Jacobi ed infatti come è facile verificare

>> 0.866025403784438^2

ans =

0.75000000000000

>>

Al momento non consideriamo il metodo del gradiente coniugato poichè non è

di tipo stazionario.

9 Facoltativo: Altre matrici interessanti. La matrice di

Hilbert.

Per vedere alcuni comandi di base aiutiamoci con delle matrici predefinite in

Matlab/Octave. Digitiamo nella shell di Matlab/Octave >> help elmat. In Matlab

6.5 abbiamo

31

Metodi iterativi

>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.

zeros - Zeros array.

ones - Ones array.

eye - Identity matrix.

repmat - Replicate and tile array.

rand - Uniformly distributed random numbers.

randn - Normally distributed random numbers.

linspace - Linearly spaced vector.

logspace - Logarithmically spaced vector.

freqspace - Frequency spacing for frequency response.

meshgrid - X and Y arrays for 3-D plots.

: - Regularly spaced vector and index into matrix.

...

Specialized matrices.

compan - Companion matrix.

gallery - Higham test matrices.

hadamard - Hadamard matrix.

hankel - Hankel matrix.

hilb - Hilbert matrix.

invhilb - Inverse Hilbert matrix.

magic - Magic square.

pascal - Pascal matrix.

rosser - Classic symmetric eigenvalue test problem.

toeplitz - Toeplitz matrix.

vander - Vandermonde matrix.

wilkinson - Wilkinson’s eigenvalue test matrix.

Questo ci dice che Matlab ha predefinito un set di matrici di particolare inter-

esse. Se possibile si suggerisce di provare i metodi che andremo ad introdurre con

una matrice facente parte della gallery di Matlab. Ciò non appare possibile nelle

recenti releases di Octave, come GNU Octave 2.1.73. Da Matlab 6.5

>> help gallery

GALLERY Higham test matrices.

[out1,out2,...] = GALLERY(matname, param1, param2, ...)

takes matname, a string that is the name of a matrix family, and

the family’s input parameters. See the listing below for available

matrix families. Most of the functions take an input argument

that specifies the order of the matrix, and unless otherwise

stated, return a single output.

For additional information, type "help private/matname", where matname

is the name of the matrix family.

32

Metodi iterativi

cauchy Cauchy matrix.

chebspec Chebyshev spectral differentiation matrix.

chebvand Vandermonde-like matrix for the Chebyshev polynomials.

chow Chow matrix -- a singular Toeplitz lower Hessenberg matrix.

circul Circulant matrix.

...

poisson Block tridiagonal matrix from Poisson’s equation (sparse).

prolate Prolate matrix -- symmetric, ill-conditioned Toeplitz matrix.

randcolu Random matrix with normalized cols and specified singular

values.

randcorr Random correlation matrix with specified eigenvalues.

randhess Random, orthogonal upper Hessenberg matrix.

rando Random matrix with elements -1, 0 or 1.

randsvd Random matrix with pre-assigned singular values and specified

bandwidth.

redheff Matrix of 0s and 1s of Redheffer.

riemann Matrix associated with the Riemann hypothesis.

ris Ris matrix -- a symmetric Hankel matrix.

smoke Smoke matrix -- complex, with a "smoke ring" pseudospectrum.

toeppd Symmetric positive definite Toeplitz matrix.

toeppen Pentadiagonal Toeplitz matrix (sparse).

tridiag Tridiagonal matrix (sparse).

triw Upper triangular matrix discussed by Wilkinson and others.

wathen Wathen matrix -- a finite element matrix (sparse, random

entries).

wilk Various specific matrices devised/discussed by Wilkinson.

(Two output arguments)

GALLERY(3) is a badly conditioned 3-by-3 matrix.

GALLERY(5) is an interesting eigenvalue problem. Try to find

its EXACT eigenvalues and eigenvectors.

See also MAGIC, HILB, INVHILB, HADAMARD, WILKINSON, ROSSER, VANDER.

10 Facoltativo: gli esempi visti in Matlab funzionano

anche in Octave.

Rivediamo gli esperimenti in una recente release di Octave, come GNU Octave

2.1.73.
octave:12> makefish(3)

ans =

4 -1 0 -1 -0 -0 0 0 0

33

Metodi iterativi

-1 4 -1 -0 -1 -0 0 0 0

0 -1 4 -0 -0 -1 0 0 0

-1 -0 -0 4 -1 0 -1 -0 -0

-0 -1 -0 -1 4 -1 -0 -1 -0

-0 -0 -1 0 -1 4 -0 -0 -1

0 0 0 -1 -0 -0 4 -1 0

0 0 0 -0 -1 -0 -1 4 -1

0 0 0 -0 -0 -1 0 -1 4

octave:13> A=makefish(5);

octave:14> m=min(eig(A))

m = 0.53590

octave:15> cond(A)

ans = 13.928

octave:16> b=ones(size(A,1),1);

octave:17> demo_algebra_lineare

[JACOBI] [STEP REL., NORMA 2]: 8.73e-09 [REL.ERR.]: 5.65e-08

[ITER.]: 116 [FLAG]: 0

[GAU.SEI.] [STEP REL., NORMA 2]: 9.22e-09 [REL.ERR.]: 2.76e-08

[ITER.]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-09 [REL.ERR.]: 1.10e-09

[ITER.]: 21 [FLAG]: 0 [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.67e-17 [REL.ERR.]: 1.85e-16

[ITER.]: 5 [FLAG]: 0

octave:18> format long;

octave:19> D=diag(diag(A));

octave:20> size(D)

ans =

25 25

octave:21> BJ=eye(size(A))-inv(D)*A;

octave:22> s=eig(BJ);

octave:23> s_abs=abs(s);

octave:24> rho=max(s_abs);

octave:25> w=2/(1+sqrt(1-rho^2))

w = 1.33333333333333

octave:26> maxit=50; tol=10^(-8);

octave:27> b=ones(size(A,1),1);

octave:28> [x_sor,error_sor,iter_sor,flag_sor]=sor(A,x,b,w,maxit,tol);

octave:29> iter_sor

iter_sor = 22

octave:30> raggispettrali

[RAGGIO SPETTRALE][JACOBI]: 0.866025403784439

[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000

34

Metodi iterativi

[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000000

[RAGGIO SPETTRALE][SOR OPT]: 0.333333380472264

octave:31> 0.866025403784439^2

ans = 0.750000000000001

octave:32>

References

[1] K. Atkinson, Introduction to Numerical Analysis, Wiley, 1989.

[2] K. Atkinson e W. Han, Theoretical Numerical Analysis, Springer, 2001.

[3] D. Bini, M. Capovani e O. Menchi, Metodi numerici per l’algebra lineare,

Zanichelli, 1988.

[4] V. Comincioli, Analisi Numerica, metodi modelli applicazioni, Mc Graw-Hill,

1990.

[5] S.D. Conte e C. de Boor, Elementary Numerical Analysis, 3rd Edition, Mc Graw-

Hill, 1980.

[6] L.A. Hageman e D.M. Young Applied Iterative Methods, Dover, 2004.

[7] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.

[8] MacTutor (Matrices and Determinants)

http://www-groups.dcs.st-and.ac.uk/ history/HistTopics/Matrices_and_determinants.html.

[9] The MathWorks Inc., Numerical Computing with Matlab,

http://www.mathworks.com/moler.

[10] Netlib,

http://www.netlib.org/templates/matlab/.

[11] A. Quarteroni e F. Saleri, Introduzione al calcolo scientifico, Springer Verlag,

2006.

[12] A. Suli e D. Mayers, An Introduction to Numerical Analysis, Cambridge Univer-

sity Press, 2003.

[13] Wikipedia (Metodo di Gauss-Seidel)

http://it.wikipedia.org/wiki/Metodo_di_Gauss-Seidel.

[14] Wikipedia (Metodo del Gradiente Coniugato)

http://it.wikipedia.org/wiki/Metodo_del_gradiente_coniugato.

[15] Wikipedia (Metodo di Jacobi)

http://it.wikipedia.org/wiki/Metodo_di_Jacobi.

[16] Wikipedia (Successive Over Relaxation)

http://it.wikipedia.org/wiki/Successive_Over_Relaxation.

35

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Matrices_and_determinants.html
http://www.mathworks.com/moler
http://www.netlib.org/templates/matlab/
http://it.wikipedia.org/wiki/Metodo_di_Gauss-Seidel
http://it.wikipedia.org/wiki/Metodo_del_gradiente_coniugato
http://it.wikipedia.org/wiki/Metodo_di_Jacobi
http://it.wikipedia.org/wiki/Successive_Over_Relaxation

	Introduzione
	I metodi di Jacobi, Gauss-Seidel e SOR
	Il metodo di Jacobi
	Il metodo di Gauss-Seidel
	Generalizzazioni del metodo di Jacobi e Gauss-Seidel

	Convergenza dei metodi iterativi
	Norma di matrici
	Il teorema di Hensel e la convergenza di un metodo iterativo stazionario
	Sulla velocità di convergenza

	I metodi di Richardson
	Il metodo di Richardson precondizionato con parametro fisso ottimale
	Il metodo del gradiente coniugato
	Una stima dell'errore per alcuni metodi di Richardson

	Matrici simmetriche definite positive: il metodo del gradiente coniugato
	Convergenza del gradiente coniugato

	Convergenza dei Jacobi, Gauss-Seidel ed SOR
	Test d'arresto
	Sul criterio dello step
	Sul criterio del residuo

	Metodi iterativi in Matlab
	Metodo di Jacobi in Matlab
	Metodo di Gauss-Seidel in Matlab
	Metodo del gradiente coniugato in Matlab

	Un esperimento numerico
	Facoltativo: Altre matrici interessanti. La matrice di Hilbert.
	Facoltativo: gli esempi visti in Matlab funzionano anche in Octave.

