METODI ITERATIVI PER LA SOLUZIONE DI EQUAZIONI LINEARI *
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1. Introduzione. Sia A una matrice reale aventerighe edn colonne,b un vettore
colonna avente, righe e si supponga di voler risolvere il sistema linedre = b. Come
noto, se il determinante della matrice € diverso da O (lei@@atriceA & non singolare) allora
il problemaAx = b ha una ed una sola soluzione.

Ricordiamo che in Matlab/Octave la soluzione pud essei@lzda con il metodo LU,
utilizzando il comandd,. Un esempio:

>> A=[1 2 4; 2 4 16; 3 9 81];
>> b=ones(3,1);

>> x=A\b

>> norm(A *x-b)

ans = 9.9301e-16

>> det(A)

ans = -24.000

Uno dei principali problemi del metodo LU ¢ legato all’attosto computazionale. S¢ e
una generica matrice quadrata di ordinmfatti necessitano circa

operazioni moltiplicative, che possono risultare ecegessel caso di matrici di grandi dimen-
sioni. Per ovviare a questo problema si usano metodi ite(gtazionari) del tipo

g ) = pa® Lo k=0,1,...

con P dipendente da e ¢ dipendente dal e b (ma non dak). A differenza dei metodi di-

retti (come ad esempio il metodo LU), in genere un metodatitey stazionario convergente

calcola usualmente solo un approssimazione della solezi¢a meno di una tolleranza pre-

fissata). Sen € il numero di iterazioni necessarie, visto che ogni itiEnae ha un cost®(n?)

dovuto al prodotto matrice-vettore z(¥), ci si augura che il costo computazionélém n?)

del metodo iterativo sia di gran lunga inferior@ﬁ%3 + %2) di un metodo diretto quale LU.
Per una breve storia dell’algebra lineare si cons(]ti

1.1. I metodi di Jacobi, Gauss-Seidel e SORSiaA = M — N con M non singolare,
un genericanetodo iterativo stazionari del tipo

e * ) = MINZ®) 4 A1, (1.1)
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LamatriceP = M —!N & usualmente chiamataatrice di iteraziondel metodo iterativo
stazionario definito da/, N. Osserviamo che posto= M ~'b, il metodo sopracitato &
ovviamente tystazionario essendo

D) = prF) 4 ¢ (1.2)

con P e cindipendenti d&:.

Questa definizione dei metodi stazionari, forse un po’ #tatrha il vantaggio di offrire
una rappresentazione compatta degli stessi ed & comutentdiazata in letteratura.
Siaorad = D — E— F conD matrice diagonalely, F' rispettivamente triangolare inferiore
e superiore con elementi diagonali nulli.

1.2. Il metodo di Jacobi. Il metodo di Jacobifu scoperto nel 1845, nell’ambito di al-
cune ricerche su problemi di piccole oscillazioni che cortga@no alla risoluzione di sistemi
lineari con matrici diagonalmente dominariij p.313].

Nel caso del metodo di Jacohl][si ha

M=D, N=E+F (1.3)
e quindi
P=M'N=DYE+F)=D YD-D+E+F)=DYD-A)=1-D"'A (1.4)

Si osservi che s® & non singolare allora il metodo di Jacobi, almeno in questaione di
base, non puo essere utilizzato visto cheZympn ha senso la scrittui@a—*.
Qualora siar;; # 0 perognii = 1, ..., n, il metodo di Jacobi pud essere descritto come

kH) (b; — Z aijT; Z aijT; /a”, =1,...,n. (1.5)

Jj=1+1

1.3. Il metodo di Gauss-Seidel.ll metodo di Gauss-Seidefu scoperto nel 1874, da
studi preliminari di Gauss (1823) completati dal suo adi&eidel per lo studio di problemi
ai minimi quadrati del tipdSz = f conS non quadrata, che venivano risolti quali soluzione
del sistema di equazioni normai’ SzST f. Mentre Gauss oltre a problemi di Astronomia
era interessato a problemi di Geodesia (triangolazioneadindver usando unzatenali 26
triangoli), Seidel si interessava alla risoluzione di wtesina di equazioni con 72 incognite
per uno studio di luminosita stellare.

Il metodo di Gauss-Seidel] & definito quale metodo stazionario in cui

M=D-EN=F (1.6)
e quindi
P=M'N=(D-E)"'F (1.7)

Similmente al metodo di Jacobi, possiamo riscrivere pmg&Eemente anche Gauss-
Seidel come

i—1 n
2 =0 = ae = 3T aael? | Ja. (1.8)
j=1

j=i+1

Da (8) si capisce perche tale metodo € noto anche coreido delle sostituzioni successive
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1.4. Generalizzazioni del metodo di Jacobi e Gauss-SeideQuali generalizzazio-
ni del metodo di Jacobi e Gauss-Seidel si introducono, pespportuno parametre, la
versionerilassata del metodo di Jacobi

2 ) = (I —wD ' A)2™ + wD ™1 (1.9)

la versioneilassata del metodo di Gauss-Seidel

1 -1
24D (g . E> ((5 - 1> D+ F> 20 4 <§ - E) b (L10)

L'idea di fondo di questi metodi rilassati € la segueriied. 261], []. Ogni metodo
precedentemente esposto pud essere scritto come

2B — () o (B)
over(®) & la correzione da apportare per passare@aa z(**). Nei metodi rilassati, se
r(¥) & la correzione di Jacobi o Gauss-Seidel, si consideragoatezionev - r(¥) e quindi

2D 2 () (R
Si osservi che i metodi di Jacobi e Gauss-Seidel si ottengspettivamente dadj e
(10) per la sceltav = 1.
2. Convergenza dei metodi iterativi.

2.1. Norma di matrici. Siap(P) il massimo degli autovalori in modulo della matrice
di iterazioneP = M ' N (il cosidettoraggio spettrale

Sial| - || : R® — R4 una norma vettoriale. Definiameorma naturaléin alcuni testi
norma indottadi una matricedA € R™*" la quantita

Ax
= sup 1A
zER™,2#£0 ”‘TH

Si nota subito che questa definizione coincide con quelladna di un operatore lineare e
continuo in spazi normati.
Vediamo alcuni esempi. Siaun arbitrario elemento di™, A € R™*".
e Sidefinisce||z|; := >, _, |zx| e si dimostra che la norma naturale corrispondente
e (cf. [0, p.26])

n
Al = max Y " |a; ;.
J N
=1

e Sidefiniscd|z|| - := maxy |x| € si dimostra che la norma naturale corrispondente
e (cf. [0, p.26])

n
[Alloo = Hllf&XZ |a; ;-
j=1

e Sidefinisce|z||2 := (>_; |xk|2)2 e si dimostra che la norma naturale corrispon-
dente & (cf. 0, p.27])

1A]lz = p'/?(AT A).
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Per quanto riguarda un esempio chiarificatore in Matlata@xct
>> A=[1 5; 7 13]
A =
7 13
>> norm(A,1)

ans =
18

>> norm(A,inf)

ans =
20

>> norm(A,2)

ans =
15.5563

>> eig(A *A)

ans =
2
242

>> sqrt(242)

ans =
15.5563

>> raggio_spettrale_A=max(abs(eig(A)))

raggio_spettrale_A =
15.4261

>>

Si dimostra che (cf.(, p.28])

TEOREMA 2.1. Per ogni norma naturald - || e ogni matrice quadratal si hap(A) <
||A||. Inoltre per ogni matriceA di ordinen e per ognie > 0 esiste una norma naturalg- ||
tale che

p(A) < (Al < p(A) +e.

e inoltre (cf. P, p.29], P, p.232])
TEOREMA 2.2. Fissata una norma naturalg- ||, i seguenti asserti sono equivalenti
1. A™ —0;
2. |JA™]| — 0;
3. p(A) < 1.



FIGURA 2.1.Kurt Wilhelm Sebastian Hensel (1861-1941).

Nota.
1. Ricordiamo che il raggio spettrale non & una norma. tiféamatrice

0 1
00
ha raggio spettrale nullo, ma non € la matrice nulla.
2. Osserviamo che dagli esempi il raggio spettrale di unaiogatl non coincide in

generale con la normg 2, co, ma che a voltg(A) = || A||= come nel caso di una
matrice diagonalél.

2.2. llteorema di Hensel e la convergenza di un metodo iterafo stazionario. Con-
sideriamo un metodo iterativo stazionaridt? = Pz(*) + ¢ in cui sceltoz(?) si abbia

n

* — 20 = chus

s=1

dove{u }x € una base di autovettori # avente autovalod A\, } . Questo accade se e solo
se A e diagonalizzabile, cioé simile a una matrice diagonefie[(), p.57]). Se il metodo &
consistentecioez* = Px* + ¢ abbiamoz®) — z* = P(2*~1) — %) = PF(2® — %) =
S esPrug =31 csAFu, e quindi sé\*| < 1 per ognik abbiamo

n n
2% — 2" = Y eshbusl <D les| N [fus ]| — 0
s=1 s=1

mentre se per qualchiesi ha|\*| > 1 ec; # 0 alloral|z(*) —z*|| non converge & al crescere
di k. Infatti, se\; > 1 & l'autovalore di massimo modulo, abbiamo che la compangnt
relativa allautovettore:, non tende a 0 e quindi’*) — z* non tende a 0. Di conseguenza
non & vero che il metodo & convergente per qualsiasi steltaettorez(?).
Di conseguenza

TEOREMA 2.3. SeP e diagonalizzabile allora un metodo iterativo stazionacion-
sistentez*+1) = Pz(*) + ¢ converge per ogni vettore iniziale, se e solo se(P) <
1.

Dimostriamo ora una sua generalizzazione, scoperta deeHeels1926 [, p.313].

TEOREMA 2.4. Un metodo iterativo stazionario consistentét!) = Pz(*) 4+ ¢ con-
verge per ogni vettore iniziale, se e solo se(P) < 1.
Dimostrazione(cf. [0, p.236])



e Sep(P) < 1, allora il problemar = Pz + ¢ ha una e una sola soluzioné. Infatti,
r=Pr+ce(I—-Plx=c
e la matricel — P ha autovalorii — A\, conk = 1,...,n taliche
0 <|1—ilelr <1 = Xlc,

poiché|Ax|c < p(P) < 1 e quindi
det(I — P) = [ (1= M) #0,
k=1

per cui la matricel — P & invertibile e il sistemd/ — P)xz = ¢ ha una e una sola
soluzioner*.

Siae(k) = z(®) — z*. Come stabilito dal Teorema , sia inoltre una norma naturale
|| - || tale che

p(A) < [[A[l = p(A) + (1 = p(A))/2 < 1.

Essendar*t1) = pPz(®) 4 ¢ ez = Px + ¢, sottraendo membro a membro le
equazioni si ottiene

k1) — po(k+1) _ pk,(0)

da cui
[e®FV|| = [[Pe®|| = | PEe@| < || P¥|[||e ).

Poiche il raggio spettrale & minore di 1 allgf®*|| — 0 da cui|le*+tV| — 0 e
quindi per le proprieta delle norm& 1 — 0 ciogz*) — 0.

Si noti che questa direzione della dimostrazione poteveresssta come applica-
zione del teorema di punto fisso di Banach che stabilisceeheéun insieme non
vuoto e chiuso di uno spazio di Banakre T : K — K € una mappd contrattiva,
cioé||T(x) — T(y)|| < L|jlx — y|]| con0 < L < 1, allora esiste ed & unice* € K

tale cher* = T'(z*) e inoltre per ogni®) € K la sequenzdz®}, C K definita
daz*+t1) = T(z®), k = 0,1,... converge ad:*. Per una dimostrazione si veda
ad esempio(], p.133], P, p.133]. Il problema che stiamo analizzando corrisponde a
porreK = V = R™ dotati di una normd - || tale che

p(A) < [l Al = (1 +p(4))/2 <1,
eT(x) = Pz + c. Certamentd’ € contrattiva in quanto

1+ p(A)
2

Di conseguenza per ogni® € R” la sequenza*+1) = Pz(® 4 ¢ converge a:*
soluzione dix = Px + c.

e Supponiamo che la successiarét!) = Pz(*) + ¢ converga ac* per qualsiasi
z(©) € R™ ma che sig(P) > 1. SiaAmaxil massimo autovalore in modulo dt e
e® = 20 _ 2* un suo autovettore. Essenffe(?) = Amaxe(® eelF+t1) = pke(0)
abbiamo che

[T(x)=T(y)| = [[Pr+c=Py—c| < [|P(z—y)|| < [ Pllllz—yll = z—yl-

et = A aye©®
da cui, qualsiasi sia la nornja ||,
1e® D1 = [Anaxcle@ ] = [l
il che comporta che la successione non & convergénte.
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2.3. Sulla velocit di convergenza.Abbiamo visto che
le® < IP*[le], e® =2 —a* (2.1)

Seelt=1) £ 0, la quantitdl|e(® || /||e*~1)|| esprime la riduzione dell’errore &tsimo passo

e
[l ™
O = N
[letE=D1 =" [l
la riduzione media per passo dell’errore relativo ai prinpiassi (cf. D, p.239]).

Si dimostra che
TEOREMA 2.5.SiaA € C"*™ e|| - || una norma naturale. Allora

lim | A%|| ¥ = p(4)

Quindi perk sufficientemente grande si ha

I1P| = p" (P).
Sotto queste ipotesi, se
le®Hm ) = [P [|[[e™] (2.2)
abbiamo
le®Fm || & [ P[] & pi ()] (2.3)

per cui affinche
™™ /™| = p™(P) = €
applicando il logaritmdn ad ambo i membri, si vede serve sia,

Ine

mln(p(P)) = Ine=m =~ In (p(P))

Se
R(P) = —In(p(P))

e la cosidettavelocita di convergenza asintotidal metodo iterativo relativo &, si puo cosi
stimare che il numero di iterazioni necessarie per ridurre I'errore di un fattere circa

—In(e)
R(P) |
Conseguentemente minor@@) necessariamente € maggidteP) e si puostimarell

numero di iterazioni per ridurre I'errore di un fattareSi desidera quindi cercare metodi con
p(P) piu piccolo possibile.




3. | metodi di Richardson. Fissatoc, la versione di base del metodo di Richardson
consiste in un metodo iterativo del tipo

2D (k) (k) (3.1)

D’altra parte come visto precedentemente i metodi di JagahiGauss-Seidel e le loro
versionirilassatesono metodi iterativi del tipo

Ma*tD) = Ng®) 4 p, (3.2)
per opportune scelte delle matried (che dev’essere invertibile)N tali che
A=M-N. (3.3)
Se
r®) = — Ag® (3.4)
e il residuocalla k-sima iterazione allora dd.§) e (16)
M (2*+D) — 20y = Na®) 4 p — Ma® = b — Az®) = p®) (3.5)

Ne consegue che i metodi di Jacobi e di Gauss-Seidel e le &rsionirilassatesono gene-
ralizzazioni di un metodo di Richardson del tipo

M (zFD — 0y = (R (3.6)

in cui la matrice invertibile\/ & detta dprecondizionamento

3.1. Il metodo di Richardson precondizionato con parametrdisso« ottimale. Per
un opportuno parametro di acceleraziene- 0 (da non confondersi con quello di SOR), si
puo fornire un’ovvia generalizzazione del metod8)(

Mz — 28y = o p®) | > 0. (3.7)

Evidentementel(8) corrisponde alla scelta = 1.
Il parametron. > 0 viene scelto cosi da minimizzare il raggio spettrale del&rice di
iterazione. In questo caso si vede che da

M (z* ) — 2By = o (b — Az®)) (3.8)
necessariamente
Mz ) = Mz® 4 o (b— Az®) = (M — aA)z2® + ab, (3.9)
e quindi con le precedenti notazioni

M . M-aA

M, =—, N, (3.10)
Q Q
per cui la matrice di iteraziong, = M, !N, diventa
C=MYM-aqA)=I-aM A (3.11)
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FIGURA 3.1.Grafici di |1 — aAmax € |1 — amjp| (rispettivamente in rosso e in blu).

SeM ' A & definita positiva 8 min € Amax sono rispettivamente il minimo e massimo
autovalore dil/ —! A, allora il valore ottimale del parametrg cioé quello per cui € minimo
il raggio spettrale della matrice d’iterazioné — o A €

2
aotf = ——————— 3.12
ott N & Amax (3.12)

ed in corrispondenza si ha che la matrice di iteraziBgStt ha raggio spettrale

Amax — Amin

3.13
Amin + )\maX ( )

Qott =

Per capirlo si dimostra dapprima che qualsiasisi@ [\, Amax si ha
|1 —aX| <max(|1 — aAmipl, |1 — aAmax])
e che

21161]% max(|1 — alminl, |1 — aAmax)
lo si ottiene quando la retta= aAmax — 1 interseca la rettg = 1 — aAy;,, che & proprio
pera = aoptt.

Si osservi che la scelta dinon dipende dall'iterazione; di conseguenz@) definisce il
cosidettometodo di Richardson stazionario precondizionater distinguerlo daietodo di
Richardson non stazionario precondizionato

M (z*+D — 2By = oy (b — Az®)). (3.14)

conaj, che non € necessariamente costante.

3.2. Il metodo del gradiente coniugato.Un classico metodo di Richardson non stazio-
nario & quello degradientddetto anche diliscesa piu ripida Sia A una matrice simmetrica
definita positiva. Si osserva che séeé I'unica soluzione didx = b allora & pure il minimo
del funzionale

o(x) = %xTAx — bz, z€R”
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Un genericanetodo di disceseonsiste nel generare una successione

2D = 2 L g p(0)

dovep®) & una direzione fissata secondo qualche criterio.
Si dimostra [, p.341] che il parametra;, ottimale cosicche(z(*+1)) sia minimo una
volta sceltg(®) &

(N T (k)

= )T Ap®)

Nel metodo del gradiente si sceglie quale direziptfeé = gradé(z))|,_.x . Ma se
r®) =p— Az(®  allora
1 T T
grad¢(x))|m:m(k> = §gradx AI)|$:I(k) - gradb I)|m:m(k)
= Az —p= (3.15)

e quindip® = r(*¥) (& essenziale la direzione ma non il segno e per convimesealcoli
la successione anche con segno opppto= —r(*) per parametray, ottimale).

Di conseguenza il metodo del gradiente & definito dalla esgione tipica dei metodi di
Richardson non stazionari

2 Z () 4 g ()

dove

(r®)Tp*) Ir ™13
(PNT Ap®) — (rT Ap(k)”

Qf =

3.3. Una stima dell’errore per alcuni metodi di Richardson. Per quanto riguarda una
stima d’errore, citiamo il seguente teorema (¢f.[.148]).
TEOREMA 3.1. SianoA e M due matrice simmetriche e definite positive e si consideri
un metodo di Richardsoh/ (z(**1) — z(*)) = q;,+(*) | dove
1. M=Ie
(Z(k))TT(k)

k) -1 .(k
Goyrame A =M

A =

2. oppureM invertibile con la scelta (non dinamica) del parametyp

2

ap = =\
k opt Amin T Amax

Postol|v|| 4 := VT Av, e®) = 2(F) — 2, siha

K(M—1A) -1 F
€@ < (S 1) el

dovex(M 1 A) & il numero di condizionamento della matrigé—! A.
Discutiamo l'asserto.
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1. Nel caso del metodo del gradiente, che corrisponde altesd = I e (%) = (%),
vale quindi la stima

K(A) — 11"
€@ < (S0 57) 1@l

che mostra che piu grande € il numero di condizionamefg piu & vicino al la

quantitazgfxgj il che giustifica ungoossibileconvergenza lenta del metodo.

2. Nel caso del metodo precondizionato, si vede che unaspedtsi ottimale € quella
per cuik(M~1A) & vicino a 1. Osserviamo d’altra parte che non si puo sesgli
M = A in quanto con facili calcoli ci si accorge che non si potrebakeolare il

valorez(*+1) a partire daz(®) .

4. Matrici simmetriche definite positive: il metodo del gradente coniugato. Il me-
todo del gradiente coniugato (di cui forniremo solo il ced& alcune brevi indicazioni) fu
descritto nel 1952 da Hestenes e Stiefel ma per quanto destalsito I'interesse dell’ambien-
te matematico non venne molto utilizzato fino al 1971, quaRdiml suggeri il suo utilizzo
per la risoluzione di sistemi sparsi (cioé con molte congmtinnulle) di grandi dimensioni
(91, [].

La successione delle iterazioni del gradiente coniugajoedla propria dei metodi di
discesa,

(T(k))Tr(k)

(k+1) _ (k) (k) - J 7
x Vv +apt’, ag (p(k))TAp(k)

dovep®) =) e

(T(k))Tr(k)

(k) — (k) (k=1) =
p" =1 4 Brp , Br = (r(k_l))TT(k_l) )

Con guesta scelta si prova che
(p"*)" ap*—H =,

ciog i vettorip®) e p(*~1) sonoA-coniugati

4.1. Convergenza del gradiente coniugatoll metodo del gradiente coniugato ha molte
proprieta particolari. Ne citiamo alcune.
e Sia

Ky = Spaﬂjr(o),Ar(O), ce, Ak_lr(o))

perk > 1. Allora la k-sima iterata dal metodo del gradiente coniugato minimizza
funzionales nellinsiemez(®) + K, [0, p.12].

e Se A & una matrice simmetrica e definita positiva di ordinesi pud dimostrare
che il metodo € convergente e fornisce in aritmetica etattaluzione del sistema
Az = b in al massima iterazioni.
Questo teorema tradisce un po’ le attese, sia perche irrgeriealcoli non sono
compiuti in aritmetica esatta, sia perché in molti casiadelodellistica matematica
n risulta essere molto alto.

e Sipud dimostrare], p. 279] che sed € simmetrica e definita positiva,

lz]|a = VaT Ax
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ex = a* —z®

allora

feala = (VA -1\
“\ VK@) +1 ol

Questo risultato stabilisce che la convergenza del grégl@miugato e lenta qualora
si abbiano alti numeri di condizionamento
_ max; |\;|
Ko(A) := ||A||2)| A7, = —5
2(4) = Al 47" = o
(ove al solito{)\;} sono gli autovalori did). Esistono varie versioni di questa
disuguaglianza. Ad esempio if,[p. 151]:

2cF
lewla < (125 ) leals

. VE2(A) -1
o VE2(A) +1

e Sia A simmetrica e definita positiva. Si supponga che ci siandasantek < n
autovalori distinti diA. Allora il metodo del gradiente coniugato converge in al pi°
k iterazioni.

e Sia A simmetrica e definita positiva. Si supponigaia combinazione lineare di
k < n autovettori distinti diA. Allora il metodo del gradiente coniugato con la
sceltaz(?) = 0 converge in al pilk iterazioni.

L'analisi del metodo € piuttosto complessa. Qualora egeati si confronti conJ] p.
562-569], D, p. 272-283], 0, p. 340-356], 0, p. 11-29], D, p. 145-153].

[ ) [ )

dove

5. Convergenza dei Jacobi, Gauss-Seidel ed SORo studio della convergenza dei
metodi di Jacobi, Gauss-Seidel ed SOR un proposito complicato e ci limiteremo a citare,
senza dimostrazione, alcuni classici risultatif. 231-315].

Ricordiamo che

1. A é apredominanza diagonale (per righe) se per dgni, ..., n risulta

n

laiil = Y lail

j=1j#s
e per almeno un indicesi abbia

n

|as,s| > Z |as,;].

J=1,j#s
Ad esempio la matrice
4 -4 0
A= -1 4 -1
0 -4 4

e a predominanza diagonale (per righe).
12



2. A e a predominanza diagonale in senso stretto (per righegrsegmiz = 1, ...
risulta

n

laiil > D lail-

J=1j#i
Ad esempio la matrice
4 -1 0
A= -1 4 -1
0 -1 4

e a predominanza diagonale in senso stretto (per righe).
. A & apredominanza diagonale per colonne (in senso strettt) & a predominanza
diagonale per righe (in senso stretto).
4. A étridiagonale se; ; = 0 per|i — j| > 1. Ad esempio la matrice

4 -1 0 ... O

-1 4 -1 0
A= 0 -1 4

0 oo —1

0 0 -1 4

e tridiagonale.
5. A e definita positiva se e solo se i suoi autovalori sono pasiti
La matrice
4 -1 0
A= -1 4 -1
0 -1 4

e definita positiva come si puo vedere usando i seguentandiMatlab/Octave

>> As[4 -1 0; -1 4 -1; 0 -1 4]

A =
4 -1 0
-1 4 -1
0o -1 4
>> eig(A)
ans =
2.5858
4.0000
5.4142
>>

6. Adiordinen > 2 e riducibile se esiste una matrice di permutazireun interok
con0 < k < n, tale che

A A
1 1,1 1,2
B —HAH = ( 0 ]2,2 >

incui Ay ; € CF*F Ay y € C(r=R)x(n=k) Se A non & riducibile si dice chel &
irriducibile.
13



Il metodo di Jacobi risulta convergente in uno dei sequedi [0, p. 247]:
1. A é a predominanza diagonale in senso stretto;
2. A e apredominanza diagonale ed ¢ irriducibile;
3. A e a predominanza diagonale in senso stretto per colonne;
4. A e apredominanza diagonale per colonne ed € irriducibile.
TEOREMAS.1. SiaA una matrice quadrata a predominanza diagonale. Allora itode
di Jacobi converge alla soluzione dix = b, qualsiasi sia il punta:() iniziale. Dimostra-
zione Supponiamo chd sia a predominanza diagonale in senso stretto per righerailer
ognii =1,...,nrisulta

n

laiil > D laigl-

J=1,j#i
Nel caso del metodo di Jacobi
M=D, N=E+F, P=M'N=DYE+F), (5.1)

da cui
2id  sej#j
P ;= { i . 7&].
' 0 sei =

Di conseguenza

||PH0°:H13XZ|R'.J'|:H1&XZ il o q
i ’ i |asi|

j=1 X

ed essendp(P) < ||P||1 < 1 abbiamo che il metodo di Jacobi & convergeite.
TEOREMA 5.2. Il metodo di Gauss-Seidel risulta convergente in uno deiilsag casi
[0, p. 249]:
1. A & a predominanza diagonale in senso stretto.
2. SiaA una matrice simmetrica definita positiva, non singolare etementi princi-
pali a; ; # 0. Allora Gauss-Seidel convergente se e solo de2 definita positiva.
TEOREMA 5.3. Per matrici tridiagonali (a blocchi)d = (a; ;) con componenti diago-
nali non nulle, i metodi di Jacobi e Gauss-Seidel sono o enltiaconvergenti o divergenti e il
tasso di convergenza del metodo di Gauss-Seideloppio di quello del metodo di Jacobi (il
che vuol dire chasintoticamentsono necessarie n&iterazioni del metodo di Gauss-Seidel
per ottenere la stessa precisione del metodo di Jacobi).
TEOREMA 5.4. Sia A simmetrica con elementi diagonali positivi. Allora il mé®SOR
converge se e solo fe< w < 2 e A & definita positiva(, p.215].

6. Test d’arresto. Consideriamo il sistema lineatér = b avente un’unica soluzione
x* e supponiamo di risolverlo numericamente con un metodatiter stazionario del tipo

g+ = pp®) ¢
che siaconsistenteioe

¥ = Pz* +c.
14



6.1. Sul criterio dello step. PostoA®) := z(k+1) — z(*) @ (k) = z* — z(*) essendo

e = z* — 2 = (P2* 4+ ¢) — (Pz™ + ¢)
= P(z* —z®™) = pelt—V) (6.1)

abbiamo

[e® 2 = llz* — 2™ [z = [|(z" — 2®+D) + (23D — 2 W),
= [[e™FV 4 AWy = ||Pe®™ + AWl; < [[Plo - [e®]|2 + [AP]|2 (6.2)
Fissata dall’'utente una tolleranzal, si desidera interrompere il processo iterativo quando
|z* — 2(*)| < tol. Non disponendo di*, il testdello stepconsiste nell'interrompere il meto-

do iterativo allak + 1-sima iterazione qualofia(*+1) — (k)| < tol. Di seguito desideriamo
vedere quando tale criterio risulti attendibile cioé

|$(k+1) — w(k)| ~ |zt — w(k)|

SeP & simmetrica, allora esistono una matrice ortogobaleioe tale ché/” = U~!, e una
matrice diagonale a coefficienti redliper cui
P =UAU"

ed essend® e A simili hanno gli stessi autovalofi\; };, Di conseguenza, s & simmetrica

IPllz = \/p(PPT) = \[p(UAUT (UAUT)T)
= \/p(UA2UT) (6.3)

Essendd/A2U7T simile aA?, UA2UT e A? hanno gli stessi autovalori ugualifa?}, e di
conseguenza lo stesso raggio spettrale, da cui
p(UN2UT) = p(A?)

e quindi ricaviamo

1Pll2 = /p(A2) = \/mgXIAiI

= \/(mgx|/\k|2) = \/(m]§X|)\k|)2
= max [Ay| = p(P) (6.4)

Di conseguenza da{)
le®l2 < [[Pllz - ez + AWz
= p(P) - [|e™]|2 + AP
(6.5)

e sep(P) < 1, cioe il metodo iterativo stazionario converge per qaeisscelta del vettore
iniziale, portandg(P) - ||e'*) ||, a primo membro e dividendo pér— p(P) deduciamo

1 1
= AW = =
T T T
da cui seP e simmetrica allora il criterio dello step ¢ affidabilegé”) € piccolo.

15
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6.2. Sul criterio del residuo. Si definisceresiduaalla k-sima iterazione la quantita
rF) = b — Ag®
ed essendb = Ax* abbiamo
b— Az = Az* — Az®) = A(x* — ) = Ae®
da cui
k) = Ae®),

Interromperemo il processo iterativo quand® < tol, desiderando sia pure

Notiamo che
1. essendotl invertibile er®) = Ae®) ricaviamoe®) = A~1r(*) da cui

le®™ ) = A O] < LA

2. poicheb = Az* abbiamo||b|| < || A||||=*|| € quindi

Di conseguenza, denotato cend) = || A||||A~| il numero di condizionamento (necessa-
riamente maggiore o uguale a 1),s8e# 0 abbiamo

Le™1 _ NAL g — BAL  a— [Ead
< rllet Il < (AT < R(A)
l=] — [l 1Bl 1Bl
Quindi
le™®] [Eall
< 1(A) < tol
[l bl

[l
ol

7. Metodi iterativi in Matlab.

I criterio d’arresto

< tol & quindi molto conservativo quan@dgA) > 1.

7.1. Metodo di Jacobiin Matlab. Un codice Matlab/Octave del metodo di Jacobi,fornito
in internet presso il sito di Netlib

http://www.netlib.org/templates/matlab/

e il seguente

function [x, error, iter, flag] = jacobi(A, x, b, max_it, tol )

% -- lterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for t he

16



% Solution of Linear Systems: Building Blocks for lIterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,
% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio ns,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates. ps).
%
% [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)
%
% jacobi.m solves the linear system Ax=b using the Jacobi Met hod.
%
% input A REAL matrix
% X REAL initial guess vector
% b REAL right hand side vector
% max_it INTEGER maximum number of iterations
% tol REAL error tolerance
%
% output x REAL solution vector
% error REAL error norm
% iter INTEGER number of iterations performed
% flag INTEGER: 0 = solution found to tolerance
% 1 = no convergence given max_it
iter = 0; % initialization
flag = 0;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r=>b - A xx;
error = norm( r ) / bnrm2;
if ( error < tol ) return, end

[m,n]=size(A);

[ M N ] = split( A, b, 1.0, 1); % matrix splitting
for iter = Ll:max_it, % begin iteration
X 1 = x;
X =M\ (N*x + b); % update approximation
error = norm( x - x_1 ) / norm( x ); % compute error
if ( error <= tol ), break, end % check convergence
end
if ( error > tol ) flag = 1; end % no convergence

Il codice dijacobi utilizza una funzionesplit  che serve per calcolare le matried, N
che definiscono l'iterazione del metodo di Jacobi:

function [ M, N, b ] = split( A, b, w, flag )

%

% function [ M, N, b ] = split_matrix( A, b, w, flag )
%

% split.m sets up the matrix splitting for the stationary

17



% iterative methods: jacobi and sor (gauss-seidel when w = 1. 0)
%

% input A DOUBLE PRECISION matrix

% b DOUBLE PRECISION right hand side vector (for SOR)
% w DOUBLE PRECISION relaxation scalar

% flag INTEGER flag for method: 1 = jacobi

% 2 = sor

%

% output M DOUBLE PRECISION matrix

% N DOUBLE PRECISION matrix such that A = M - N

% b DOUBLE PRECISION rhs vector ( altered for SOR )

[m,n] = size( A );

if (flag==1), % jacobi splitting
= diag(diag(A));
= diag(diag(A)) -
elseif ( flag == 2 ), % sor/gauss-seidel splitting
b = b;
M = wx tril( A, -1 ) + diag(diag( A ));
N =-w  triu( A, 1)+ (210-w) * diag(diag( A ));
end;

% END split.m

Ricordiamo che la funziongplit  non coincide con quella predefinita nelle ultime releases
di Matlab/Octave. Qualora la funzioselit che vogliamo utilizzare sia salvata della direc-
tory corrente, una volta richiamata, i workspace di MatlxdiAve utilizzano proprio questa e
non quella descritta per altri usi in Matlab/Octave. Irolter quanto riguardail  etriu

in split  dall’help di Matlab si capisce che estraggono rispettivat@éa parte triangolare
inferiore e superiore di una matrice:

>> help tril

TRIL Extract lower triangular part.
TRIL(X) is the lower triangular part of X.
TRIL(X,K) is the elements on and below the K-th diagonal
of X . K = 0 is the main diagonal, K > 0 is above the
main diagonal and K < 0 is below the main diagonal.

See also TRIU, DIAG.
>> help triu

TRIU Extract upper triangular part.
TRIU(X) is the upper triangular part of X.
TRIU(X,K) is the elements on and above the K-th diagonal of
X. K = 0 is the main diagonal, K > 0 is above the main
diagonal and K < 0 is below the main diagonal.

18



See also TRIL, DIAG.

>> A=[1 2 3; 456, 78 9

A =
1 2 3
4 5 6
7 8 9
>> tril(A)
ans =
1 0 0
4 5 0
7 8 9
>> triu(A)
ans =
1 2 3
0 5 6
0 0 9
>> tril(A,-1)
ans =
0 0 0
4 0 0
7 8 0
>> triu(A,1)
ans =
0 2 3
0 0 6
0 0 0
>> triu(A,-1)
ans =
1 2 3
4 5 6
0 8 9
>>

La routinejacobi & scritta da esperti di algebra lineare e si interrompe doidgaanorma 2
dello step relativo

”x(k—kl) _ =T(k)||2
[ (E+D]

e inferiore ad una tolleranza1 prefissata oppure un numero massimo di iteraziasiit
e raggiunto. Ricordiamo che se= (v;);=1,... » € un elemento dR™ allora

[vll2 =

Problema: cosa succede quando la matrice diagonale estratieédsingolare? cosa succede
guando partendo d&, # 0, si ha per qualche indide > 0 chex;, = 07?

7.2. Metodo di Gauss-Seidel in Matlab.La versione di Gauss-Seidel con la scelta del
parametrav € nota in letteratura com®OR, acronimo disuccessive over relaxatiotna
versione di SOR scaricabile presso il sito di Netlibg la seguente
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function [x, error, iter, flag] =

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%
%
%

-- Iterative template routine --

sor(A, x, b, w, max_it, tol)

Univ. of Tennessee and Oak Ridge National Laboratory

October 1, 1993

Details of this algorithm are described in "Templates for t

he

Solution of Linear Systems: Building Blocks for Iterative
Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,

Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio
1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates.

[x, error, iter, flag] =

ns,
ps).

sor(A, x, b, w, max_it, tol)

sor.m solves the linear system Ax=b using the

Successive Over-Relaxation Method (Gauss-Seidel method

when omega

input A REAL matrix

X REAL initial guess vector

b REAL right hand side vector

w REAL relaxation scalar

max_it INTEGER maximum number of iterations

tol REAL error tolerance
output X REAL solution vector

error REAL error norm

iter INTEGER number of iterations performed

flag INTEGER: 0 = solution found to tolerance

1 = no convergence given max_it

flag = 0; % initialization
iter = 0O;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r=>b - A xx;
error = norm( r ) / bnrm2;
if ( error < tol ) return, end

[ M, N, b ] = split( A, b, w, 2);

for iter = l:max_ it
X 1 = x
X =M\V(N=*x+ b))
error = norm( x - x_1 ) / norm( x );

if ( error <= tol ), break, end

end
b=Db/w

if ( error > tol ) flag = 1; end,

20

% matrix splitting

% begin iteration

% update approximation
% compute error
% check convergence
% restore rhs

% no convergence
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Come per il metodo di Jacobi, il processo si interrompe qodadorma 2 dello step relativo

”x(k—i-l) _ x(k)||2

||x(k+1

e inferiore ad una tolleranza1 prefissata oppure un numero massimo di iteraziami it
€ raggiunto.
Per ulteriori dettagli si consulti ad esempin p. 313-339].

7.3. Metodo del gradiente coniugato in Matlab. Per quanto riguarda il codice del
Gradiente Coniugato, un esempio ¢ il filg.m tratto da Netlib {]:

function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

-- Iterative template routine --

Univ. of Tennessee and Oak Ridge National Laboratory

October 1, 1993

Details of this algorithm are described in "Templates for t he
Solution of Linear Systems: Building Blocks for lIterative

Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,
Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio ns,
1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates. ps).

[x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

cg.m solves the symmetric positive definite linear system

Ax=b

using the Conjugate Gradient method with preconditioning

input A REAL symmetric positive definite matrix

X REAL initial guess vector

b REAL right hand side vector

M REAL preconditioner matrix

max_it INTEGER maximum number of iterations

tol REAL error tolerance
output  x REAL solution vector

error REAL error norm

iter INTEGER number of iterations performed

flag INTEGER: 0 = solution found to tolerance

1 = no convergence given max_it

flag = 0; % initialization
iter = 0;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r=>b-Axx

error = norm( r ) / bnrm2;
if ( error < tol ) return, end
for iter = 1:max_ it

M\ r;
21
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’

rho = (r xz);

if (iter > 1), % direction vector
beta = rho / rho_1;
p = z + beta *p;

else
p=2z
end
q = Ax p;
alpha = rho / (p’ *q );
X = X + alpha * p; % update approximation vector
r=r - alpha =*q; % compute residual
error = norm( r ) / bnrm2; % check convergence

if ( error <= tol ), break, end
rho_1 = rho;
end
if ( error > tol ) flag = 1; end % no convergence

% END cg.m

Osserviamo che il procedimento itera finché un numero mmassli iterazioni & raggiunto
oppure la norma 2 del residuo (relativo)

1b— Az® 5
116112
immagazzinata nella variabikror risulta inferiore ad una tolleranza prefissaih . In

questo caso il criterio d'arresto del metodo del gradienteugato e diverso da quello dello
step relativo utilizzato nelle precedenti versionddcobi edSOR

8. Un esperimento numerico. Consideriamo il sistema linearér = b dove A ¢€ la
matrice tridiagonale a blocchi (di Poisson)

B -1 0 ... 0

-1 B -1 ... 0
A= 0 -1 B

0 v —I

0 0 -I B

con

4 -1 0 0

-1 4 -1 0
B = 0o -1 4

0 oo =1

0 0 -1 4

La matriceA & facilmente esprimibile utilizzando la funzionekefish scaricabile in
(4]
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function mat = makefish(siz);
% make a Poisson matrix

leng = siz *siz;
dia = zeros(siz,siz);
off = -eye(siz,siz);
for i=1:siz, dia(i,i)=4; end;
for i=1:siz-1, dia(i,i+1)=-1; dia(i+1,i)=-1; end;
mat = zeros(leng,leng);
for ib=1:siz,
mat(1+(ib-1)  *siziib  *siz,1+(ib-1) *siziib  *siz) = dia; end;
for ib=1:siz-1,
mat(1+(ib-1)  *siziib  *siz,1+ib  *siz:(ib+1) *siz) = off;
mat(1l+ib *siz:(ib+1) *Siz,1+(ib-1) xsiziib  *siz) = off; end;
return;

Vediamo un esempio:

>> makefish(3)

ans =
4 -1 0 -1 0 0 0 0 0
-1 4 -1 0 -1 0 0 0 0
0 -1 4 0 0 -1 0 0 0
-1 0 0 4 -1 0 -1 0 0
0 -1 0 -1 4 -1 0 -1 0
0 0 -1 0 -1 4 0 0 -1
0 0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4 -1
0 0 0 0 0 -1 0 -1 4
>>

che evidentemente & una matrice di Poissoni8anatrice quadrata di ordirie

B= 4 -1 0
-1 4 1
0o -1 4

Per ulteriori dettagli sulle origini della matrice di Paiss si considerino ad esempio, [p.
557], [0, p. 283], P, p- 334]. Le matrici di Poisson sono evidentemente simicteritridia-
gonali a blocchi, diagonalmente dominanti e dal primo e dabado teorema di Gerschgorin
[0, p. 76-80], P, p. 955] si pud provare che sono non singolari. In partigospud mostrare
che A & definita positiva. Per accertarsene, calcoliamo il minauatovalore della matrice di
Poisson coB € M5, semplicemente digitando sulla shell di Matlab-Octave

>> A=makefish(5);
>> m=min(eig(A))
m =

0.5359
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>>

Tale matrice di Poisson non & malcondizionata essendo
>> A=makefish(5);

>> cond(A)

ans =

13.9282
>>

Poniamo ora

b=ones(size(A,1),1);

e risolviamo il sistemalx = b digitando
X_sol=A\b;

Nota la soluzione esatta confrontiamo i vari metodi risnb@il sistema lineare con un
numero massimo di iteraziomaxit e unatolleranzéol come segue

maxit=200; tol=107(-8);
A tal proposito consideriamo I'm-file
demo_algebra_lineare.m
contenente il codice
maxit=200; tol=107(-8);
siz=5;
A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.
X_sol=A\b; % SOLUZIONE ESATTA. METODO LU.
norm_x_sol=norm(x_sol);
if norm(x_sol) ==

norm_x_sol=1;
end

x=zeros(size(b)); % VALORE INIZIALE.

% JACOBI.
[x_j, error_j, iter_j, flag_j] = jacobi(A, x, b, maxit, tol) ;

fprintf(\t \n [JACOBI ] [STEP REL., NORMA 2]: %2.2e [REL.ER R.]:
%2.2¢€’,error_j,norm(x_j-x_sol)/norm_x_sol);
fprintf(\t \n [ITER.]: %3.0f [FLAG]: %1.0f \n',iter_j,fl ag_j);

% GAUSS-SEIDEL.
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w=1;
[x_gs, error_gs, iter_gs, flag_gs] = sor(A, x, b, w, maxit, t

fprintf(\t \n [GAU.SEI.] [STEP REL., NORMA 2]: %2.2e [REL.
%2.2¢e’,error_gs,norm(x_gs-x_sol)/norm_x_sol);

fprintf(\t \n [ITER.]: %3.0f [FLAG]: %1.0f
\n',iter_gs,flag_gs);

% SOR.
w_vett=0.8:0.025:2;

for index=1:length(w_vett)
w=w_vett(index);
[x_sor, error_sor(index), iter_sor(index), flag_sor(in
X, b, w, maxit, tol);
relerr(index)=norm(x_sor-x_sol)/norm_x_sol;
end

[min_iter_sor, min_index]=min(iter_sor);

fprintf(\t \n [SOR OTT.] [STEP REL., NORMA 2] %2.2e [REL.E
%2.2¢e’,error_sor(min_index),relerr(min_index));

fprintf(\t \n [ITER.]: %3.0f [FLAG]: %1.0f [w]: %2.3f
\n’,min_iter_sor,flag_sor(min_index),w_vett(min_ind ex));

plot(w_vett,iter_sor,’r-");

% GRADIENTE CONIUGATO.
M=eye(size(A));
[x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, to

fprintf(\t \n [GRA.CON.] [STEP REL., NORMA 2]: %2.2e [REL.
%2.2¢e’,error_gc,norm(x_gc-x_sol)/norm_x_sol);

fprintf(\t \n [ITER.]: %3.0f [FLAG]: %1.0f
\n',iter_gc,flag_gc);

Lanciamo la demo nella shell di Matlab-Octave e otteniamo
>> demo_algebra_lineare

[JACOBI ] [STEP REL., NORMA 2]: 8.73e-009 [REL.ERR.]: 5.65e
[TER.]: 116 [FLAG]: 0

[GAU.SEL] [STEP REL., NORMA 2]: 9.22e-009 [REL.ERR.]: 2.7
[ITER]: 61 [FLAG]: O

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-009 [REL.ERR.]: 1.10
[ITER.]: 21 [FLAG]: O [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.41e-017 [REL.ERR.]: 2.2
[TER]: 5 [FLAG]: 0
>>

Una breve analisi ci dice che
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ol);

ERR.]:

dex)] = sor(A,

RR.]:

ERR.]:

-008

6e-008

e-009

le-016



1. Come previsto dalla teoria, il metodo di Gauss-SeideVenge in approssimativa-

mente meta iterazioni di Jacobi;

I metodo SOR ha quale costante quasi ottimale 1.350;

3. Il metodo del gradiente coniugato converge in meno iterazispetto agli altri me-
todi (solo 5 iterazioni, ma si osservi il test d'arresto diffnte). Essendo la matrice
di Poisson di ordin@5, in effetti cid accade in meno @b iterazioni come previsto.
Vediamo cosa succede dopditerazioni:

N

>> maxit=25; tol=0;
>> siz=5; A = makefish(siz); b=ones(size(A,1),1);
>> [x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, tol);
>> error_gc
error_gc =
3.6287e-039
>>

Il residuo relativo, seppur non nullo € molto piccolo.

Un punto delicato riguarda la scelta del parametmttimale (cioé minimizzante il rag-
gio spettrale di SOR). Sia questo valore ugualg*a Nel nostro codice abbiamo calcolato
per forza brutav™, tra i numeri realiw® < 2 del tipow; = 0.8 + j - 0.025 quello per cui
venivano compiute meno iterazioni.

E’ possibile calcolare* matematicamente? Nel caso della matrice di Poisson lastapo
e affermativa. Da(j, Teor.5.10, p.333]

*

2
1+ /1-0%(B))

e il raggio spettrale della matrice di iterazione vale— 1. dovep(S) € il massimo degli au-
tovalori in modulo della matricé (il cosidetto raggio spettrale)8; la matrice di iterazione
di Jacobi. Vediamo di calcolare questo valore nel caso delaiacitata matrice di Poisson.
Dalla teoria, con ovvie notazioni,

B;y=I-D1'A
e quindi

>> format long;
>> D=diag(diag(A));
>> BJ=eye(size(A))-inv(D) *A;
>> s=eig(BJ);
>> s_abs=abs(s);
>> rho=max(s_abs);
>> w=2/(1+sqrt(1-rho"2))
w =
1.33333333333333
>> maxit=50; tol=10"(-8);
>> b=ones(size(A,1),1);
>> [x_sor, error_sor, iter_sor, flag_sor] = sor(A, x, b, w, m axit, tol);
>> jter_sor
iter_sor =
22
>>
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Si rimane un po’ sorpresi dal fatto che per= 1.350 il numero di iterazioni fosse inferiore
di quello fornito dal valore ottimale teorico* = 1.333.. .. Il fatto & che questo € ottenuto
cercando di massimizzare la velocita asintotica di caymeza. Purtroppo questo minimizza
una stima del numero di iteraziohiminime da compiere e non quello effettivo.

Abbiamo detto che un punto chiave & la grandezza del raggitirale delle matrici di
iterazione e che é desiderabile che questo numero oltressleestrettamente minore di uno
sia il piu piccolo possibile. Vediamo i raggi spettrali deetodi esposti.

Salviamo inraggispettrali.m il seguente programma principale

maxit=50; tol=0;

siz=5;
A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

[ M, N]=split(t A, b, 1.0, 1); % JACOBI.

P=inv(M) =*N;

rho_J=max(abs(eig(P)));

fprintf(\n \t [RAGGIO SPETTRALE][JACOBI]: %2.15f,rho_ J);

[ M, N, b ] =split( A, b, 1, 2); % GS.

P=inv(M) =*N;

rho_gs=max(abs(eig(P)));

fprintf(\n \t [RAGGIO SPETTRALE][GAUSS-SEIDEL]: %2.15f ",rho_gs);

D=diag(diag(A));

E=-(tril(A)-D);

F=-(triu(A)-D);

w=1.350;

M=D/w-E; N=(1/w-1) *D+F;

P=inv(M) =*N;

rho_sor=max(abs(eig(P)));

fprintf('\n \t [RAGGIO SPETTRALE][SOR BEST]: %2.15frho _sor);

w=1.33333333333333;

[ M, N, b ] = split( A, b, w, 2 ); % SOR OPT.

M=D/w-E; N=(1/w-1) *D+F;

P=inv(M) =*N;

rho_sor_opt=max(abs(eig(P)));

fprintf('\n \t [RAGGIO SPETTRALE][SOR OPT]: %2.15f,rho_ sor_opt);

Di seguito:

>> raggispettrali
[RAGGIO SPETTRALE][JACOBI]: 0.866025403784438
[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000
[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000001
[RAGGIO SPETTRALE][SOR OPT]: 0.333333380707781

>>

Il valore del raggio spettrale della matrice di iteraziored thetodo SOR per parametro
ottimale, per quanto visto anticipatamente vate- 1, e 'esperimento numerico lo conferma.
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Abbiamo poi osservato che in questo caso la velocita di e@®nza del metodo di Gauss-
Seidel ¢ il doppio di quella di Jacobi. Podte;s, B le rispettive matrici di iterazione, e
dettaR la velocita di convergenza, osserviamo che da

R(B;) = —In(p(By)) (8.1)
R(Bgs) == —In(p(Bgs)) (8.2)
R(Bgs) = 2R(By) (8.3)

si ha
—In(p(Bgs)) = R(Bgs) = 2R(By) = —2In(p(B,)) = —In (p(B,))?

da cui essendo il logaritmo una funzione invertibile

p(Bas) = (p(B)))*.

Il raggio spettrale della matrice diiterazione di Gaus&l&8eoincide quindi col quadrato
di quella di Jacobi ed infatti come & facile verificare

>> 0.866025403784438"2
ans =

0.75000000000000
>>

Al momento non consideriamo il metodo del gradiente cortmug@aiché non & di tipo
stazionario.

9. Facoltativo: Altre matrici interessanti. La matrice di H ilbert.. Per vedere alcuni
comandi di base aiutiamoci con delle matrici predefinite iatlslo/Octave. Digitiamo nella
shell di Matlab/Octave> help elmat . In Matlab 6.5 abbiamo

>> help elmat
Elementary matrices and matrix manipulation.

Elementary matrices.

zeros - Zeros array.

ones - Ones array.

eye - ldentity matrix.

repmat - Replicate and tile array.

rand - Uniformly distributed random numbers.
randn - Normally distributed random numbers.
linspace - Linearly spaced vector.

logspace - Logarithmically spaced vector.

freqspace - Frequency spacing for frequency response.

meshgrid - X and Y arrays for 3-D plots.
: - Regularly spaced vector and index into matrix.

Specialized matrices.
compan - Companion matrix.
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gallery - Higham test matrices.

hadamard - Hadamard matrix.

hankel - Hankel matrix.

hilb - Hilbert matrix.

invhilb - Inverse Hilbert matrix.

magic - Magic square.

pascal - Pascal matrix.

rosser - Classic symmetric eigenvalue test problem.
toeplitz - Toeplitz matrix.

vander - Vandermonde matrix.

wilkinson - Wilkinson’s eigenvalue test matrix.

Questo ci dice che Matlab ha predefinito un set di matrici dipalare interesse. Se possibile
si suggerisce di provare i metodi che andremo ad introdwneuna matrice facente parte
dellagallery  di Matlab. Cid non appare possibile nelle recenti releas&ctave, come
GNU Octave 2.1.73. Da Matlab 6.5

>> help gallery

GALLERY Higham test matrices.
[outl,out2,..] = GALLERY(matname, paraml, param2, ...)

takes matname, a string that is the name of a matrix family, an d
the family’s input parameters. See the listing below for ava ilable
matrix families. Most of the functions take an input argumen t

that specifies the order of the matrix, and unless otherwise

stated, return a single output.

For additional information, type "help private/matname", where matname
is the name of the matrix family.

cauchy  Cauchy matrix.

chebspec Chebyshev spectral differentiation matrix.

chebvand Vandermonde-like matrix for the Chebyshev polyno mials.
chow Chow matrix -- a singular Toeplitz lower Hessenberg mat rix.
circul Circulant matrix.

poisson Block tridiagonal matrix from Poisson’s equation ( sparse).

prolate Prolate matrix -- symmetric, ill-conditioned Toep litz matrix.

randcolu Random matrix with normalized cols and specified s ingular
values.

randcorr Random correlation matrix with specified eigenva lues.

randhess Random, orthogonal upper Hessenberg matrix.

rando Random matrix with elements -1, 0 or 1.

randsvd Random matrix with pre-assigned singular values an d specified

bandwidth.

redheff Matrix of Os and 1s of Redheffer.

riemann Matrix associated with the Riemann hypothesis.

ris Ris matrix -- a symmetric Hankel matrix.

smoke Smoke matrix -- complex, with a "smoke ring" pseudospe ctrum.
toeppd Symmetric positive definite Toeplitz matrix.

toeppen Pentadiagonal Toeplitz matrix (sparse).

tridiag Tridiagonal matrix (sparse).
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triw Upper triangular matrix discussed by Wilkinson and oth ers.

wathen ~ Wathen matrix -- a finite element matrix (sparse, ran dom
entries).
wilk Various specific matrices devised/discussed by Wilki nson.

(Two output arguments)

GALLERY(3) is a badly conditioned 3-by-3 matrix.
GALLERY(5) is an interesting eigenvalue problem. Try to fin d
its EXACT eigenvalues and eigenvectors.

See also MAGIC, HILB, INVHILB, HADAMARD, WILKINSON, ROSSER , VANDER.

10. Facoltativo: gli esempi visti in Matlab funzionano ancle in Octave.. Rivediamo
gli esperimenti in una recente release di Octave, come GNEMOR.1.73.

octave:12> makefish(3)
ans =

4 -1 o -1 0 -0 0 O O
-1 4 -1 0 -1 -0 0 0 O
o -1 4 0 -0 -1 0O 0 O
-1 0 0 4 -1 0 -1 -0 -0
0 -1 0 -1 4 -1 0 -1 -0
-0 -0 -1 0 1 4 0 -0 1
0 o o0 -1 -0 0 4 -1 O
0 o o0 0 -1 0 -1 4 1
0 0O 0 -0 -0 -1 0o -1 4

octave:13> A=makefish(5);
octave:14> m=min(eig(A))

m = 0.53590

octave:15> cond(A)

ans = 13.928

octave:16> b=ones(size(A,1),1);
octave:17> demo_algebra_lineare

[JACOBI ] [STEP REL., NORMA 2]: 8.73e-09 [REL.ERR.]: 5.65e- 08
[ITER]: 116 [FLAG]: 0

[GAU.SEL] [STEP REL., NORMA 2]: 9.22e-09 [REL.ERR.J: 2.76 e-08
[ITER]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-09 [REL.ERR.]: 1.10e -09
[ITER]: 21 [FLAG]: O [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]. 4.67e-17 [REL.ERR.]: 1.85 e-16
[ITER.]: 5 [FLAG]: 0

octave:18> format long;

octave:19> D=diag(diag(A));

octave:20> size(D)

ans =
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octave:21> BJ=eye(size(A))-inv(D) *A;
octave:22> s=eig(BJ);
octave:23> s_abs=abs(s);
octave:24> rho=max(s_abs);
octave:25> w=2/(1+sqrt(1-rho"2))
w = 1.33333333333333
octave:26> maxit=50; tol=10"(-8);
octave:27> b=ones(size(A,1),1);
octave:28> [x_sor,error_sor,iter_sor,flag_sor]=sor(A X, b,w,maxit,tol);
octave:29> iter_sor
iter_sor = 22
octave:30> raggispettrali

[RAGGIO SPETTRALE][JACOBI]: 0.866025403784439
[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000
[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000000
[RAGGIO SPETTRALE][SOR OPT]: 0.333333380472264

octave:31> 0.86602540378443972

ans = 0.750000000000001

octave:32>
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