METODI ITERATIVI PER LA SOLUZIONE DI EQUAZIONI LINEARI *
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1. Introduzione. Sia A una matrice reale aventerighe edn colonne,b un vettore
colonna avente: righe e si supponga di voler risolvere il sistema linedre = 6. Come
noto, se il determinante della matrice € diverso da O (lei@@atriceA & non singolare) allora
il problemaAx = b ha una ed una sola soluzione.

Ricordiamo che in Matlab/Octave la soluzione pud essellzda con il metodo LU,
utilizzando il comandd,. Un esempio:

>> A=[1 2 4; 2 4 16; 3 9 81];
>> b=ones(3,1);

>> x=A\b

>> norm(A * x-b)

ans = 9.9301e-16

>> det(A)

ans = -24.000

Uno dei principali problemi del metodo LU €& legato all’attosto computazionale. S¢ e
una generica matrice quadrata di ordinmfatti necessitano circa

operazioni moltiplicative, che possono risultare eceessiel caso di matrici di grandi di-
mensioni. Per ovviare a questo problema si usano ad esengdamiterativi stazionari del
tipo

g ) = pa® Lo k=0,1,...

con P dipendente d&l e ¢ dipendente dal e b (ma non d&). A differenza dei metodi di-

retti (come ad esempio il metodo LU), in genere un metodaiit stazionario convergente

calcola usualmente solo un approssimazione della solezi¢a meno di una tolleranza pre-

fissata). Sen € il numero di iterazioni necessarie, visto che ogni itienae ha un cost®(n?)

dovuto al prodotto matrice-vettoré (¥, ci si augura che il costo computazionélém n?)

del metodo iterativo sia di gran lunga inferior@ﬁ%3 + %2) di un metodo diretto quale LU.
Per una breve storia dell’algebra lineare si cons]ti
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1.1. | metodi di Jacobi, Gauss-Seidel e SORSiaA = M — N con M invertibile.
Di conseguenza, ddx = b abbiamo facilmentéd/z = Nz + b ed essendd/ invertibile
necessariamente = M !Nz + M~'b. In modo naturale, da quest'ultima uguaglianza, si
definisce unmetodo iterativo stazionarfmme

et = MIN®) 4 1, (1.1)

La matriceP = M ~! N & usualmente chiamataatrice di iteraziondel metodo iterativo
stazionario definito da/, N. Osserviamo che posto= M '), il metodo sopracitato &
ovviamente stazionario essendo

AR GO (1.2)

con P e cindipendenti d&:.

Questa definizione dei metodi stazionari, forse un po’ #tatrha il vantaggio di offrire
una rappresentazione compatta degli stessi ed & comutentdiazata in letteratura.
Risultera in seguito utile definire le matribi, F ed F' talicheA = D — E— F conD matrice
diagonaleF, F rispettivamente triangolare inferiore e superiore comelati diagonali nulli.
Ovviamente, fissatad, tali matrici esistono e sono uniche.

1.2. Il metodo di Jacobi. Il metodo di Jacobifu scoperto nel 1845, nell’ambito di al-
cune ricerche su problemi di piccole oscillazioni che cortga@no alla risoluzione di sistemi
lineari con matrici diagonalmente dominarj p.313].

Nel caso del metodo di Jacokiq] si ha

M=D, N=E+F (1.3)
e quindi
P=M'N=DYE+F)=D Y D-D+E+F)=DYD-A)=1-D"'A (1.4)

Si osservi che s® & non singolare allora il metodo di Jacobi, almeno in questaione di
base, non puo essere utilizzato visto chelim)(non ha senso la scrittufa—"!.
Qualora siai;; # 0 perognii = 1,...,n, il metodo di Jacobi puo essere descritto come

kH) (b; — Z aijT Z Qi T; /a”, =1,...,n. (1.5)

Jj=1+1

1.3. Il metodo di Gauss-Seidel.ll metodo di Gauss-Seidefu scoperto nel 1874, da
studi preliminari di Gauss (1823) completati dal suo ai®eidel per lo studio di problemi ai
minimi quadrati del tipaSx = f con.S non quadrata, che venivano risolti quali soluzione del
sistema di equazioni normai” Sz = ST f. Mentre Gauss oltre a problemi di Astronomia
era interessato a problemi di Geodesia (triangolazioneadindver usando unzatenali 26
triangoli), Seidel si interessava alla risoluzione di wtesina di equazioni con 72 incognite
per uno studio di luminosita stellare.

Il metodo di Gauss-Seidel f] € definito quale metodo stazionario in cui

M=D-EN=F (1.6)
e quindi

P=M'N=(D-E)"'F (1.7)
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Similmente al metodo di Jacobi, possiamo riscrivere pmg&emente anche Gauss-
Seidel come

i—1 n
™ = = Y ayal Y = 3 ayal? | Jai. (1.8)
=1 j=it1

Da (1.8 si capisce perche tale metodo e noto anche caomi®do delle sostituzioni successi-

VE.

1.4. Generalizzazioni del metodo di Jacobi e Gauss-SeideQuali generalizzazio-
ni del metodo di Jacobi e Gauss-Seidel si introducono, pespportuno parametre, la
versionerilassata del metodo di Jacobi

2* ) = (I —wD 1 4)2® +wD % (1.9)

la versionailassata del metodo di Gauss-Seidel

—1 -1
D = (g - E) ((i - 1) D+ F) ™ 4 (% - E) b. (1.10)

L'idea di fondo di questi metodi rilassati € la seguerniied. 261], [L6]. Ogni metodo
precedentemente esposto pud essere scritto come

LD () 4 a(R)
ove7%) & la correzione da apportare per passare@aa z(*t1). Nei metodi rilassati, se
#*) & la correzione di Jacobi o Gauss-Seidel, si consideraqaatezionas - #*) e quindi

2B+ — (B R

Essenda:*t1) = Pz + cdaP = M~'N = M~*(M — A) = I — M~'A abbiamo
S0 _ pkt 1) _ () — paB) 4 o o(b)
=(I—M1A)z® 4+ M~ — 2™ = Mb — AzP) (1.11)

Si osservi che i metodi di Jacobi e Gauss-Seidel si ottengspettivamente dal(9) e (1.10
per la sceltav = 1.

2. Convergenza dei metodi iterativi.

2.1. Norma di matrici. Siap(P) il massimo degli autovalori in modulo della matrice
di iterazioneP = M !N (il cosidettoraggio spettrale

Sial|| - || : R® — R4 una norma vettoriale. Definiameorma naturaléin alcuni testi
norma indottadi una matriced € R™*"™ la quantita

Ax
= sup 1A
veRn,z£0 |||

Si nota subito che questa definizione coincide con quelladna di un operatore lineare e
continuo in spazi normati.
Vediamo alcuni esempi (cf4[ p.24]). Siax un arbitrario elemento d®™, A € R™*™.
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e Sidefinisce|z||; := Y",_, |zx| € si dimostra che la norma naturale corrispondente
e (cf. [4, p.26])

n
Al = max Y |a; ;-
J X
=1

e Sidefiniscd|z|| - := maxy |xy| € si dimostra che la norma naturale corrispondente
e (cf. [4, p.26])

n
[ Alloe = ma > a1
Jj=1

o Sidefiniscel|z||; := (X5, |:c;€|2)2 e si dimostra che la norma naturale corrispon-
dente e (cf. {, p.27])

1All2 = p'/2(AT A).

Per quanto riguarda un esempio chiarificatore in Matlata@xct
>> A=[1 5; 7 13]
A =
7 13
>> norm(A,1)

ans =
18

>> norm(A,inf)

ans =
20

>> norm(A,2)

ans =
15.5563

>> eig(A *A)
ans =
2
242
>> sqrt(242)

ans =
15.5563



>> raggio_spettrale_ A=max(abs(eig(A)))

raggio_spettrale_A =
15.4261

>>

Si dimostra che (cf.4, p.28])

TEOREMA 2.1. Per ogni norma naturald - || e ogni matrice quadratal si hap(A4) <
||A]l. Inoltre per ogni matriced di ordinen e per ognie > 0 esiste una norma naturalg- ||
tale che

p(A) < A < p(A) +e.
e inoltre (cf. {4, p.29], [3, p-232])

TEOREMA 2.2. Fissata una norma naturalg- ||, i seguenti asserti sono equivalenti
1. A™ —0;
2. ||A™|| — 0;
3. p(4) < 1.

NoOTA 2.3.
1. Ricordiamo che il raggio spettrale n@una norma. Infatti la matrice

(60)

ha raggio spettrale nullo, ma namla matrice nulla.

2. Osserviamo che dagli esempi il raggio spettrale di unarivatd non coincide in
generale con la normd, 2, oo, ma che a voltes(4) = ||Al|2 come nel caso di
una matrice diagonalel (essendo gli autovalori di una matrice diagonale, proprio
i suoi elementi diagonali).

2.2. llteorema di Hensel e la convergenza di un metodo iterafo stazionario. Con-
sideriamo un metodo iterativo stazionaridt!) = Pz(*) + ¢ in cui sceltoz(?) si abbia

n

o — 20 = chus

s=1

dove {ux}r € una base di autovettori & avente autovalor{\;};. Questo accade se e
solo seA e diagonalizzabile, cioé simile a una matrice diagoneflg[ ¢, p.57]). Supponiamo
|\s| < 1pers = 1,...,n. Seil metodo &onsistenteciods™ = Px*+cabbiamar®) —z* =
Pz — %) = PF(20 — %) = 30| es PRus = 31 es\Fug e quindi sg\F| < 1 per
ognis=1,...,nek=1,2,..., abbiamo

n n
2@ — 2| = 1" eohoug| < 3 feal A [fus ]| — 0
s=1 s=1

mentre se per qualchiesi ha|\*| > 1 ec; # 0 alloral|z(*) —z*|| non converge & al crescere
di k. Infatti, se\; > 1 & l'autovalore di massimo modulo, abbiamo che la compangnt
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FIGURA 2.1.Kurt Wilhelm Sebastian Hensel (1861-1941).

relativa all’autovettore:, non tende a 0 e quindi’*) — z* non tende a 0. Di conseguenza
non & vero che il metodo & convergente per qualsiasi stelteettorez(?). Di conseguenza

TEOREMA 2.4. SeP & diagonalizzabile allora un metodo iterativo stazionacmnsi-
stentez(*+*1) = Pz(®) 4 ¢ converge per ogni vettore iniziale, se e solo se(P) < 1.
Dimostriamo ora una sua generalizzazione, scoperta deeHegis1 926 B, p.313].

TEOREMA 2.5. Un metodo iterativo stazionario consistenté+!) = Pz(*) + ¢ con-
verge per ogni vettore iniziale, se e solo se(P) < 1.

DIMOSTRAZIONE. La dimostrazione ¢ tratta d,[p.236].
e Sep(P) < 1, allora il problemar = Pz + ¢ ha una e una sola soluzioné. Infatti,

r=Pr+ce (I—-Plrx=c
e la matricel — P ha autovalorii — A\, conk = 1,...,n taliche

0 < |1 —[Xelelr < 1= Axc,
poiché&|\x|c < p(P) < 1 e quindi

det(I — P) H 1— ) #
per cui la matricel — P & invertibile e il sistemd/ — P)xz = ¢ ha una e una sola
soluzioner*. Siae(k) = 2(*) — 2*. Come stabilito dal Teorental, sia inoltre una
norma naturald - || tale che
p(P) < [|P|l = p(P) + (1= p(P))/2 < 1.
Essendar**+Y) = Pz(*) + cex = Pz + ¢, sottraendo membro a membro le
equazioni si ottiene
e(k-‘rl) _ Pe(k+l) _ Pkre(O)

da cui essendfy - || una norma naturale

le®HD = [ Pe® | = || PEe| < ||P*[|[l ). (1)
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Poiche il raggio spettrale & minore di 1 dal Teoretrizabbiamo che{ P*|| — 0 da
cui per .1) necessariamente*+1|| — 0 e quindi per le proprieta delle norme
e*+1) — 0 cioez(®*) — 0. Si noti che questa direzione della dimostrazione poteva

essere vista come applicazione del teorema di punto fissarmdh che stabilisce
che seK € un insieme non vuoto e chiuso di uno spazio di Baéeil : K — K

€ una mappd contrattiva, ciog|T(x) — T'(y)|| < L|lz — y|| con0 < L < 1,
allora esiste ed & unico* € K tale chez* = T(z*) e inoltre per ognic(®) € K
la sequenzdz(M}, C K definita daz*+1) = T(z(®), k = 0,1, ... converge ad
x*. Per una dimostrazione si veda ad esempip[133], {4, p.133]. Il problema che
stiamo analizzando corrisponde a paife= V' = R dotati di una normg - || tale
che

p(P) < ||Pl = (1+p(P))/2 <1,

eT(x) = Pz + c. Certamentd & contrattiva in quanto pdr = (1 + p(P))/2 < 1
abbiamo

IT(x) =T (y)ll = |Pr+c—Py—c| < [|P(z—y)l| <[Pz =yl = Llz -yl

Di conseguenza per ogni®) € R” la sequenza*+?) = Pz(®) 4 ¢ converge a:*
soluzione div = T’z e quindi, per definizione df’, tale cher = Pz + c.

Supponiamo che la successiarié™?) = Pz(*) 4+ ¢ converga ar* per qualsiasi
z(©) ¢ R™ ma che sigp(P) > 1. SiaAmax il massimo autovalore in modulo di
P e scegliamar(®) tale chee(® = z(°) — z* sia autovettore dP relativamente
all'autovalore\max. Essendde(®) = Amaxe® e elk+1) = Pk¢e(0) gabbiamo che

kD) — pE (O
da cui, qualsiasi sia la nornja ||, per ognik = 1,2, ...si ha
1™V = | Amaxiclle® | > [l

il che comporta che la successione non & convergentenfaliti per qualche:
sarebbe*) < ().

2.3. Sulla velocit di convergenza.Abbiamo visto che

eI < IPHIIe], e =2 — 2 (22)

Seelt=1) £ 0, la quantitdl|e(® || /||e*~1)|| esprime la riduzione dell’errore &tsimo passo

1
le®|  le®]\*
O =
5\ Jle®D] " @]

la riduzione media per passo dell’errore relativo ai prinpiassi (cf. B, p.239]).
Si dimostra che
TEOREMA 2.6.SiaA € C"*" e|| - || una norma naturale. Allora

lim || A%||* = p(4)
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Quindi perk sufficientemente grande si ha

|1P¥|| = p*(P).
Sotto queste ipotesi, se
le®+m | & [P [[]]e™] (2.3)
abbiamo
m m L
le® | = P [[[e® ] = p7 (P)[[e®] (2.4)

per cui affinche
™) /[e® ) = p™(P) ~ ¢
applicando il logaritmo naturale ad ambo i membri, si vedeessia,

Ine

mlog (p(P)) ~loge = m ~ {2y

Se

R(P) = —log(p(P))

e la cosidettavelocita di convergenza asintotickel metodo iterativo relativo &, si puo
cosi stimare che il numero di iterazioni necessarie per ridurre I'errore di un fattare
relativamente all&-sima iterazione, cioé affinché

le®™ ™/l = e.

Si vede facilmente che & circa

—log(e)
m = .
R(P)
Conseguentemente g&e la matrice d'iterazione di un metodo stazionario congetg
(e consistente), essend@P) < 1, minore &(P) necessariamente & maggidtél) e si puo

stimareil numero di iterazioni per ridurre I'errore di un fattoee Si desidera quindi cercare
metodi conp(P) piu piccolo possibile.

3. | metodi di Richardson. Fissatoc, la versione di base del metodo di Richardson
consiste in un metodo iterativo del tipo

2D — (k) = (k) (3.1)

D’altra parte come visto precedentemente i metodi di JaeahiGauss-Seidel e le loro
versionirilassatesono metodi iterativi del tipo

Mz®F+D = Ng®) 4 p, (3.2)
per opportune scelte delle matried (che dev’essere invertibile)N tali che

A=M—N. (3.3)
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Se
rF) = — Az® (3.4)
e il residuoalla k-sima iterazione allora d&(2) e (3.3
M (z*+D — 2By = Nz®) 1 p — M2® =p— Az = (F) (3.5

Ne consegue che i metodi di Jacobi e di Gauss-Seidel e le érgionirilassatesono gene-
ralizzazioni di un metodo di Richardson del tipo

M (zFHD — 2Ry = (R (3.6)

in cui la matrice invertibilel/ & detta diprecondizionamento

3.1. Facoltativo. Il metodo di Richardson precondizionatccon parametro fissoa
ottimale. Per un opportuno parametro di accelerazione- 0 (da non confondersi con
quello di SOR), si pu0 fornire un’ovvia generalizzaziom ohetodo 8.5

M (z*+D — 2Ry = o0 | > 0. (3.7)

Evidentemented.5) corrisponde alla scelia = 1.
Il parametron. > 0 viene scelto cosi da minimizzare il raggio spettrale delédrice di
iterazione. In questo caso si vede che da

M(z*FD — 20y = o (b — Az®)) (3.8)
necessariamente
Mz *+) = Ma® 4o (b— Az®) = (M — ad)z™ + ab, (3.9)
e quindi con le precedenti notazioni

M, = %’ N, = M (3.10)
a

(0%

per cui la matrice di iteraziong,, = M !N, diventa
C=M'M-aA) =I-aM A (3.11)

SeM 1A & definita positiva 8min € Amax sono rispettivamente il minimo e massimo
autovalore dil/ —! A, allora il valore ottimale del parametrg cioé quello per cui € minimo
il raggio spettrale della matrice d’iterazioné — o A

2
aotf = ——————— 3.12
ott N Amax (3.12)

ed in corrispondenza si ha che la matrice di iteraziBgStt ha raggio spettrale

Amax — Amin

3.13
Amin + )\maX ( )

Qott =

Per capirlo si dimostra dapprima che qualsiasisi@ [\, Amax si ha

|1 — | <max(]1 — alpipl |1 — aAmax)
9
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FIGURA 3.1.Grafici di |1 — admax e|1 — aAmjn| (rispettivamente in rosso e in blu).

e che

i 1 —aXminl, |1 — aX
inelﬁmaXG aXminls |1 — admax|)

lo si ottiene quando la retta= aAmax — 1 interseca la rettg = 1 — a\piy, che & proprio
pera = aptt-

Si osservi che la scelta di non dipende dalliterazione; di conseguenz&) definisce
il cosidettometodo di Richardson stazionario precondizionater distinguerlo dametodo
di Richardson non stazionario precondizionato

M (z®+D) — 20y =y (b — Az®). (3.14)

conay, che non & necessariamente costante.

4. | metodi di discesa. Una classica famiglia di metodi di Richardson non stazioaar
guella dei metodi diiscesa Sia A una matrice simmetrica definita positiva. Si osserva che
sex* e I'unica soluzione didx = b allora € pure il minimo del funzionale

1
o(x) = §$TA$ — b7z, xR

Un genericanetodo di disceseonsiste nel generare una successione

R+ — (k) akp(k)
dovep(k) e unadirezione fissata secondo qualche criterio. Vediasegaito alcuni di questi
metodi.

4.1. Il metodo del gradiente classico.Si dimostra {l, p.341] che il parametray,
ottimale cosicch&(z(*+1)) sia minimo una volta scelta*) &

(r())T ()

W WA

Nel metodo del gradiente si sceglie quale direzipffé = grad¢(x))|,_,. Ma se
r®) = b — Azx(®), allora
1 T T
grad¢(x))|m:z(k) = §grac{:v A$)|z:m(") - grac{b ‘T)lz:m(k)

= Az® —p= () (4.1)
10



e quindip® = r(¥) (& essenziale la direzione ma non il segno e per convintes&alcoli
la successione anche con segno opppsto= —r(*) per parametray, ottimale).

Di conseguenza il metodo del gradiente € definito dalla essione tipica dei metodi di
Richardson non stazionari

2D — 20 4 o ()

dove

()™ Ir™3
(PNT Ap®) — (r)T Ap(k)°

A =

Nel caso del metodo del gradiente, vale la stima

K(A) —1\"
€@ < (S0 57) 1@l

che mostra che piu grande € il numero di condizionamef# piu & vicino al la quantita

% il che giustifica ungossibileconvergenza lenta del metodo.

4.2. Il metodo del gradiente coniugato.ll metodo del gradiente coniugato (di cui for-
niremo solo il codice e alcune brevi indicazioni) fu dedoritel 1952 da Hestenes e Stiefel
ma per quanto destasse subito I'interesse dell’ambientemadico non venne molto utiliz-
zato fino al 1971, quando Reid suggeri il suo utilizzo peidaluzione di sistemi sparsi (cioe
con molte componenti nulle) di grandi dimensio#;, [ 14].

La successione delle iterazioni del gradiente coniugagaela propria dei metodi di
discesa,

(T(k))Tr(k)

(k+1) _ (k) () _
x X —i—()ékp , Ok (p(k))T p(k)
dOVGp(O) = 7‘(0) e

(T (k)
F) _ 0 k-1 g )
p =T + ka ’ Bk = (T(kfl))Tr(kfl) .
Con guesta scelta si prova che

(p*)" ap*—H =,
ciog i vettorip(®) e p(*—1) sonoA-coniugati

4.2.1. Convergenza del gradiente coniugatoll metodo del gradiente coniugato ha
molte proprieta particolari. Ne citiamo alcune.

e Sia
Ky = Spaﬂjr(o),Ar(O), e, Akilr(o))

perk > 1. Allora la k-sima iterata dal metodo del gradiente coniugato minimizza
funzionales nellinsiemez(®) + K, [7, p.12].
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e Se A & una matrice simmetrica e definita positiva di ordinesi pud dimostrare
che il metodo & convergente e fornisce in aritmetica e&ataluzione del sistema
Az = bin al massima iterazioni.

Questo teorema tradisce un po’ le attese, sia perche irrgleriecalcoli non sono
compiuti in aritmetica esatta, sia perché in molti casiadeiodellistica matematica
n risulta essere molto alto.

e Sipud dimostrared, p. 279] che sel € simmetrica e definita positiva,

lz]|a = VaT Az
e

ex = a* —z®
allora

feala = (VA -1\
VKA +1 ol

Questo risultato stabilisce che la convergenzadel gréel@miugato € lenta qualora
si abbiano alti numeri di condizionamento

_ I\
Ka(A) = [All]] A7, = 22 Al
2(4) = 447> = T

(ove al solito{)\;} sono gli autovalori did). Esistono varie versioni di questa
disuguaglianza. Ad esempio i1, p. 151]:

2cF
lewla < (125 ) leals

dove

 VEx(A) -1
o VE2(A) +1

e Sia A simmetrica e definita positiva. Si supponga che ci siandasanhtek < n
autovalori distinti diA. Allora il metodo del gradiente coniugato converge in al pi’
k iterazioni.

e Sia A simmetrica e definita positiva. Si suppongaia combinazione lineare di
k < n autovettori distinti diA. Allora il metodo del gradiente coniugato con la
sceltaz(?) = 0 converge in al pilk iterazioni.
L'analisi del metodo e piuttosto complessa. Qualora edsati si confronti conl| p.
562-569], B, p. 272-283],{, p. 340-356], [, p. 11-29],[L1, p. 145-153].

5. Convergenza dei Jacobi, Gauss-Seidel ed SORo studio della convergenza dei
metodi di Jacobi, Gauss-Seidel ed SOR][e un proposito complicato e ci limiteremo a
citare, senza dimostrazione, alcuni classici risultatpf 231-315].

Ricordiamo che
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1. A & a predominanza diagonale (per righe) se per bgni, . .., n risulta

n

laiil > Y ail

J=1,j#s
e per almeno un indicesi abbia

n

|as,s| > Z |as ;.

J=1.j#s

Ad esempio la matrice

4 -4 0

A= -1 4 -1

0 -4 4

€ a predominanza diagonale (per righe).
2. A e a predominanza diagonale in senso stretto (per righegrsegmii = 1,...,n

risulta

n

laiil > Y laigl-

J=1,57i
Ad esempio la matrice
4 -1 0
A= -1 4 -1
0o -1 4

€ a predominanza diagonale in senso stretto (per righe).

3. A& apredominanzadiagonale per colonne (in senso strettt) & a predominanza
diagonale per righe (in senso stretto).

4. A eétridiagonale se; ; = 0 per|i — j| > 1. Ad esempio la matrice

4 -1 0 ... O

-1 4 -1 0
A= 0 -1 4

0 oo —1

0 0 -1 4

e tridiagonale.
5. A e definita positiva se e solo se i suoi autovalori sono pasiti
La matrice

A= -1 4 -1

e definita positiva come si pud vedere usando i seguentandiMatlab/Octave
13



>> A=[4 -1 0; -1 4 -1; 0 -1 4]

A =
4 -1 0
-1 4 -1
0 -1 4
>> eig(A)
ans =
2.5858
4.0000
5.4142
>>

6. A diordinen > 2 e riducibile se esiste una matrice di permutazifireeun interok
con0 < k < n, tale che

A, A
_ T __ 1,1 1,2
B =T1A1" = ( 0" v )

incui A, ; € CF*F, Ayy € C=R)x(n=k) Se A non & riducibile si dice chel &
irriducibile.
Il metodo di Jacobi risulta convergente in uno dei sequedi &, p. 247]:
1. A é a predominanza diagonale in senso stretto;
2. A é apredominanzadiagonale ed e irriducibile;
3. A & apredominanza diagonale in senso stretto per colonne;
4. A e apredominanza diagonale per colonne ed € irriducibile.
TEOREMAS.1. SiaA una matrice quadrata a predominanza diagonale. Allora itode
di Jacobi converge alla soluzione dix = b, qualsiasi sia il punta:() iniziale. Dimostra-
zione Supponiamo chd sia a predominanza diagonale in senso stretto per righerailer
ognii =1,...,nrisulta

n

laiil > > laigl-

j=1.j#i
Nel caso del metodo di Jacobi
M=D, N=E+F, P=M'N=DYE+F), (5.1)
da cui

Di conseguenza

Pllooc = max P; ;| = max — <1
J
7 2 ! 7 - |aii|
Jj=1 Jg=1""

ed essendp(P) < || P||; < 1 abbiamo che il metodo di Jacobi & convergefite.

TEOREMA 5.2. Il metodo di Gauss-Seidel risulta convergente in uno deuiseg casi
[3, p. 249]:
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1. A & apredominanza diagonale in senso stretto.
2. SiaA una matrice simmetrica definita positiva, non singolare etementi princi-
pali a; ; # 0. Allora Gauss-Seidei convergente se e solo de2 definita positiva.
TEOREMA 5.3. Per matrici tridiagonali (a blocchi)4 = (a; ;) con componenti diago-
nali non nulle, i metodi di Jacobi e Gauss-Seidel sono o enliaconvergenti o divergenti e il
tasso di convergenza del metodo di Gauss-Séideloppio di quello del metodo di Jacobi (il
che vuol dire chasintoticamentsono necessarie néeiterazioni del metodo di Gauss-Seidel
per ottenere la stessa precisione del metodo di Jacobi).
TEOREMA5.4. Sia A simmetrica con elementi diagonali positivi. Allora il méoSOR
converge se e solo $e< w < 2 e A e definita positiva§, p.215].

6. Test d’arresto. Consideriamo il sistema linearér = b avente un’unica soluzione
x* e supponiamo di risolverlo numericamente con un metodatiter stazionario del tipo

) = pp®) 4 ¢
che siaconsistenteioé
¥ = Px* +c.

6.1. Sul criterio dello step. PostoA®) := z(k+1) _ z(*) eek) = z* — z(k) essendo

e® = g — 2™ — (Pg* 4+ ¢) — (P2 +¢)
= P(z* —z®™) = pelt—V (6.1)

abbiamo

le®lz = l|lz* = 2™z = [z — 2® D) + (2D = 20)],
= [l + ABly = [|Pe® + Ay < [[Pfla - |2 + |AM]]2 (8.2)
Fissata dall’'utente una tolleranzal, si desidera interrompere il processo iterativo quando
|z* — z(*)| < tol. Non disponendo di*, il testdello stepconsiste nell'interrompere il meto-

do iterativo allak + 1-sima iterazione qualofia(*+1) — x(¥)| < tol. Di seguito desideriamo
vedere quando tale criterio risulti attendibile cioe

|2+ — 2] (g% — (R

SeP & simmetrica, allora esistono una matrice ortogobaleioe tale chéd/” = U~!, e una
matrice diagonale a coefficienti redliper cui

P=UAUT

ed essend® e A simili hanno gli stessi autovalofi\; } ;. Di conseguenza, s & simmetrica

|Pll2 = /o(PPT) = \/p(UAUT(UAUT)T)

= \/p(UA2UT) (6.3)

Essendd/A2U7T simile aA?, UA2UT e A2 hanno gli stessi autovalori ugualifa?}, e di
conseguenza lo stesso raggio spettrale, da cui

p(UN2UT) = p(A?)
15



e quindi ricaviamo

I1Pll2 = V/o(R?) = fmax X

= \/(m}gx|)\k|2) = \/(m]?XMkDQ
= max || = p(P) (6-4)

Di conseguenza d®(2)

[e® 2 < [Pll2 - e®]|2 + [AD]2
=p(P)- ™2+ |AW]|
(6.5)

e sep(P) < 1, cioe il metodo iterativo stazionario converge per gasisscelta del vettore
iniziale, portandg(P) - ||e® ||, a primo membro e dividendo pér— p(P) deduciamo

1

(k+1) EN = (e, =
T -2 = ||eV |2 = ———=¢
H I = 1l = T

1.
A0 = " — 2]

p(P)
da cui seP e simmetrica allora il criterio dello step € affidabilegé) € piccolo.

6.2. Sul criterio del residuo. Si definisceresiduaalla k-sima iterazione la quantita
R = — Az
ed essendb = Az* abbiamo
b— Az® = Ax* — Az®) = A(z* — 2®)) = Ae®
da cui
k) = Ae®),

Interromperemo il processo iterativo quand® < tol, desiderando sia pure

Notiamo che
1. essendotl invertibile er®) = Ae®) ricaviamoe®) = A—1r*) da cui

le® ) = A~ P < A

2. poich& = Azx* abbiamq||b|| < || All||z*|| € quindi

LAl
T = Tl
16



Di conseguenza, denotato cend) = || A||||A~}| il numero di condizionamento (necessa-
riamente maggiore o uguale a 1),28e# 0 abbiamo

le®N_ A, gy, NAl 1y ||
— < et < = - A 7™ < K(A)
E o o
Quindi
[[e™]] sl
< k(A4) < tol.
[z || o]l

[l
lell

7. Metodi iterativi in Matlab.

Il criterio d’arresto < tol & quindi molto conservativo quandgA) > 1.

7.1. Metodo di Jacobiin Matlab. Un codice Matlab/Octave del metodo di Jacobi,fornito
in internet presso il sito di Netlib

http://www.netlib.org/templates/matlab/

e il seguente
function [x, error, iter, flag] = jacobi(A, x, b, max_it, tol )
% -- lterative template routine --
% Univ. of Tennessee and Oak Ridge National Laboratory
% October 1, 1993
% Details of this algorithm are described in "Templates for t he
% Solution of Linear Systems: Building Blocks for lIterative
% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,
% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio ns,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates. ps).
%
% [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)
%
% jacobi.m solves the linear system Ax=b using the Jacobi Met hod.
%
% input A REAL matrix
% X REAL initial guess vector
% b REAL right hand side vector
% max_it INTEGER maximum number of iterations
% tol REAL error tolerance
%
% output x REAL solution vector
% error REAL error norm
% iter INTEGER number of iterations performed
% flag INTEGER: 0 = solution found to tolerance
% 1 = no convergence given max_it
iter = 0; % initialization
flag = 0;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

17



r=>b - A xx;
error = norm( r ) / bnrm2;
if ( error < tol ) return, end

[m,n]=size(A);

[ M, N ] = split( A, b, 1.0, 1); % matrix splitting
for iter = L:max_it, % begin iteration
x 1 = x
X =M\ (N*x + b); % update approximation
error = norm( x - x_1 ) / norm( x ); % compute error
if ( error <= tol ), break, end % check convergence
end
if ( error > tol ) flag = 1; end % no convergence

Il codice dijacobi utilizza una funzionesplit  che serve per calcolare le matried, N
che definiscono l'iterazione del metodo di Jacobi:

function [ M, N, b ] = split( A, b, w, flag )

%

% function [ M, N, b ] = split_matrix( A, b, w, flag )
%

% split.m sets up the matrix splitting for the stationary

% iterative methods: jacobi and sor (gauss-seidel when w = 1. 0)
%

% input A DOUBLE PRECISION matrix

% b DOUBLE PRECISION right hand side vector (for SOR)
% w DOUBLE PRECISION relaxation scalar

% flag INTEGER flag for method: 1 = jacobi

% 2 = sor

%

% output M DOUBLE PRECISION matrix

% N DOUBLE PRECISION matrix such that A = M - N

% b DOUBLE PRECISION rhs vector ( altered for SOR )

[m,n] = size( A );
if (flag ==1), % jacobi splitting

M = diag(diag(A));
N = diag(diag(A)) - A;

elseif ( flag == 2 ), % sor/gauss-seidel splitting
b =w=x* b;
M = wx tril( A, -1 ) + diag(diag( A ));
N =-w x triu( A, 1)+ (210-w) + diag(diag( A ));
end,;
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% END split.m

Ricordiamo che la funziongplit  non coincide con quella predefinita nelle ultime releases
di Matlab/Octave. Qualorala funziosplit che vogliamo utilizzare sia salvata della direc-
tory corrente, una volta richiamata, i workspace di MatldiAve utilizzano proprio questa e
non quella descritta per altri usi in Matlab/Octave. Imnolber quanto riguardail  etriu

in split  dall’help di Matlab si capisce che estraggono rispettivat@éda parte triangolare
inferiore e superiore di una matrice:

>> help tril

TRIL Extract lower triangular part.
TRIL(X) is the lower triangular part of X.
TRIL(X,K) is the elements on and below the K-th diagonal
of X . K = 0 is the main diagonal, K > 0 is above the
main diagonal and K < 0 is below the main diagonal.

See also TRIU, DIAG.

>> help triu

TRIU Extract upper triangular part.
TRIU(X) is the upper triangular part of X.
TRIU(X,K) is the elements on and above the K-th diagonal of
X. K = 0 is the main diagonal, K > 0 is above the main
diagonal and K < 0 is below the main diagonal.

See also TRIL, DIAG.

>> A=[1 2 3; 456, 78 9

A =
1 2 3
4 5 6
7 8 9
>> tril(A)
ans =
1 0 0
4 5 0
7 8 9
>> triu(A)
ans =
1 2 3
0 5 6
0 0 9
>> tril(A,-1)
ans =
0 0 0
4 0 0
7 8 0
>> triu(A,1)
ans =
0 2 3
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0 0 6

0 0 0
>> triu(A,-1)
ans =
1 2 3
4 5 6
0 8 9
>>

La routinejacobi & scritta da esperti di algebra lineare e si interrompe doignnorma 2
dello step relativo

Hx(k-‘rl) _ x(k)Hz
k1) |

e inferiore ad una tolleranza1 prefissata oppure un numero massimo di iteraziami it
e raggiunto. Ricordiamo che se= (v;);=1,... » € un elemento dR” allora

[oll2 =

Problema: cosa succede quando la matrice diagonale estrateédsingolare? cosa succede
guando partendo de&y # 0, si ha per qualche indide > 0 chexy = 0?

7.2. Metodo di Gauss-Seidel in Matlab.La versione di Gauss-Seidel con la scelta del
parametrav € nota in letteratura com®OR, acronimo disuccessive over relaxatiotna
versione di SOR scaricabile presso il sito di Netlili][e la seguente

function [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

% -- lterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for t he
% Solution of Linear Systems: Building Blocks for Iterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio ns,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates. ps).
%

% [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

%
% sor.m solves the linear system Ax=b using the

% Successive Over-Relaxation Method (Gauss-Seidel method when omega = 1 ).
%

% input A REAL matrix

% X REAL initial guess vector

% b REAL right hand side vector

% w REAL relaxation scalar

% max_it INTEGER maximum number of iterations
% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed
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% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it
flag = 0; % initialization
iter = 0;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

r=>b - A xx;
error = norm( r ) / bnrm2;
if ( error < tol ) return, end

[ M N, b ] = split( A, b, w, 2); % matrix splitting
for iter = L:max_it % begin iteration
x_ 1 = x;
X =M\V(N=*x+b); % update approximation
error = norm( x - x_1 ) / norm( x ); % compute error
if ( error <= tol ), break, end % check convergence
end
b=Db/w % restore rhs
if ( error > tol ) flag = 1; end; % no convergence

Come per il metodo di Jacobi, il processo si interrompe qadamdorma 2 dello step relativo

otk — 2B,
[FEy B

e inferiore ad una tolleranza1 prefissata oppure un numero massimo di iteraziamiit
€ raggiunto.
Per ulteriori dettagli si consulti ad esempi p. 313-339].

7.3. Metodo del gradiente coniugato in Matlab. Per quanto riguarda il codice del
Gradiente Coniugato, un esempio ¢ il filg.m tratto da Netlib [.C]:

function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

% -- lterative template routine --

% Univ. of Tennessee and Oak Ridge National Laboratory

% October 1, 1993

% Details of this algorithm are described in "Templates for t he
% Solution of Linear Systems: Building Blocks for lIterative

% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,

% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio ns,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates. ps).

%

% [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

%

% cg.m solves the symmetric positive definite linear system Ax=b
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% using the Conjugate Gradient method with preconditioning
%

% input A REAL symmetric positive definite matrix

% X REAL initial guess vector

% b REAL right hand side vector

% M REAL preconditioner matrix

% max_it INTEGER maximum number of iterations

% tol REAL error tolerance

%

% output x REAL solution vector

% error REAL error norm

% iter INTEGER number of iterations performed

% flag INTEGER: 0 = solution found to tolerance

% 1 = no convergence given max_it
flag = 0; % initialization

er = 0;

bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end

= b - A xx;
error = norm( r ) / bnrm2;
if ( error < tol ) return, end

for iter = 1:max_it % begin iteration
z =M\r
=(r *Z)
if (iter > 1), % direction vector

beta = rho / rho_1;
p = z + beta *p;

else
p=2z
end
q = Ax p;
alpha = rho / (p’ *q );
X = x + alpha =+ p; % update approximation vector
r=r - alpha =*q; % compute residual
error = norm( r ) / bnrm2; % check convergence

if ( error <= tol ), break, end
rho_1 = rho;
end
if ( error > tol ) flag = 1; end % no convergence

% END cg.m
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Osserviamo che il procedimento itera finché un numero nmassli iterazioni & raggiunto
oppure la norma 2 del residuo (relativo)

16— Az
[[0]]2
immagazzinata nella variabikrror risulta inferiore ad una tolleranza prefisstih . In

questo caso il criterio d'arresto del metodo del gradientéugato € diverso da quello dello
step relativo utilizzato nelle precedenti versionddcobi edSOR

8. Un esperimento numerico. Consideriamo il sistema lineacér = b dove A € la
matrice tridiagonale a blocchi (di Poisson)

B -1 0 ... O

-I B —-I ... O
A= 0o -I B ... ...

o ... ... ... -1

0 0o ... -I B

con

4 -1 0 0

-1 4 -1 0
B = 0 -1 4

0 oo —1

0 0 -1 4

La matriceA e facilmente esprimibile utilizzando la funzionekefish  scaricabile in

(19

function mat = makefish(siz);
% make a Poisson matrix

leng = siz *siz;
dia = zeros(siz,siz);
off = -eye(siz,siz);
for i=1:siz, dia(i,i)=4; end;
for i=1:siz-1, dia(i,i+1)=-1; dia(i+1,i)=-1; end,;
mat = zeros(leng,leng);
for ib=1:siz,
mat(1l+(ib-1)  *siziib  *siz,1+(ib-1) xsiziib  *siz) = dia; end;
for ib=1:siz-1,
mat(1+(ib-1)  siziib  *siz,1+ib  *siz:(ib+1) *siz) = off;
mat(1l+ib *siz:(ib+1) *Siz,1+(ib-1) xsiziib  *siz) = off; end;
return;

Vediamo un esempio:
>> makefish(3)

ans =



0 -1 4 0 0 -1 0 0 0
-1 0 0 4 -1 0 -1 0 0
0 -1 0 -1 4 -1 0 -1 0
0 0 -1 0 -1 4 0 0 -1
0 0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4 -1
0 0 0 0 0 -1 0 -1 4

>>

che evidentemente & una matrice di PoissonBanatrice quadrata di ordirg

B= 4 -1 0
-1 4 A
0o -1 4

Per ulteriori dettagli sulle origini della matrice di Paiss si considerino ad esempio, [p.
557], [3, p. 283], [, p. 334]. Le matrici di Poisson sono evidentemente simictetritridia-
gonali a blocchi, diagonalmente dominanti e dal primo e debado teorema di Gerschgorin
[3, p. 76-80], !, p. 955] si puo provare che sono non singolari. In parti@& pud mostrare
che A & definita positiva. Per accertarsene, calcoliamo il minaatovalore della matrice di
Poisson coB € M5, semplicemente digitando sulla shell di Matlab-Octave

>> A=makefish(5);
>> m=min(eig(A))
m =

0.5359
>>

Tale matrice di Poisson non € malcondizionata essendo
>> A=makefish(5);

>> cond(A)

ans =

13.9282
>>

Poniamo ora

b=ones(size(A,1),1);

e risolviamo il sistemalx = b digitando
X_s0l=A\b;

Nota la soluzione esatta confrontiamo i vari metodi risnb@il sistema lineare con un
numero massimo di iteraziomaxit e unatolleranzéol come segue

maxit=200; tol=10"(-8);

A tal proposito consideriamo I'm-file
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demo_algebra_lineare.m

contenente il codice

maxit=200; tol=10"(-8);

siz=5;

A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

X_sol=A\b; % SOLUZIONE ESATTA. METODO LU.
norm_x_sol=norm(x_sol);

if norm(x_sol) ==
norm_x_sol=1;

end

x=zeros(size(b)); % VALORE INIZIALE.

% JACOBI.

[x_j, error_j, iter_j, flag_j] = jacobi(A, x, b, maxit, tol)

fprintf(\t \n [JACOBI ] [STEP REL., NORMA 2] %2.2e [REL.ER R.]:
%2.2¢e’,error_j,norm(x_j-x_sol)/norm_x_sol);

fprintf(\t \n [ITER.]: %3.0f [FLAG]: %1.0f \n',iter_j,fl ag_j);

% GAUSS-SEIDEL.

w=1;

[x_gs, error_gs, iter_gs, flag_gs] = sor(A, x, b, w, maxit, t ol);
fprintf(\t \n [GAU.SEL] [STEP REL., NORMA 2]: %2.2e [REL. ERR.]:
%2.2¢e’,error_gs,norm(x_gs-x_sol)/norm_x_sol);

fprintf(\t \n [ITER.]: %3.0f [FLAG]: %1.0f

\n',iter_gs,flag_gs);

% SOR.
w_vett=0.8:0.025:2;

for index=1:length(w_vett)

w=w_vett(index);

[x_sor, error_sor(index), iter_sor(index), flag_sor(in dex)] = sor(A,
X, b, w, maxit, tol);

relerr(index)=norm(x_sor-x_sol)/norm_x_sol;
end

[min_iter_sor, min_index]=min(iter_sor);

fprintf(\t \n [SOR OTT.] [STEP REL., NORMA 2]: %2.2e [REL.E RR.]:
%2.2¢e’,error_sor(min_index),relerr(min_index));

fprintf(\t \n [ITER.]: %3.0f [FLAG]: %1.0f [w]: %2.3f
\n’,min_iter_sor,flag_sor(min_index),w_vett(min_ind ex));
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plot(w_vett,iter_sor,’r-");

% GRADIENTE CONIUGATO.
M=eye(size(A));
[x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, to

fprintfC\t \n [GRA.CON.] [STEP REL., NORMA 2]: %2.2e [REL.
%2.2¢€’,error_gc,norm(x_gc-x_sol)/norm_x_sol);

fprintf(\t \n [[TER.]: %3.0f [FLAG]: %1.0f
\n’,iter_gc,flag_gc);

Lanciamo la demo nella shell di Matlab-Octave e otteniamo

>> demo_algebra_lineare

[JACOBI ] [STEP REL., NORMA 2]: 8.73e-009 [REL.ERR.]: 5.65¢
[ITER]: 116 [FLAG]: 0

[GAU.SEL] [STEP REL., NORMA 2]: 9.22e-009 [REL.ERR]: 2.7
[ITER]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-009 [REL.ERR.]: 1.10
[ITER]: 21 [FLAG]: 0 [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.41e-017 [REL.ERR]: 2.2

[ITER]: 5 [FLAG]: 0
>>

Una breve analisi ci dice che

ERR.]:

-008

6e-008

e-009

le-016

1. Come previsto dalla teoria, il metodo di Gauss-Seideleage in approssimativa-

mente meta iterazioni di Jacobi;
2. lIlmetodo SOR ha quale costante quasi ottimale 1.350;

3. Il metodo del gradiente coniugato converge in meno iterdzispetto agli altri me-
todi (solo 5 iterazioni, ma si osservi il test d’arresto diffnte). Essendo la matrice
di Poisson di ording5, in effetti cid accade in meno db iterazioni come previsto.

Vediamo cosa succede dopditerazioni:

>> maxit=25; tol=0;
>> siz=5; A = makefish(siz); b=ones(size(A,1),1);

>> [x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit,

>> error_gc
error_gc =

3.6287e-039
>>

Il residuo relativo, seppur non nullo € molto piccolo.

tol);

Un punto delicato riguarda la scelta del parametmttimale (cioé minimizzante il rag-
gio spettrale di SOR). Sia questo valore ugualg*a Nel nostro codice abbiamo calcolato
per forza brutav™, tra i numeri realiw®™ < 2 del tipow; = 0.8 + j - 0.025 quello per cui

venivano compiute meno iterazioni.

E’ possibile calcolare* matematicamente? Nel caso della matrice di Poisson lastapo
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e affermativa. Da4, Teor.5.10, p.333]

w*

2
1+ /1-p2(By)

e il raggio spettrale della matrice di iterazione valfe— 1. dovep(.S) € il massimo degli au-
tovalori in modulo della matricé (il cosidetto raggio spettrale)8; la matrice di iterazione
di Jacobi. Vediamo di calcolare questo valore nel caso delmacitata matrice di Poisson.
Dalla teoria, con ovvie notazioni,

By;=I1-D7'4
e quindi

>> format long;
>> D=diag(diag(A));
>> BJ=eye(size(A))-inv(D) *A;
>> s=eig(BJ);
>> s_abs=abs(s);
>> rho=max(s_abs);
>> w=2/(1+sqrt(1-rho"2))
W =
1.33333333333333
>> maxit=50; tol=10"(-8);
>> b=ones(size(A,1),1);
>> [x_sor, error_sor, iter_sor, flag_sor] = sor(A, x, b, w, m axit, tol);
>> jter_sor
iter_sor =
22
>>

Si rimane un po’ sorpresi dal fatto che per= 1.350 il numero di iterazioni fosse inferiore
di quello fornito dal valore ottimale teorico* = 1.333.... |l fatto & che questo & ottenuto
cercando di massimizzare la velocita asintotica di caygeza. Purtroppo questo minimizza
una stima del numero di iteraziohiminime da compiere e non quello effettivo.

Abbiamo detto che un punto chiave € la grandezza del raggitrale delle matrici di
iterazione e che e desiderabile che questo numero oltresaleestrettamente minore di uno
sia il piu piccolo possibile. Vediamo i raggi spettrali deetodi esposti.

Salviamo inraggispettrali.m il seguente programma principale

maxit=50; tol=0;

siz=5;
A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

[ M, N]=splitt A, b, 1.0, 1); % JACOBI.

P=inv(M) =*N;

rho_J=max(abs(eig(P)));

fprintf(\n \t [RAGGIO SPETTRALE][JACOBI]: %2.15f,rho_ J);

[ M, N, b]=splitt A b 1, 2); % GS.
P=inv(M) =*N;
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rho_gs=max(abs(eig(P)));
fprintf(\n \t [RAGGIO SPETTRALE][GAUSS-SEIDEL]: %2.15f ",rho_gs);

D=diag(diag(A));

E=-(tril(A)-D);

F=-(triu(A)-D);

w=1.350;

M=D/w-E; N=(1/w-1) *D+F;

P=inv(M) =*N;

rho_sor=max(abs(eig(P)));

fprintf(\n \t [RAGGIO SPETTRALE][SOR BEST]: %2.15f,rho _sor);

w=1.33333333333333;

[ M, N, b ]=split( A, b, w, 2 ); % SOR OPT.

M=D/w-E; N=(1/w-1) D+F;

P=inv(M) =*N;

rho_sor_opt=max(abs(eig(P)));

fprintf(\n \t [RAGGIO SPETTRALE][SOR OPT]: %2.15f,rho_ sor_opt);

Di sequito:

>> raggispettrali
[RAGGIO SPETTRALE][JACOBI]: 0.866025403784438
[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000
[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000001
[RAGGIO SPETTRALE][SOR OPT]: 0.333333380707781

>>

Il valore del raggio spettrale della matrice di iteraziored thetodo SOR per parametro
ottimale, per quanto visto anticipatamente vate- 1, e I'esperimento numerico lo conferma.
Abbiamo poi osservato che in questo caso la velocita di e@®nza del metodo di Gauss-
Seidel ¢ il doppio di quella di Jacobi. Podte;s, B le rispettive matrici di iterazione, e

dettaR la velocita di convergenza, osserviamo che da

R(By) :== —1In(p(By)) (8.1)
R(Bgs) == —In(p(Bgs)) (8.2)
R(Bgs) = 2R(By) (8.3)

si ha
—In(p(Bas)) = R(Bas) = 2R(B;) = —2In(p(B;)) = —In (p(B,))?
da cui essendo il logaritmo una funzione invertibile
p(Bas) = (p(By))*.

Il raggio spettrale della matrice diiterazione di Gaus&t@8eoincide quindi col quadrato
di quella di Jacobi ed infatti come & facile verificare

>> 0.86602540378443872
ans =
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0.75000000000000
>>

Al momento non consideriamo il metodo del gradiente cortugaiche non & di tipo
stazionario.

9. Facoltativo: Altre matrici interessanti. La matrice di Hilbert.. Per vedere alcuni
comandi di base aiutiamoci con delle matrici predefinite iatlsb/Octave. Digitiamo nella
shell di Matlab/Octave> help elmat . In Matlab 6.5 abbiamo

>> help elmat
Elementary matrices and matrix manipulation.

Elementary matrices.

zeros - Zeros array.

ones - Ones array.

eye - ldentity matrix.

repmat - Replicate and tile array.

rand - Uniformly distributed random numbers.
randn - Normally distributed random numbers.
linspace - Linearly spaced vector.

logspace - Logarithmically spaced vector.

freqspace - Frequency spacing for frequency response.

meshgrid - X and Y arrays for 3-D plots.
: - Regularly spaced vector and index into matrix.

Specialized matrices.

compan - Companion matrix.

gallery - Higham test matrices.

hadamard - Hadamard matrix.

hankel - Hankel matrix.

hilb - Hilbert matrix.

invhilb - Inverse Hilbert matrix.

magic - Magic square.

pascal - Pascal matrix.

rosser - Classic symmetric eigenvalue test problem.
toeplitz - Toeplitz matrix.

vander - Vandermonde matrix.

wilkinson - Wilkinson’s eigenvalue test matrix.

Questo ci dice che Matlab ha predefinito un set di matrici dipaare interesse. Se possibile
si suggerisce di provare i metodi che andremo ad introdwneuna matrice facente parte
dellagallery  di Matlab. Cid non appare possibile nelle recenti releas&ctave, come
GNU Octave 2.1.73. Da Matlab 6.5

>> help gallery

GALLERY Higham test matrices.
[outl,out2,..] = GALLERY(matname, paraml, param2, ...)
takes matname, a string that is the name of a matrix family, an d
the family’s input parameters. See the listing below for ava ilable
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matrix families. Most of the functions take an input argumen t
that specifies the order of the matrix, and unless otherwise
stated, return a single output.

For additional information, type "help private/matname”,

is the name of the matrix family.

where matname

cauchy  Cauchy matrix.

chebspec Chebyshev spectral differentiation matrix.

chebvand Vandermonde-like matrix for the Chebyshev polyno mials.
chow Chow matrix -- a singular Toeplitz lower Hessenberg mat rix.
circul  Circulant matrix.

poisson Block tridiagonal matrix from Poisson’s equation ( sparse).

prolate Prolate matrix -- symmetric, ill-conditioned Toep litz matrix.

randcolu Random matrix with normalized cols and specified s ingular
values.

randcorr Random correlation matrix with specified eigenva lues.

randhess Random, orthogonal upper Hessenberg matrix.

rando Random matrix with elements -1, 0 or 1.

randsvd Random matrix with pre-assigned singular values an d specified

bandwidth.

redheff Matrix of Os and 1s of Redheffer.

riemann Matrix associated with the Riemann hypothesis.

ris Ris matrix -- a symmetric Hankel matrix.

smoke Smoke matrix -- complex, with a "smoke ring" pseudospe ctrum.

toeppd Symmetric positive definite Toeplitz matrix.

toeppen Pentadiagonal Toeplitz matrix (sparse).

tridiag Tridiagonal matrix (sparse).

triw Upper triangular matrix discussed by Wilkinson and oth ers.

wathen ~ Wathen matrix -- a finite element matrix (sparse, ran dom
entries).

wilk Various specific matrices devised/discussed by Wilki nson.

(Two output arguments)
GALLERY(3) is a badly conditioned 3-by-3 matrix.
GALLERY(5) is an interesting eigenvalue problem. Try to fin d
its EXACT eigenvalues and eigenvectors.

See also MAGIC, HILB, INVHILB, HADAMARD, WILKINSON, ROSSER , VANDER.

10. Facoltativo: gli esempi visti in Matlab funzionano ancle in Octave.. Rivediamo
gli esperimenti in una recente release di Octave, come GNEMORQ.1.73.

octave:12> makefish(3)

ans =
4 -1 0 -1 -0 -0 0 0 0
-1 4 -1 0 -1 -0 0 0 0
0 -1 4 -0 -0 -1 0 0 0
-1 -0 0 4 1 0 -1 -0 -0
0 -1 0 -1 4 -1 0 -1 -0
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-0 -0 1 0 -1 4 -0 -0 -1
o o o0 -1 0 0 4 -1 O
o o o0 0 -1 0 -1 4 -1
o o o -0 0 -1 0 -1 4

octave:13> A=makefish(5);
octave:14> m=min(eig(A))

m = 0.53590

octave:15> cond(A)

ans = 13.928

octave:16> b=ones(size(A,1),1);
octave:17> demo_algebra_lineare

[JACOBI ] [STEP REL., NORMA 2]: 8.73e-09 [REL.ERR.]: 5.65e-
[ITER]: 116 [FLAG]: 0

[GAU.SEIL] [STEP REL., NORMA 2]: 9.22e-09 [REL.ERR.: 2.76
[ITER]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-09 [REL.ERR.]: 1.10e
[ITER]: 21 [FLAG]: O [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.67e-17 [REL.ERR.]: 1.85
[ITER]: 5 [FLAG]: O

octave:18> format long;

octave:19> D=diag(diag(A));

octave:20> size(D)

ans =

25 25
octave:21> BJ=eye(size(A))-inv(D) *A;
octave:22> s=eig(BJ);
octave:23> s_abs=abs(s);
octave:24> rho=max(s_abs);
octave:25> w=2/(1+sqrt(1-rho"2))
w = 1.33333333333333
octave:26> maxit=50; tol=10"(-8);
octave:27> b=ones(size(A,1),1);
octave:28> [x_sor,error_sor,iter_sor,flag_sor]=sor(A
octave:29> iter_sor
iter_sor = 22
octave:30> raggispettrali

[RAGGIO SPETTRALE][JACOBI]: 0.866025403784439

[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000

[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000000
[RAGGIO SPETTRALE][SOR OPT]: 0.333333380472264
octave:31> 0.866025403784439°2
ans = 0.750000000000001
octave:32>
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