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1 Introduzione

Sia A una matrice reale avente n righe ed n colonne, b un vettore colonna avente
n righe e si supponga di voler risolvere il sistema lineare Ax = b. Come noto, se il
determinante della matrice & diverso da 0 (cioe la matrice A & non singolare) allora
il problema Ax = b ha una ed una sola soluzione.

Ricordiamo che in Matlab/Octave la soluzione puo essere calcolata con il metodo
LU, utilizzando il comando \. Un esempio:

>> A=[1 2 4; 2 4 16; 3 9 81];
>> b=ones(3,1);

>> x=A\b

>> norm(A*x-b)

ans = 9.9301e-16

>> det(A)

ans = -24.000

Uno dei principali problemi del metodo LU ¢ legato all’alto costo computazionale.
Se A € una generica matrice quadrata di ordine » infatti necessitano circa

nd  n?
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operazioni moltiplicative, che possono risultare eccessive nel caso di matrici di grandi
dimensioni. Per ovviare a questo problema si usano metodi iterativi (stazionari) del
tipo
kD —px® L0 f=0,1,...

con P dipendente da A e c dipendente da A e b (ma non da k). A differenza dei
metodi diretti (come ad esempio il metodo LU), in genere un metodo iterativo stazionario
convergente calcola usualmente solo un approssimazione della soluzione x (a meno
diuna tolleranza prefissata). Se m & il numero di iterazioni necessarie, visto che ogni
iterazione ha un costo O(n2) dovuto al prodotto matrice-vettore Px® cisi augura
che il costo computazionale O(m n?) del metodo iterativo sia di gran lunga inferiore
a O(%3 + "72) di un metodo diretto quale LU.

Per una breve storia dell’algebra lineare si consulti [3].
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1.1 ImetodidiJacobi, Gauss-Seidel e SOR

Sia A= M — N con M non singolare, un generico metodo iterativo stazionario €
del tipo
x*D = N R 4 M, )

La matrice P = M~ N & usualmente chiamata matrice di iterazione del metodo
iterativo stazionario definito da M, N. Osserviamo che posto ¢ = M~1b, il metodo
sopracitato € ovviamente tystazionario essendo

x(k+1) — Px(k) +c ¥)

con P e c indipendenti da k.

Questa definizione dei metodi stazionari, forse un po’ astratta, ha il vantaggio di
offrire una rappresentazione compatta degli stessi ed € comunemente utilizzata in
letteratura.

Sia ora A = D — E - F con D matrice diagonale, E, F rispettivamente triangolare
inferiore e superiore con elementi diagonali nulli.

1.2 Il metodo di Jacobi

Il metodo di Jacobi fu scoperto nel 1845, nell’ambito di alcune ricerche su prob-
lemi di piccole oscillazioni che comportavano alla risoluzione di sistemi lineari con
matrici diagonalmente dominanti [3, p.313].

Nel caso del metodo diJacobi [15] si ha

M=D, N=E+F 3)
e quindi
P=M'N=D Y E+F)=D'D-D+E+F)=D'(D-A)=I-D'A (4

Si osservi che se D & non singolare allora il metodo di Jacobi, almeno in questa ver-
sione di base, non puo essere utilizzato visto che in (7) non ha senso la scrittura DL,
Qualora sia a;; # 0 per ogni i = 1,..., n, il metodo di Jacobi puo essere descritto
come
(k+1) Y o v *) ~
x; Y = (b - Zlaijxj - 'Z;rlaijxj Maii, i=1,...,n. (5)
j= j=i

1.3 Il metodo di Gauss-Seidel

Il metodo di Gauss-Seidel fu scoperto nel 1874, da studi preliminari di Gauss
(1823) completati dal suo allievo Seidel per lo studio di problemi ai minimi quadrati
del tipo Sx = f con S non quadrata, che venivano risolti quali soluzione del sistema
di equazioni normali S”SxS” f. Mentre Gauss oltre a problemi di Astronomia era
interessato a problemi di Geodesia (triangolazione di Hannover usando una catena
di 26 triangoli), Seidel si interessava alla risoluzione di un sistema di equazioni con
72 incognite per uno studio di luminosita stellare.
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Il metodo di Gauss-Seidel [13] & definito quale metodo stazionario in cui
M=D-E N=F (6)

e quindi
P=M'N=D-E"'F @)

Similmente al metodo di Jacobi, possiamo riscrivere piu semplicemente anche
Gauss-Seidel come

i-1 n

k+1 k+1 k

x§+)= bi—Zaijx;Jr)— Z al-jx;.) /al-l-. 8)
j=1 Jj=i+l

Da (8) si capisce perche tale metodo & noto anche come metodo delle sostituzioni
successive.

1.4 Generalizzazioni del metodo di Jacobi e Gauss-Seidel

Quali generalizzazioni del metodo di Jacobi e Gauss-Seidel si introducono, per
un opportuno parametro w, la versione rilassata del metodo di Jacobi

x**Y = (1-wD ' AxP +wD b €)

la versione rilassata del metodo di Gauss-Seidel

D Ll D -1
x”””:(——E) ((——1 D+F)x“"+ ——E) b. 10)
w w
Lidea di fondo di questi metodi rilassati e la seguente [3, p. 261], [16]. Ogni

metodo precedentemente esposto pud essere scritto come

L+ — ) | (R

ove r'® &la correzione da apportare per passare da x©) a x**+D_ Nei metodi rilassati,
se r'®) ¢ la correzione di Jacobi o Gauss-Seidel, si considera quale correzione w - &
e quindi

2D = 5B 4 gy )

Si osservi che i metodi di Jacobi e Gauss-Seidel si ottengono rispettivamente da
(9) e (10) per la scelta w = 1.

2 Convergenza dei metodi iterativi

2.1 Norma di matrici

Sia p(P) il massimo degli autovalori in modulo della matrice diiterazione P = M Y
(il cosidetto raggio spettrale).

Sia | - || : R”™ — R, una norma vettoriale. Definiamo norma naturale (in alcuni
testi norma indotta) di una matrice A € R"*" la quantita

lAx|l

Al := .
x€R™,x#0 x|l
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Si nota subito che questa definizione coincide con quella di norma di un operatore
lineare e continuo in spazi normati.
Vediamo alcuni esempi. Sia x un arbitrario elemento di R, Ae R"*",

¢ Si definisce || x||; := ZZ:I |xx| e si dimostra che la norma naturale corrispon-
dente & (cf. [4, p.26])

n
I Allx =m]aXZ|ai,j|.
i=1

* Sidefinisce || x|l := maxy | x| e si dimostra che la norma naturale corrispon-
dente & (cf. [4, p.26])

n
Il Alleo = ml,alelai,jl.
]:

¢ Sidefinisce | x||» := (ZZ=1 | X1 |2)2 e si dimostra che la norma naturale corrispon-
dente e (cf. [4, p.27])
Al = "2 (A" ).

Per quanto riguarda un esempio chiarificatore in Matlab/Octave

>> A=[1 5; 7 13]

>> norm(A,1)

ans =
18

>> norm(A,inf)

ans =
20

>> norm(A,2)

ans =
15.5563

>> eig(A*A?)
ans =
2
242

>> sqrt(242)
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ans =
15.5563

>> raggio_spettrale_A=max(abs(eig(A)))

raggio_spettrale_A =
15.4261

>>

Si dimostra che (cf. [4, p.28])

Teorema 2.1 Per ogni norma naturale || - || e ogni matrice quadrata A si ha p(A) <
| All. Inoltre per ogni matrice A di ordine n e per ognie > 0 esiste una norma naturale
Il - |l tale che

p(A) < | All < p(A) +e.
e inoltre (cf. [4, p.29], [3, p.232])
Teorema 2.2 Fissata una norma naturale || - ||, i seguenti asserti sono equivalenti
1. A" —0;
2. A" —0;
3. p(A)<1.
Nota.

1. Ricordiamo che il raggio spettrale non & una norma. Infatti la matrice

0 1
0 0
ha raggio spettrale nullo, ma non ¢ la matrice nulla.

2. Osserviamo che dagli esempi il raggio spettrale di una matrice A non coincide
in generale con la norma 1, 2, co, ma che a volte p(A) = || All, come nel caso di
una matrice diagonale A.

2.2 1l teorema di Hensel e la convergenza di un metodo iterativo
stazionario

Consideriamo un metodo iterativo stazionario x**1) = Px%® + ¢ in cui scelto x© si

abbia

n
x*=x0 =Y cous
s=1

dove {u;}r € una base di autovettori di P avente autovalori {1;};r. Questo accade
se e solo se A e diagonalizzabile, cioe simile a una matrice diagonale (cf. [3, p.57]).
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Figura 1: Kurt Wilhelm Sebastian Hensel (1861-1941).

Se il metodo & consistente, cioé x* = Px* + ¢ abbiamo x® — x* = p(x*~D — x*) =
Pk(x0—x*) = - csPFu, = p3 cs/l’sC us e quindi se |A¥| < 1 per ogni k abbiamo

n n
k k k
I® —x* 1= 1Y esA¥usl < Y lesliAf 1 lush — 0

s=1 s=1

mentre se per qualche k si ha Nk =1e ¢ # 0 allora I x® — x*|| non converge a 0

al crescere di k. Infatti, se 1; = 1 € 'autovalore di massimo modulo, abbiamo che
la componente cl/lé relativa all’autovettore u; non tende a 0 e quindi x* — x* non
tende a 0. Di conseguenza non ¢ vero che il metodo & convergente per qualsiasi
scelta del vettore x©.

Di conseguenza

Teorema 2.3 Se P e diagonalizzabile allora un metodo iterativo stazionario consis-
tente x**D = Px®) 4 ¢ converge per ogni vettore iniziale xy se e solo se p(P) < 1.

Dimostriamo ora una sua generalizzazione, scoperta da Hensel nel 1926 [3, p.313].

Teorema 2.4 Un metodo iterativo stazionario consistente x**V = Px®) 4 ¢ converge
per ogni vettore iniziale xy se e solo se p(P) < 1.

Dimostrazione. (cf. [3, p.236])

e Se p(P) < 1, allora il problema x = Px + ¢ ha una e una sola soluzione x*.
Infatti,
x=Px+co(I-P)x=c

e la matrice I — P ha autovalori 1 — A con k=1,...,n tali che
0<[1—[Aklclr = 11— Aklc,

poiche [1¢]c < p(P) <1 e quindi

n
det(I-P) =[] @-2Ax) #0,
k=1
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per cui la matrice I — P e invertibile e il sistema (I — P)x = ¢ ha una e una sola
soluzione x*.

Sia e(k) = x*) — x*. Come stabilito dal Teorema 2.1, sia inoltre una norma
naturale || - || tale che

p(A) < Al = p(A) + (1 - p(A))/2 < 1.

Essendo x**Y = px® 4+ ¢ e x = Px + ¢, sottraendo membro a membro le

equazioni si ottiene
ek+D) _ pplk+D) _ pk

da cui
1 D) = 1 Pe™) = | P < | PF e

Poiche il raggio spettrale € minore di 1 allora IP¥| — 0 da cui e**V)| - 0e
quindi per le proprieta delle norme e**? — 0 ciog x® — 0.

Si noti che questa direzione della dimostrazione poteva essere vista come ap-
plicazione del teorema di punto fisso di Banach che stabilisce che se K € un
insieme non vuoto e chiuso di uno spazio di Banach Ve T: K — K € una
mappa L contrattiva, cioé || T'(x) — T(y)| < LIx—yl con 0 < L < 1, allora esiste
ed & unico x* € K tale che x* = T'(x*) e inoltre per ogni x¥) € K la sequenza
{x®)}; € K definita da x**D = T(x®), k= 0,1,... converge ad x*. Per una di-
mostrazione si veda ad esempio [2, p.133], [4, p.133]. 1l problema che stiamo
analizzando corrisponde a porre K = V =R dotati di una norma || - || tale che

p(A) = Al =0 +p(A)/2<1,
e T(x) = Px+ c. Certamente T € contrattiva in quanto

1+ p(A)

ITG) =TI =1Px+c—=Py—cll<IPx-yl=<IPllx-yl= 2

x—yll.
Di conseguenza per ogni x € R” la sequenza x**V = Px®) + ¢ converge a x*

soluzione di x = Px +c.

Supponiamo che la successione K+ = pyk) 4 ¢ converga a x* per qualsiasi
x© € R"” ma che sia p(P) = 1. Sia Amax il massimo autovalore in modulo di P
e e© = x( _ x* un suo autovettore. Essendo Pe® = Amaxe©® e ek*1) = pke®
abbiamo che

oD ko0

da cui, qualsiasi sia la norma || - ||,

k+1 k 0 0
e V) = 1Aaxlcle@ = 1e@

il che comporta che la successione non & convergente. |
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2.3 Sulla velocita di convergenza

Abbiamo visto che
le® ) < 1P*)1e@ ), e® = x®) - x* an

Se ek~ £, 1a quantita lle® | /)1 ek=D) esprime la riduzione dell’errore al k-simo
passo e

1
~ ( le®)  Je® ) £

or=|———...
le®=1] " [le@]

la riduzione media per passo dell’errore relativo ai primi k passi (cf. [3, p.239]).
Si dimostra che
Teorema 2.5 Sia Ae C"*" e| - || una norma naturale. Allora

. s
hernIIA I*=p(A)

Quindi per k sufficientemente grande si ha

1P*) = p*(P).
Sotto queste ipotesi, se
le® ™) = | P™)e® | (12)
abbiamo )
le® ™| = | P™]|e® | = pin (P) e (13)

per cui affinche
le® ™) /11e®| = p™(P) = €

applicando il logaritmo In ad ambo i membiri, si vede serve sia,

Ine

| P)) =1 S
mlIn(p(P)) =lne=>m n(p(P))

Se
R(P)=-In(p(P))

e la cosidetta velocita di convergenza asintotica del metodo iterativo relativo a P, si
puo cosi stimare che il numero di iterazioni m necessarie per ridurre I’errore di un

fattore € & circa
[—ln(e)"
R(P) |
Conseguentemente minore € p(P) necessariamente € maggiore R(P) e si puo

stimare il numero di iterazioni per ridurre I'errore di un fattore €. Si desidera quindi
cercare metodi con p(P) piu piccolo possibile.
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3 ImetodidiRichardson

Fissato a, la versione di base del metodo di Richardson consiste in un metodo iter-
ativo del tipo
kD _ k) ) (14)

D’altra parte come visto precedentemente i metodi di Jacobi e di Gauss-Seidel e
le loro versioni rilassate sono metodi iterativi del tipo

Mx*D = Nx® 4 p) (15)
per opportune scelte delle matrici M (che dev’essere invertibile), N tali che
A=M-N. (16)

Se
r® =p-Ax® a7

e il residuo alla k-sima iterazione allora da (15) e (16)
M - x0y = Nx® 4+ p— Mx® = p— AxP = ® (18)

Ne consegue che i metodi di Jacobi e di Gauss-Seidel e le loro versioni rilassate sono
generalizzazioni di un metodo di Richardson del tipo

M+ — x 0y = g0 19

in cui la matrice invertibile M & detta di precondizionamento.

3.1 Il metodo di Richardson precondizionato con parametro fisso
a ottimale

Per un opportuno parametro di accelerazione a > 0 (da non confondersi con
quello di SOR), si puo fornire un’ovvia generalizzazione del metodo (18)

MY — x0y = g0 k>0, (20)

Evidentemente (18) corrisponde alla scelta @ = 1.
Il parametro a > 0 viene scelto cosi da minimizzare il raggio spettrale della ma-
trice di iterazione. In questo caso si vede che da

Mx*D — x®) = g (h— Ax®) 21)
necessariamente
Mx®D = px® 4 g (b— Ax®) = (M= aA)x® + ab, (22)

e quindi con le precedenti notazioni

M M-aA
Mg =—, No= ——— (23)
a a
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Figura 2: Graficidi |1 — aAmax| € |1 — @Apjp | (rispettivamente in rosso e in blu).

per cui la matrice di iterazione Ry = M, 1 N, diventa
C=M'M-aAd)=I-aM A (24)

Se M~!A & definita positiva e Amin € Amax sono rispettivamente il minimo e
massimo autovalore di M~1 A, allora il valore ottimale del parametro a, cioe quello
per cui &€ minimo il raggio spettrale della matrice d’iterazione M —a A &

2 (25)
Qott =75
/lmin + Amax
ed in corrispondenza si ha che la matrice di iterazione Ry ott ha raggio spettrale
Amax — Ami
Aott = a2 min (26)
/lmin + /lmax

Per capirlo si dimostra dapprima che qualsiasi sia A € [A;;;;n, Amax] si ha

1-aAl =max(|1-aApinl 11— aAmax))

e che
miﬂglmax(ll — @A minl 11— @Amax|)
ae

lo si ottiene quando la retta y = aAmax — 1 interseca la retta y = 1 — aA i, che &
proprio per a = aptt-

Si osservi che la scelta di @ non dipende dall’iterazione; di conseguenza (20)
definisce il cosidetto metodo di Richardson stazionario precondizionato, per dis-
tinguerlo dal metodo di Richardson non stazionario precondizionato

MED — x0) = qp (b - AxP). @7

con ay che non € necessariamente costante.
3.2 Il metodo del gradiente coniugato

Un classico metodo di Richardson non stazionario ¢ quello del gradiente (detto an-
che di discesa piti ripida). Sia A una matrice simmetrica definita positiva. Si osserva

10
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che se x* & 'unica soluzione di Ax = b allora & pure il minimo del funzionale
L7 T n
o(x) = Ex Ax—b" x, xeR

Un generico metodo di discesa consiste nel generare una successione

PUCS NP
dove p® & una direzione fissata secondo qualche criterio.

Si dimostra [4, p.341] che il parametro a ottimale cosicche (/)(x“‘+ Dy sia minimo
una volta scelta p® ¢

(r(k)) Tp(k)
T ()T ap®
Nel metodo del gradiente si sceglie quale direzione p'® = grad(¢(x))| r=x- Ma
ser® =p— Ax®, allora
1
grad(p(xX)) = v = Egrad(xTAx)lx:x(k) —grad(b” x) |z x(0)
= Ax®-p=—r® (28)

e quindi p® = r® (e essenziale la direzione ma non il segno e per convincersene
si calcoli la successione anche con segno opposto p*) = —r® per parametro a;
ottimale).

Di conseguenza il metodo del gradiente & definito dalla successione tipica dei metodi
di Richardson non stazionari

LU+ — () )

+air
dove

r®Tp®

W= T Ap® ~ (N Ap R

3.3 Una stima dell’errore per alcuni metodi di Richardson

Per quanto riguarda una stima d’errore, citiamo il seguente teorema (cf. [11, p.148]).
Teorema 3.1 Siano A e M due matrice simmetriche e definite positive e si consideri
un metodo di Richardson M(x*+D — x(*)) = akr(k), dove

L. M=Tle (T (k)
_ = ®) _ g1,

= 2T 470

2. oppure M invertibile con la scelta (non dinamica) del parametro oy

2
A =QAopt=——7.
k= Qopt A i + Amax

11
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Posto |v)|4:= VvT Av, e® = x®) — x, si ha

k

k(M 1A)-1
le® )4 < ( el 4

k(M 1A)+1

dovex (M~ A) & il numero di condizionamento della matrice M~ A.

Discutiamo l'asserto.

1. Nel caso del metodo del gradiente, che corrisponde alla scelta M =1 e zk) =
r® vale quindi la stima

x(A) -1\
||e““’||As(m) e 4

che mostra che pitl grande ¢ il numero di condizionamento x(A) piu e vi-
cino a 1 la quantita ﬁggj il che giustifica una possibile convergenza lenta
del metodo.

2. Nel caso del metodo precondizionato, si vede che una scelta quasi ottimale &
quella per cui k(M- A) & vicino a 1. Osserviamo d’altra parte che non si pud
scegliere M = A in quanto con facili calcoli ci si accorge che non si potrebbe
calcolare il valore x**P a partire da x(©.

4 Matrici simmetriche definite positive: il metodo del
gradiente coniugato

Il metodo del gradiente coniugato (di cui forniremo solo il codice e alcune brevi
indicazioni) fu descritto nel 1952 da Hestenes e Stiefel ma per quanto destasse subito
I'interesse dell’ambiente matematico non venne molto utilizzato fino al 1971, quando
Reid suggeri il suo utilizzo per la risoluzione di sistemi sparsi (cioé con molte com-
ponenti nulle) di grandi dimensioni [3], [14].

La successione delle iterazioni del gradiente coniugato & quella propria dei metodi
di discesa,

(r (k)) T (k)

(k+1) _ (k) —
oS = (PP T Ap

k
+06k19( ), 493

dove p@ =70 ¢

(r(k))Tr(k)

(k) _ (k) (k-1) -
p =r +ﬁkp ’ ﬁk_ (r(k—l))Tr(k—l).

Con questa scelta si prova che

(p*)T ap®-V =g,

12
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cio¢ i vettori p® e p*~ sono A-coniugati.

4.1

Convergenza del gradiente coniugato

Il metodo del gradiente coniugato ha molte proprieta particolari. Ne citiamo
alcune.
e Sia

K= span(r(o),Ar(o),...,Ak_lr(O))
per k = 1. Allora la k-sima iterata dal metodo del gradiente coniugato mini-

mizza il funzionale ¢ nell'insieme x© + %} [7, p.12].

Se A e una matrice simmetrica e definita positiva di ordine 7, si pud dimostrare
che il metodo e convergente e fornisce in aritmetica esatta la soluzione del sis-
tema Ax = b in al massimo 7 iterazioni.

Questo teorema tradisce un po’ le attese, sia perche in generale i calcoli non
sono compiuti in aritmetica esatta, sia perche in molti casi della modellistica
matematica 7 risulta essere molto alto.

Si pud dimostrare [3, p. 279] che se A € simmetrica e definita positiva,

lxlla=VxTAx

e
e =x* —xk
allora .
el <(7”K2(AH * el
MA@ +1 olA:

Questo risultato stabilisce che la convergenza del gradiente coniugato ¢ lenta
qualora si abbiano alti numeri di condizionamento

-1 maXil/ll'l
Ko (A) = Al2llA 2= ———
min; ||

(ove al solito {A;} sono gli autovalori di A). Esistono varie versioni di questa
disuguaglianza. Ad esempio in [11, p. 151]:

2ck
||€k||AS( lleolla

1+2ck
dove
. VIGA) -1
T VKA +1

Sia A simmetrica e definita positiva. Si supponga che ci siano esattamente k <
n autovalori distinti di A. Allora il metodo del gradiente coniugato converge
in al piu k iterazioni.

13
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* Sia A simmetrica e definita positiva. Si supponga b sia combinazione lineare
di k < n autovettori distinti di A. Allora il metodo del gradiente coniugato con
la scelta x® = 0 converge in al pit1 k iterazioni.

Lanalisi del metodo € piuttosto complessa. Qualora interessati si confronti con
[1, p. 562-569], [3, p. 272-283], [4, p. 340-356], [7, p. 11-29], [1 1, p. 145-153].

5 Convergenza dei Jacobi, Gauss-Seidel ed SOR

Lo studio della convergenza dei metodi di Jacobi, Gauss-Seidel ed SOR [16] € un
proposito complicato e ci limiteremo a citare, senza dimostrazione, alcuni classici
risultati [3, p. 231-315].

Ricordiamo che

1. Aeapredominanza diagonale (per righe) se per ogni i = 1,..., n risulta

laiil= Y laijl

J=Lj#s

<.

e per almeno un indice s si abbia
n

las,s| > Z |as,j|-

j=1j#s
Ad esempio la matrice
4 -4 0
A= -1 4 -1
0 -4 4

& a predominanza diagonale (per righe).

2. A e a predominanza diagonale in senso stretto (per righe) se per ogni i =
1,...,nrisulta
n

laiil> Y laijl.

J=Lj#i
Ad esempio la matrice
4 -1 0
A= -1 4 -1
0O -1 4

& a predominanza diagonale in senso stretto (per righe).

3. A é a predominanza diagonale per colonne (in senso stretto) se A’ & a pre-
dominanza diagonale per righe (in senso stretto).
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4.

A e tridiagonale se a;,j = 0 per |i — j| > 1. Ad esempio la matrice

4 -1 0 0

-1 4 -1 0
A= 0 -1 4

0 oo -1

0 0 -1 4

é tridiagonale.

A e definita positiva se e solo se i suoi autovalori sono positivi.

La matrice
4 -1 O
A=| -1 4 -1
0 -1 4

¢ definita positiva come si puo vedere usando i seguenti comandi Matlab/Octave

>> A=[4 -1 0; -1 4 -1; 0 -1 4]

A =
4 -1 0
-1 4 -1
0 -1 4
>> eig(h)
ans =
2.5858
4.0000
5.4142
>>

A di ordine n = 2 e riducibile se esiste una matrice di permutazione II e un
intero k con 0 < k < n, tale che

T_[ A1 A

B =1IIAIl" = ’ ’

( 0 Az )

in cui Aj1 € CoK Ay, € C-R*(=0) " ge A non ¢ riducibile si dice che A &
irriducibile.

II metodo di Jacobi risulta convergente in uno dei seguenti casi [3, p. 247]:

1.

2.

A é a predominanza diagonale in senso stretto;
A é a predominanza diagonale ed é irriducibile;
A é a predominanza diagonale in senso stretto per colonne;

A & a predominanza diagonale per colonne ed ¢ irriducibile.

15
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Teorema5.1 Sia A una matrice quadrata a predominanza diagonale. Allora il metodo
di Jacobi converge alla soluzione di Ax = b, qualsiasi sia il punto x© iniziale.

Dimostrazione. Supponiamo che A sia a predominanza diagonale in senso stretto
per righe. Allora per ogni i = 1,..., nrisulta

n

laiil> Y laijl.

j=1,j#i
Nel caso del metodo di Jacobi
M=D, N=E+F P=M'N=D"YE+F), (29)
da cui o
—L sei#j
Pij=4q @i .75].
0 sei=]j
Di conseguenza
L . la;,l
IPlloo=max )" |P;jl=max ) —=<1
o=l L=l la,;

ed essendo p(P) < || P} <1 abbiamo che il metodo di Jacobi e convergente. |

Teorema 5.2 [l metodo di Gauss-Seidel risulta convergente in uno dei seguenti casi
[3, p. 249]:

1. A ea predominanza diagonale in senso stretto.

2. Sia A una matrice simmetrica definita positiva, non singolare con elementi
principali a; ; # 0. Allora Gauss-Seidel e convergente se e solo se A ¢é definita
positiva.

Teorema 5.3 Per matrici tridiagonali (a blocchi) A = (a;, i) con componenti diago-
nali non nulle, i metodi di Jacobi e Gauss-Seidel sono o entrambi convergenti o di-
vergenti e il tasso di convergenza del metodo di Gauss-Seidel é il doppio di quello del
metodo di Jacobi (il che vuol dire che asintoticamente sono necessarie meta iterazioni
del metodo di Gauss-Seidel per ottenere la stessa precisione del metodo di Jacobi).

Teorema5.4 Sia A simmetrica con elementi diagonali positivi. Allora il metodo SOR
converge se e solo se0 < w < 2 e A é definita positiva [6, p.215].
6 Testd’arresto

Consideriamo il sistema lineare Ax = b avente un'unica soluzione x* e supponi-
amo di risolverlo numericamente con un metodo iterativo stazionario del tipo

x kD = px By e
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che sia consistente cioe
x*=Px* +c.

6.1 Sul criterio dello step

Posto A ;= xk+1) _ (k) ¢ (k) — x* _ x(K) agsendo

e® = x—x® =px*+0)—(Px® +¢)
= Px*—x®)=pek-D (30)
abbiamo
16z = " =xP = 1o = xFD) 4 (D — Oy

1e® D + AP, = | Pe® + AP, < 1Pl - 6Pl + 1A%, 3D

Fissata dall'utente una tolleranza tol, si desidera interrompere il processo iterativo
quando |x* —x®| < tol. Non disponendo di x*, il test dello step, consiste nell'interrompere
il metodo iterativo alla k + 1-sima iterazione qualora |x**V — x¥| < tol. Di seguito

desideriamo vedere quando tale criterio risulti attendibile cioe
|x(k+l) _ x(k)l ~ |x* _ x(k)l

Se P e simmetrica, allora esistono una matrice ortogonale U, cioe tale che U r-y-1,
e una matrice diagonale a coefficienti reali A per cui

P=UAUT

ed essendo P e A simili hanno gli stessi autovalori {A}; Di conseguenza, se P &
simmetrica

[Pl = \/p(PPT)z\/p(UAUT(UAUT)T)

= /p(UAN2UT) (32)

Essendo UA2UT simile a A2, UA2UT e A% hanno gli stessi autovalori uguali a {/li} &
e di conseguenza lo stesso raggio spettrale, da cui

p(UAN*UT) = p(A?)

e quindi ricaviamo

I1Pll2

Vo) = fmaxiag

wm/?"'“'z) = wm]gxmknz
max|A¢| = p(P) 33)

17
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Di conseguenza da (31)

W, 1Pl - 1e® )5 + 1AR

p(P)-11e® 2 + AP,

IA

le

(34)

e se p(P) < 1, cioe il metodo iterativo stazionario converge per qualsiasi scelta del
vettore iniziale, portando p(P) - le® 2 a primo membro e dividendo per 1 - p(P)
deduciamo

1 k 1 +_ ()
I ®HD — )y = e, = A0 )2 = ——J1x" - x|,
1-p(P) 1-p(P)

da cui se P & simmetrica allora il criterio dello step e affidabile se p(P) & piccolo.
6.2 Sul criterio del residuo

Si definisce residuo alla k-sima iterazione la quantita
(IR (O
ed essendo b = Ax* abbiamo
b_Ax(k) = Ax* _Ax(k) = A(x* _x(k)) — Ae(k)

da cui
r = Ak,

Interromperemo il processo iterativo quando r® < tol, desiderando sia pure

[[x® — x|

(B

<tol
Notiamo che
1. essendo A invertibile e r'® = Ae™® ricaviamo e® = A~1r® da cui

le® ) = 1A r® ) < a=r®y;

2. poicheé b= Ax* abbiamo ||b| < | Allllx* | e quindi

1 Al
s—.
=1 bl

Di conseguenza, denotato con x (A) = || Alll A~1|| il numero di condizionamento (nec-
essariamente maggiore o uguale a 1), se x* # 0 abbiamo

le®n 1AL @ 1AL 1 &)
s — e === AP s x(A)——
L1~ bl Ib] bl
Quindi
(k) (k)
e r
| " I <k(A) | I <tol.
| 1B
I

Il criterio d’arresto TS tol & quindi molto conservativo quando x(A) > 1.
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7 Metodi iterativi in Matlab

7.1 Metodo di Jacobi in Matlab

Un codice Matlab/Octave del metodo di Jacobi,fornito in internet presso il sito
di Netlib

http://www.netlib.org/templates/matlab/

e il seguente

function [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

% —-— Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for the
% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatioms,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
h

% [x, error, iter, flag]l = jacobi(A, x, b, max_it, tol)

% jacobi.m solves the linear system Ax=b using the Jacobi Method.

% input A REAL matrix

YA X REAL initial guess vector

YA b REAL right hand side vector

yA max_it INTEGER maximum number of iterations

YA tol REAL error tolerance

h

% output x REAL solution vector

YA error REAL error norm

YA iter INTEGER number of iterations performed

YA flag INTEGER: O = solution found to tolerance

YA 1 = no convergence given max_it
iter = 0; % initialization
flag = 0;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r = b - A*x;
error = norm( r ) / bnrm2;

if ( error < tol ) return, end

[m,n]=size(A);

19



Metodi iterativi

[M, N] = split( A, b, 1.0, 1); % matrix splitting
for iter = 1l:max_it, % begin iteration
x_1 = x;
x =M\ (N*x + b); % update approximation
error = norm( x - x_1 ) / norm( x ); % compute error
if ( error <= tol ), break, end % check convergence
end

if ( error > tol ) flag = 1; end

% no convergence

Il codice di jacobi utilizza una funzione split che serve per calcolare le matrici
M, N che definiscono l'iterazione del metodo di Jacobi:

function [ M, N, b ] = split( A, b,

% function [ M, N, b ] =

w, flag )

split_matrix( A, b, w, flag )

% split.m sets up the matrix splitting for the stationary

% iterative methods: jacobi and sor

% input A DOUBLE PRECISION
% b DOUBLE PRECISION
yA W DOUBLE PRECISION
h flag INTEGER flag for
yA

yA

% output M DOUBLE PRECISION
% N DOUBLE PRECISION
yA b DOUBLE PRECISION

[m,n] = size( A );

(gauss-seidel when w = 1.0 )
matrix
right hand side vector (for SOR)
relaxation scalar
method: 1 = jacobi

2 = sor

matrix
matrix such that A =M - N
rhs vector ( altered for SOR )

% jacobi splitting

% sor/gauss-seidel splitting

- w ) * diag(diag( A ));

if ( flag == 1 ),
M = diag(diag(A));
N = diag(diag(A)) - A;
elseif ( flag == 2 ),
b =w *x b;
M= wx* tril( A, -1 ) + diag(diag( A ));
N=-wx*ztriu( A, 1) + (1.0
end;

% END split.m
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Ricordiamo che la funzione split non coincide con quella predefinita nelle
ultime releases di Matlab/Octave. Qualora la funzione split che vogliamo utiliz-
zare sia salvata della directory corrente, una volta richiamata, i workspace di Mat-
lab/Octave utilizzano proprio questa e non quella descritta per altri usi in Mat-
lab/Octave. Inoltre per quanto riguarda tril e triu in split dall’help di Matlab
si capisce che estraggono rispettivamente la parte triangolare inferiore e superiore
di una matrice:

>> help tril

TRIL Extract lower triangular part.
TRIL(X) is the lower triangular part of X.
TRIL(X,K) is the elements on and below the K-th diagonal
of X . K =0 is the main diagonal, K > O is above the
main diagonal and K < O is below the main diagonal.

See also TRIU, DIAG.

>> help triu

TRIU Extract upper triangular part.
TRIU(X) is the upper triangular part of X.
TRIU(X,K) is the elements on and above the K-th diagonal of
X. K =0 is the main diagonal, K > O is above the main
diagonal and K < O is below the main diagonal.

See also TRIL, DIAG.

>> A=[1 2 3; 45 6; 7 8 9]

A =
1 2 3
4 5 6
7 8 9
>> tril(A)
ans =
1 0 0
4 5 0
7 8 9
>> triu(A)
ans =
1 2 3
0 5 6
0 0 9
>> tril(A,-1)
ans =
0 0 0
4 0 0
7 8 0
>> triu(A,1)
ans =
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0 2 3
0 0 6
0 0 0
>> triu(4d,-1)
ans =
1 2 3
4 5 6
0 8 9
>>

La routine jacobi e scritta da esperti di algebra lineare e si interrompe quando

lanorma 2 dello step relativo
[l — O,

I+l

e inferiore ad una tolleranza tol prefissata oppure un numero massimo di iterazioni
max_it & raggiunto. Ricordiamo che se v = (v;);=1,.,, € un elemento di R” allora

n
lvl2 =1/ Y v2.
i=1

Problema: cosa succede quando la matrice diagonale estratta da A e singolare? cosa
succede quando partendo da xp # 0, si ha per qualche indice k > 0 che xj = 0?
7.2 Metodo di Gauss-Seidel in Matlab

La versione di Gauss-Seidel con la scelta del parametro w € nota in letteratura
come SOR, acronimo di successive over relaxation. Una versione di SOR scaricabile

presso il sito di Netlib [10] & la seguente

function [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

% -- Iterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for the
% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatioms,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
h

% [x, error, iter, flag]l = sor(A, x, b, w, max_it, tol)

% sor.m solves the linear system Ax=b using the
% Successive Over-Relaxation Method (Gauss-Seidel method when omega = 1 ).

A REAL matrix
X REAL initial guess vector

% b REAL right hand side vector
W REAL relaxation scalar

% input
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A max_it INTEGER maximum number of iterations

yA tol REAL error tolerance

h

% output x REAL solution vector

yA error REAL error norm

yA iter INTEGER number of iterations performed

YA flag INTEGER: O = solution found to tolerance

yA 1 = no convergence given max_it
flag = 0; % initialization
iter = 0;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r = b - Axx;
error = norm( r ) / bnrm2;
if ( error < tol ) return, end

[ M, N, b ] = split( A, b, w, 2 ); % matrix splitting
for iter = 1:max_it % begin iteration
x_1 = x;
x =M\ (Nsx + b ); % update approximation
error = norm( x - x_1 ) / norm( x ); % compute error
if ( error <= tol ), break, end % check convergence
end
b=b/ w; % restore rhs
if ( error > tol ) flag = 1; end; % no convergence

Come per il metodo di Jacobi, il processo si interrompe quando la norma 2 dello

step relativo
D — X O,

D

e inferiore ad una tolleranza tol prefissata oppure un numero massimo di iterazioni
max_it e raggiunto.
Per ulteriori dettagli si consulti ad esempio [4, p. 313-339].

7.3 Metodo del gradiente coniugato in Matlab

Per quanto riguarda il codice del Gradiente Coniugato, un esempio ¢ il file cg.m
tratto da Netlib [10]:

function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)
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-- Iterative template routine --

Univ. of Tennessee and Oak Ridge National Laboratory

October 1, 1993

Details of this algorithm are described in "Templates for the
Solution of Linear Systems: Building Blocks for Iterative
Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra,
Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatioms,
1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).

[x, error, iter, flagl = cg(A, x, b, M, max_it, tol)

cg.m solves the symmetric positive definite linear system Ax=b
using the Conjugate Gradient method with preconditioning.

input A REAL symmetric positive definite matrix
X REAL initial guess vector
b REAL right hand side vector
M REAL preconditioner matrix
max_it INTEGER maximum number of iterations
tol REAL error tolerance
output x REAL solution vector
error REAL error norm
iter INTEGER number of iterations performed
flag INTEGER: O = solution found to tolerance
1 = no convergence given max_it
flag = O; % initialization
iter = 0;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2

1.0; end

r =b - Axx;
error = norm( r ) / bnrm2;
if ( error < tol ) return, end

for iter = l:max_it

z =M\ r;
rho = (r’*z);

if ( iter > 1),
beta = rho / rho_1;
P = z + betaxp;
else
p =2z

24
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q = Axp;
alpha = rho / (p’*q );
X = x + alpha * p;

=

update approximation vector

=

r = r - alphaxq; compute residual
error = norm( r ) / bnrm2; % check convergence
if ( error <= tol ), break, end

rho_1 = rho;
end
if ( error > tol ) flag = 1; end % no convergence
% END cg.m

Osserviamo che il procedimento itera finché un numero massimo di iterazioni e
raggiunto oppure la norma 2 del residuo (relativo)
16— Ax®,
Ibll2

immagazzinata nella variabile error risulta inferiore ad una tolleranza prefissata
tol. In questo caso il criterio d’arresto del metodo del gradiente coniugato & diverso
da quello dello step relativo utilizzato nelle precedenti versioni di Jacobi ed SOR.

8 Un esperimento numerico

Consideriamo il sistema lineare Ax = b dove A & la matrice tridiagonale a blocchi (di
Poisson)

B -1 0 0

-1 B -I 0
A= 0 -I B

0 o =1

0 0 -1 B

con

4 -1 0 0

-1 4 -1 0
B=] 0 -1 4

o ... ... .. -1

0 o .. -1 4

La matrice A e facilmente esprimibile utilizzando la funzione makef ish scarica-
bile in [10]

function mat = makefish(siz);
% make a Poisson matrix
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leng = siz*siz;
dia = zeros(siz,siz);
off = -eye(siz,siz);
for i=1:siz, dia(i,i)=4; end;
for i=1:siz-1, dia(i,i+1)=-1; dia(i+1,i)=-1; end;
mat = zeros(leng,leng);
for ib=1:siz,
mat (1+(ib-1)*siz:ib*siz,1+(ib-1)*siz:ib*siz) = dia; end;
for ib=1:siz-1,
mat (1+(ib-1) *siz:ib*siz,1+ib*siz: (ib+1)*siz) off;
mat (1+ib*siz: (ib+1)*siz,1+(ib-1)*siz:ib*siz) = off; end;
return;

Vediamo un esempio:

>> makefish(3)

ans =
4 -1 0 -1 0 0 0 0 0
-1 4 -1 0 -1 0 0 0 0
0 -1 4 0 0 -1 0 0 0
-1 0 0 4 -1 0 -1 0 0
0 -1 0 -1 4 -1 0 -1 0
0 0 -1 0 -1 4 0 0 -1
0 0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4 -1
0 0 0 0 0 -1 0 -1 4

>>

B= 4 -1 0
-1 4 -1
0 -1 4

Per ulteriori dettagli sulle origini della matrice di Poisson, si considerino ad es-
empio [1, p. 557], [3, p. 283], [4, p. 334]. Le matrici di Poisson sono evidentemente
simmetriche, tridiagonali a blocchi, diagonalmente dominanti e dal primo e dal sec-
ondo teorema di Gerschgorin [3, p. 76-80], [4, p. 955] si pu0 provare che sono non
singolari. In particolare si pud mostrare che A & definita positiva. Per accertarsene,
calcoliamo il minimo autovalore della matrice di Poisson con B € .45, semplice-
mente digitando sulla shell di Matlab-Octave

>> A=makefish(5);
>> m=min(eig(A))
m=

0.5359
>>
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Tale matrice di Poisson non & malcondizionata essendo

>> A=makefish(5);
>> cond(A)
ans =
13.9282
>>

Poniamo ora
b=ones(size(A,1),1);
erisolviamo il sistema Ax = b digitando

x_sol=A\b;

Nota la soluzione esatta confrontiamo i vari metodi risolvendo il sistema lineare
con un numero massimo di iterazioni maxit e una tolleranza tol come segue

maxit=200; tol=10"(-8);
A tal proposito consideriamo I'm-file
demo_algebra_lineare.m

contenente il codice

maxit=200; tol=10"(-8);

siz=5;
A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

x_so0l=A\b; % SOLUZIONE ESATTA. METODO LU.

norm_x_sol=norm(x_sol);
if norm(x_sol) ==
norm_x_sol=1;

end

x=zeros(size(b)); % VALORE INIZIALE.

% JACOBI.

[x_j, error_j, iter_j, flag_jl = jacobi(A, x, b, maxit, tol);

fprintf (’\t \n [JACOBI ] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:

%2.2e’ ,error_j,norm(x_j-x_sol) /norm_x_sol);

fprintf (’\t \n [ITER.]: %3.0f [FLAG]: %1.0f \n’,iter_j,flag_j);

% GAUSS-SEIDEL.
w=1;
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[x_gs, error_gs, iter_gs, flag_gs] = sor(A, x, b, w, maxit, tol);

fprintf(’\t \n [GAU.SEI.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:
%2.2e’ ,error_gs,norm(x_gs-x_sol)/norm_x_sol);

fprintf (’\t \n [ITER.]: %3.0f [FLAG]: %1.0f
\n’,iter_gs,flag_gs);

% SOR.
w_vett=0.8:0.025:2;

for index=1:length(w_vett)

w=w_vett (index) ;

[x_sor, error_sor(index), iter_sor(index), flag_sor(index)] = sor(A,
x, b, w, maxit, tol);

relerr(index)=norm(x_sor-x_sol)/norm_x_sol;
end

[min_iter_sor, min_index]=min(iter_sor);

fprintf(’\t \n [SOR OTT.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:
%2.2e’ ,error_sor (min_index) ,relerr(min_index));

fprintf (°’\t \n [ITER.]: %3.0f [FLAG]: %1.0f [w]: %2.3f
\n’,min_iter_sor,flag_sor(min_index),w_vett(min_index));
plot(w_vett,iter_sor,’r-’);

% GRADIENTE CONIUGATO.

M=eye(size(A));

[x_gc, error_gc, iter_gc, flag gcl = cg(A, x, b, M, maxit, tol);
fprintf(’\t \n [GRA.CON.] [STEP REL., NORMA 2]: %2.2e [REL.ERR.]:
%2.2e’ ,error_gc,norm(x_gc-x_sol) /norm_x_sol);

fprintf (°’\t \n [ITER.]: %3.0f [FLAG]: %1.0f
\n’,iter_gc,flag_gc);

Lanciamo la demo nella shell di Matlab-Octave e otteniamo

>> demo_algebra_lineare

[JACOBI ] [STEP REL., NORMA 2]: 8.73e-009 [REL.ERR.]: 5.65e-008
[ITER.]: 116 [FLAG]: O

[GAU.SEI.] [STEP REL., NORMA 2]: 9.22e-009 [REL.ERR.]: 2.76e-008
[ITER.]: 61 [FLAG]: O

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-009 [REL.ERR.]: 1.10e-009
[ITER.]: 21 [FLAG]: O [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.41e-017 [REL.ERR.]: 2.21e-016
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[ITER.]: 5 [FLAG]: O
>>

Una breve analisi ci dice che

1. Come previsto dalla teoria, il metodo di Gauss-Seidel converge in approssi-
mativamente meta iterazioni di Jacobi;

2. Il metodo SOR ha quale costante quasi ottimale w = 1.350;

3. Ilmetodo del gradiente coniugato converge in meno iterazioni rispetto agli al-
tri metodi (solo 5 iterazioni, ma si osservi il test d’arresto differente). Essendo
la matrice di Poisson di ordine 25, in effetti cid accade in meno di 25 iterazioni
come previsto. Vediamo cosa succede dopo 25 iterazioni:

>> maxit=25; tol=0;
>> siz=5; A = makefish(siz); b=ones(size(A,1),1);
>> [x_gc, error_gc, iter_gc, flag gc]l = cg(A, x, b, M, maxit, tol);
>> error_gc
error_gc =
3.6287e-039
>>

Il residuo relativo, seppur non nullo & molto piccolo.

Un punto delicato riguarda la scelta del parametro w ottimale (cioé minimiz-
zante il raggio spettrale di SOR). Sia questo valore uguale a w*. Nel nostro codice
abbiamo calcolato per forza bruta w*, tra i numeri reali ™ < 2 del tipo w; = 0.8+ j -
0.025 quello per cui venivano compiute meno iterazioni.

E’ possibile calcolare w* matematicamente? Nel caso della matrice di Poisson la
risposta ¢ affermativa. Da [4, Teor.5.10, p.333]

*

2
w=——
1+/1-p2(B))

e il raggio spettrale della matrice di iterazione vale w* —1. dove p(S) & il massimo
degli autovalori in modulo della matrice S (il cosidetto raggio spettrale) e B; la ma-
trice di iterazione di Jacobi. Vediamo di calcolare questo valore nel caso della so-
pracitata matrice di Poisson. Dalla teoria, con ovvie notazioni,

By=I-D'A
e quindi

>> format long;

>> D=diag(diag(A));

>> BJ=eye(size(A))-inv(D)*A;
>> s=eig(BJ);

>> s_abs=abs(s);

>> rho=max(s_abs);
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>> w=2/(1+sqrt(1-rho"2))
W=
1.33333333333333
>> maxit=50; tol=10"(-8);
>> b=ones(size(A,1),1);
>> [x_sor, error_sor, iter_sor, flag_sor] = sor(A, x, b, w, maxit, tol);
>> iter_sor
iter_sor =
22
>>

Si rimane un po’ sorpresi dal fatto che per w = 1.350 il numero di iterazioni fosse
inferiore di quello fornito dal valore ottimale teorico w* = 1.333.... 1l fatto & che
questo e ottenuto cercando di massimizzare la velocita asintotica di convergenza.
Purtroppo questo minimizza una stima del numero di iterazioni k minime da com-
piere e non quello effettivo.

Abbiamo detto che un punto chiave é la grandezza del raggio spettrale delle ma-
trici di iterazione e che e desiderabile che questo numero oltre ad essere stretta-
mente minore di uno sia il pit1 piccolo possibile. Vediamo i raggi spettrali dei metodi
esposti.

Salviamo in raggispettrali.mil seguente programma principale

maxit=50; tol=0;

siz=5;
A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

[ M, N] =split( A, b, 1.0, 1 ); % JACOBI.

P=inv(M)*N;

rho_J=max(abs(eig(P)));

fprintf (’\n \t [RAGGIO SPETTRALE] [JACOBI]: %2.15f’,rho_J);

[M, N, b1 = split( A, b, 1, 2 ); % GS.

P=inv(M)*N;

rho_gs=max(abs(eig(P)));

fprintf (’\n \t [RAGGIO SPETTRALE] [GAUSS-SEIDEL]: %2.15f’,rho_gs);

D=diag(diag(A));
E=-(tril(A)-D);
=-(triu(A)-D);
w=1.350;
M=D/w-E; N=(1/w-1)*D+F;
P=inv(M)*N;
rho_sor=max (abs(eig(P)));
fprintf (’\n \t [RAGGIO SPETTRALE] [SOR BEST]: %2.15f’,rho_sor);

w=1.33333333333333;
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[M, N, b] = split( A, b, w, 2 ); % SOR OPT.

M=D/w-E; N=(1/w-1)*D+F;

P=inv (M) *N;

rho_sor_opt=max (abs(eig(P)));

fprintf(’\n \t [RAGGIO SPETTRALE][SOR OPT]: %2.15f’,rho_sor_opt);

Di seguito:

>> raggispettrali
[RAGGIO SPETTRALE] [JACOBI]: 0.866025403784438
[RAGGIO SPETTRALE] [GAUSS-SEIDEL]: 0.750000000000000
[RAGGIO SPETTRALE] [SOR BEST]: 0.350000000000001

[RAGGIO SPETTRALE] [SOR OPT]: 0.333333380707781
>>

Il valore del raggio spettrale della matrice di iterazione del metodo SOR per parametro
ottimale, per quanto visto anticipatamente vale w* — 1, e I'esperimento numerico lo
conferma.

Abbiamo poi osservato che in questo caso la velocita di convergenza del metodo di
Gauss-Seidel ¢ il doppio di quella di Jacobi. Poste Bgs, By le rispettive matrici di
iterazione, e detta R la velocita di convergenza, osserviamo che da

R(Bj) := -—In(p(B)) (35)
R(Bgs) := -In(p(Bgs)) (36)
R(Bgs) := 2R(Bj) (37

si ha
~In(p(Bgs)) = R(Bgs) = 2R(Bj) = —2In (p(B))) = —In (p(B)))?

da cui essendo il logaritmo una funzione invertibile

p(Bgs) = (p(B))*.
Il raggio spettrale della matrice di iterazione di Gauss-Seidel coincide quindi col
quadrato di quella di Jacobi ed infatti come e facile verificare

>> 0.866025403784438"2
ans =

0.75000000000000
>>

Al momento non consideriamo il metodo del gradiente coniugato poiché non &
di tipo stazionario.

9 Facoltativo: Altre matrici interessanti. La matrice di
Hilbert.

Per vedere alcuni comandi di base aiutiamoci con delle matrici predefinite in
Matlab/Octave. Digitiamo nella shell di Matlab/Octave >> help elmat. In Matlab
6.5 abbiamo
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>> help elmat
Elementary matrices and matrix manipulation.

Elementary matrices.

Zeros - Zeros array.

ones - Ones array.

eye - Identity matrix.

repmat - Replicate and tile array.

rand - Uniformly distributed random numbers.
randn - Normally distributed random numbers.
linspace - Linearly spaced vector.

logspace - Logarithmically spaced vector.

freqspace - Frequency spacing for frequency response.

meshgrid - X and Y arrays for 3-D plots.
: - Regularly spaced vector and index into matrix.

Specialized matrices.

compan - Companion matrix.

gallery - Higham test matrices.

hadamard - Hadamard matrix.

hankel - Hankel matrix.

hilb - Hilbert matrix.

invhilb - Inverse Hilbert matrix.

magic - Magic square.

pascal - Pascal matrix.

rosser - Classic symmetric eigenvalue test problem.
toeplitz - Toeplitz matrix.

vander - Vandermonde matrix.

wilkinson - Wilkinson’s eigenvalue test matrix.

Questo ci dice che Matlab ha predefinito un set di matrici di particolare inter-
esse. Se possibile si suggerisce di provare i metodi che andremo ad introdurre con
una matrice facente parte della gallery di Matlab. Cido non appare possibile nelle
recenti releases di Octave, come GNU Octave 2.1.73. Da Matlab 6.5

>> help gallery

GALLERY Higham test matrices.
[outl,out2,...] = GALLERY(matname, paraml, param2, ...)
takes matname, a string that is the name of a matrix family, and
the family’s input parameters. See the listing below for available
matrix families. Most of the functions take an input argument
that specifies the order of the matrix, and unless otherwise
stated, return a single output.
For additional information, type "help private/matname", where matname
is the name of the matrix family.
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cauchy
chebspec
chebvand
chow
circul

poisson
prolate
randcolu
values.

randcorr
randhess
rando
randsvd

redheff
riemann
ris
smoke
toeppd
toeppen
tridiag
triw
wathen
entries).
wilk

Cauchy matrix.

Chebyshev spectral differentiation matrix.

Vandermonde-like matrix for the Chebyshev polynomials.

Chow matrix -- a singular Toeplitz lower Hessenberg matrix.
Circulant matrix.

Block tridiagonal matrix from Poisson’s equation (sparse).
Prolate matrix -- symmetric, ill-conditioned Toeplitz matrix.
Random matrix with normalized cols and specified singular

Random correlation matrix with specified eigenvalues.
Random, orthogonal upper Hessenberg matrix.

Random matrix with elements -1, O or 1.

Random matrix with pre-assigned singular values and specified
bandwidth.

Matrix of Os and 1s of Redheffer.

Matrix associated with the Riemann hypothesis.

Ris matrix -- a symmetric Hankel matrix.

Smoke matrix -- complex, with a "smoke ring" pseudospectrum.
Symmetric positive definite Toeplitz matrix.

Pentadiagonal Toeplitz matrix (sparse).

Tridiagonal matrix (sparse).

Upper triangular matrix discussed by Wilkinson and others.
Wathen matrix -- a finite element matrix (sparse, random

Various specific matrices devised/discussed by Wilkinson.
(Two output arguments)

GALLERY(3) is a badly conditioned 3-by-3 matrix.
GALLERY(5) is an interesting eigenvalue problem. Try to find
its EXACT eigenvalues and eigenvectors.

See also

MAGIC, HILB, INVHILB, HADAMARD, WILKINSON, ROSSER, VANDER.

10 Facoltativo: gli esempi visti in Matlab funzionano
anche in Octave.

Rivediamo gli esperimenti in una recente release di Octave, come GNU Octave

2.1.73.

octave:12> makefish(3)

ans =

-1 -0 -0 0 O 0
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-1 4 -1 -0 -1 -0 0 O
o -1 4 -0 -0 -1 0 0
-1 -0 -0 4 -1 0o -1 -0
-0 -1 -0 -1 4 -1 -0 -1
-0 -0 -1 0 -1 4 -0 -0
0 0 0 -1 -0 -0 4 -1
0 O 0 -0 -1 -0 -1 4
0 0 0o -0 -0 -1 0o -1

octave:13> A=makefish(5);
octave:14> m=min(eig(A))

m = 0.53590

octave:15> cond(A)

ans = 13.928

octave:16> b=ones(size(A,1),1);
octave:17> demo_algebra_lineare

[JACOBI

[ITER.]: 116 [FLAG]:
[GAU.SEI.] [STEP
[ITER.]: 61 [FLAG]:
[SOR OTT.] [STEP
[ITER.]: 21 [FLAG]:
[GRA.CON.] [STEP

[ITER.]:

format long;
D=diag(diag(A));
size(D)

5 [FLAG]:
octave:18>
octave:19>
octave:20>
ans =

25 25

21>
octave:22>
octave:23>

octave:
s=eig(BJ);
s_abs=abs(s);

:24> rho=max(s_abs);
octave:25> w=2/(1+sqrt(1-rho~2))
1.33333333333333

26> maxit=50; tol=10"(-8);
27> b=ones(size(A,1),1);
28>
29>
iter_sor =
octave:30>

octave

w o=
octave:
octave:
octave:
octave: iter_sor
22

raggispettrali

[RAGGIO SPETTRALE] [JACOBI]:
[RAGGIO SPETTRALE] [GAUSS-SEIDEL] :

] [STEP REL., NORMA 2]:

REL., NORMA 2]:

REL., NORMA 2]:

REL., NORMA 2]:

8.73e-09 [REL.ERR.]:

0

9.22e-09 [REL.ERR.]:

0

2.31e-09 [REL.ERR.]:

0 [w]:

4.67e-17 [REL.ERR.]:

0

BJ=eye(size(A))-inv (D) *4A;

34

5.65e-08

2.76e-08

1.10e-09

1.350

1.85e-16

[x_sor,error_sor,iter_sor,flag_sor]=sor(A,x,b,w,maxit,tol);

0.866025403784439

0.750000000000000
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[RAGGIO SPETTRALE] [SOR BEST]: 0.350000000000000
[RAGGIO SPETTRALE] [SOR OPT]: 0.333333380472264
octave:31> 0.866025403784439°2
ans = 0.750000000000001
octave:32>
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