
METODI ITERATIVI PER LA SOLUZIONE DI EQUAZIONI LINEARI ∗

A. SOMMARIVA †

Conoscenze richieste.Spazi vettoriali, operazioni elementari con le matrici, programmazione in Matlab/Octave.
Fattorizzazione LU. Norma di matrici.

Conoscenze ottenute.Metodi iterativi stazionari. Metodo di Jacobi. Metodo di Gauss-Seidel. Velocità di
convergenza. Raggio spettrale e convergenza di un metodo stazionario. Metodi di rilassamento. Metodo SOR.
Velocità di convergenza asintotica. Convergenza dei metodi di Jacobi e Gauss-Seidel per particolari matrici. Metodo
del gradiente coniugato.

1. Introduzione. Sia A una matrice reale aventen righe edn colonne,b un vettore
colonna aventen righe e si supponga di voler risolvere il sistema lineareAx = b. Come
noto, se il determinante della matrice è diverso da 0 (cioèla matriceA è non singolare) allora
il problemaAx = b ha una ed una sola soluzione.

Ricordiamo che in Matlab/Octave la soluzione può essere calcolata con il metodo LU,
utilizzando il comando\. Un esempio:

>> A=[1 2 4; 2 4 16; 3 9 81];
>> b=ones(3,1);
>> x=A\b
>> norm(A * x-b)
ans = 9.9301e-16
>> det(A)
ans = -24.000

Uno dei principali problemi del metodo LU è legato all’altocosto computazionale. SeA è
una generica matrice quadrata di ordinen infatti necessitano circa

O

(

n3

3
+

n2

2

)

operazioni moltiplicative, che possono risultare eccessive nel caso di matrici di grandi di-
mensioni. Per ovviare a questo problema si usano ad esempio metodi iterativi stazionari del
tipo

x(k+1) = P x(k) + c, k = 0, 1, . . .

conP dipendente daA e c dipendente daA e b (ma non dak). A differenza dei metodi di-
retti (come ad esempio il metodo LU), in genere un metodo iterativo stazionario convergente
calcola usualmente solo un approssimazione della soluzionex (a meno di una tolleranza pre-
fissata). Sem è il numero di iterazioni necessarie, visto che ogni iterazione ha un costoO(n2)
dovuto al prodotto matrice-vettoreP x(k), ci si augura che il costo computazionaleO(m n2)

del metodo iterativo sia di gran lunga inferiore aO(n3

3 + n2

2) di un metodo diretto quale LU.
Per una breve storia dell’algebra lineare si consulti [8].

∗Ultima revisione: 1 dicembre 2011.
†Dipartimento di Matematica Pura ed Applicata, Universitádegli Studi di Padova, stanza 419, via Trieste 63,

35121 Padova, Italia (alvise@euler.math.unipd.it). Telefono: +39-049-8271350.

1

1.1. I metodi di Jacobi, Gauss-Seidel e SOR.Sia A = M − N con M invertibile.
Di conseguenza, daAx = b abbiamo facilmenteMx = Nx + b ed essendoM invertibile
necessariamentex = M−1Nx + M−1b. In modo naturale, da quest’ultima uguaglianza, si
definisce unmetodo iterativo stazionariocome

x(k+1) = M−1Nx(k) + M−1b. (1.1)

La matriceP = M−1N è usualmente chiamatamatrice di iterazionedel metodo iterativo
stazionario definito daM , N . Osserviamo che postoc = M−1b, il metodo sopracitato è
ovviamente stazionario essendo

x(k+1) = Px(k) + c (1.2)

conP e c indipendenti dak.
Questa definizione dei metodi stazionari, forse un po’ astratta, ha il vantaggio di offrire

una rappresentazione compatta degli stessi ed è comunemente utilizzata in letteratura.
Risulterà in seguito utile definire le matriciD, E edF tali cheA = D−E−F conD matrice
diagonale,E, F rispettivamente triangolare inferiore e superiore con elementi diagonali nulli.
Ovviamente, fissataA, tali matrici esistono e sono uniche.

1.2. Il metodo di Jacobi. Il metodo di Jacobifu scoperto nel 1845, nell’ambito di al-
cune ricerche su problemi di piccole oscillazioni che comportavano alla risoluzione di sistemi
lineari con matrici diagonalmente dominanti [3, p.313].

Nel caso del metodo di Jacobi [15] si ha

M = D, N = E + F (1.3)

e quindi

P = M−1N = D−1(E+F) = D−1(D−D+E+F) = D−1(D−A) = I−D−1A (1.4)

Si osservi che seD è non singolare allora il metodo di Jacobi, almeno in questaversione di
base, non può essere utilizzato visto che in (1.7) non ha senso la scritturaD−1.

Qualora siaaii 6= 0 per ognii = 1, . . . , n, il metodo di Jacobi può essere descritto come

x
(k+1)
i = (bi −

i−1
∑

j=1

aijx
(k)
j −

n
∑

j=i+1

aijx
(k)
j)/aii, i = 1, . . . , n. (1.5)

1.3. Il metodo di Gauss-Seidel.Il metodo di Gauss-Seidelfu scoperto nel 1874, da
studi preliminari di Gauss (1823) completati dal suo allievo Seidel per lo studio di problemi ai
minimi quadrati del tipoSx = f conS non quadrata, che venivano risolti quali soluzione del
sistema di equazioni normaliST Sx = ST f . Mentre Gauss oltre a problemi di Astronomia
era interessato a problemi di Geodesia (triangolazione di Hannover usando unacatenadi 26
triangoli), Seidel si interessava alla risoluzione di un sistema di equazioni con 72 incognite
per uno studio di luminosità stellare.

Il metodo di Gauss-Seidel [13] è definito quale metodo stazionario in cui

M = D − E, N = F (1.6)

e quindi

P = M−1N = (D − E)−1F (1.7)

2

Similmente al metodo di Jacobi, possiamo riscrivere più semplicemente anche Gauss-
Seidel come

x
(k+1)
i =



bi −
i−1
∑

j=1

aijx
(k+1)
j −

n
∑

j=i+1

aijx
(k)
j



 /aii. (1.8)

Da (1.8) si capisce perchè tale metodo è noto anche comemetodo delle sostituzioni successi-
ve.

1.4. Generalizzazioni del metodo di Jacobi e Gauss-Seidel.Quali generalizzazio-
ni del metodo di Jacobi e Gauss-Seidel si introducono, per unopportuno parametroω, la
versionerilassata del metodo di Jacobi

x(k+1) = (I − ωD−1A)x(k) + ωD−1b (1.9)

la versionerilassata del metodo di Gauss-Seidel

x(k+1) =

(

D

ω
− E

)−1((
1

ω
− 1

)

D + F

)

x(k) +

(

D

ω
− E

)−1

b. (1.10)

L’idea di fondo di questi metodi rilassati è la seguente [3, p. 261], [16]. Ogni metodo
precedentemente esposto può essere scritto come

x(k+1) = x(k) + r̃(k)

ove r̃(k) è la correzione da apportare per passare dax(k) a x(k+1). Nei metodi rilassati, se
r̃(k) è la correzione di Jacobi o Gauss-Seidel, si considera quale correzionew · r̃(k) e quindi

x(k+1) = x(k) + w · r̃(k).

Essendox(k+1) = Px(k) + c daP = M−1N = M−1(M − A) = I − M−1A abbiamo

r̃(k) = x(k+1) − x(k) = Px(k) + c − x(k)

= (I − M−1A)x(k) + M−1b − x(k) = M−1(b − Ax(k)) (1.11)

Si osservi che i metodi di Jacobi e Gauss-Seidel si ottengonorispettivamente da (1.9) e (1.10)
per la sceltaω = 1.

2. Convergenza dei metodi iterativi.

2.1. Norma di matrici. Siaρ(P) il massimo degli autovalori in modulo della matrice
di iterazioneP = M−1N (il cosidettoraggio spettrale).

Sia‖ · ‖ : Rn → R+ una norma vettoriale. Definiamonorma naturale(in alcuni testi
norma indotta) di una matriceA ∈ Rn×n la quantità

‖A‖ := sup
x∈Rn,x 6=0

‖Ax‖
‖x‖ .

Si nota subito che questa definizione coincide con quella di norma di un operatore lineare e
continuo in spazi normati.

Vediamo alcuni esempi (cf. [4, p.24]). Siax un arbitrario elemento diRn, A ∈ Rn×n.

3

• Si definisce‖x‖1 :=
∑n

k=1 |xk| e si dimostra che la norma naturale corrispondente
è (cf. [4, p.26])

‖A‖1 = max
j

n
∑

i=1

|ai,j |.

• Si definisce‖x‖∞ := maxk |xk| e si dimostra che la norma naturale corrispondente
è (cf. [4, p.26])

‖A‖∞ = max
i

n
∑

j=1

|ai,j |.

• Si definisce‖x‖2 :=
(
∑n

k=1 |xk|2
)2

e si dimostra che la norma naturale corrispon-
dente è (cf. [4, p.27])

‖A‖2 = ρ1/2(AT A).

Per quanto riguarda un esempio chiarificatore in Matlab/Octave

>> A=[1 5; 7 13]

A =
1 5
7 13

>> norm(A,1)

ans =
18

>> norm(A,inf)

ans =
20

>> norm(A,2)

ans =
15.5563

>> eig(A * A’)

ans =
2

242

>> sqrt(242)

ans =
15.5563

4

>> raggio_spettrale_A=max(abs(eig(A)))

raggio_spettrale_A =
15.4261

>>

Si dimostra che (cf. [4, p.28])

TEOREMA 2.1. Per ogni norma naturale‖ · ‖ e ogni matrice quadrataA si haρ(A) ≤
‖A‖. Inoltre per ogni matriceA di ordinen e per ogniǫ > 0 esiste una norma naturale‖ · ‖
tale che

ρ(A) ≤ ‖A‖ ≤ ρ(A) + ǫ.

e inoltre (cf. [4, p.29], [3, p.232])

TEOREMA 2.2. Fissata una norma naturale‖ · ‖, i seguenti asserti sono equivalenti
1. Am → 0;
2. ‖Am‖ → 0;
3. ρ(A) < 1.

NOTA 2.3.
1. Ricordiamo che il raggio spettrale nonè una norma. Infatti la matrice

(

0 1
0 0

)

ha raggio spettrale nullo, ma noǹe la matrice nulla.
2. Osserviamo che dagli esempi il raggio spettrale di una matrice A non coincide in

generale con la norma1, 2, ∞, ma che a volteρ(A) = ‖A‖2 come nel caso di
una matrice diagonaleA (essendo gli autovalori di una matrice diagonale, proprio
i suoi elementi diagonali).

2.2. Il teorema di Hensel e la convergenza di un metodo iterativo stazionario. Con-
sideriamo un metodo iterativo stazionariox(k+1) = Px(k) + c in cui sceltox(0) si abbia

x∗ − x(0) =

n
∑

s=1

csus

dove{uk}k è una base di autovettori diP avente autovalori{λk}k. Questo accade se e
solo seA è diagonalizzabile, cioè simile a una matrice diagonale (cf. [3, p.57]). Supponiamo
|λs| < 1 pers = 1, . . . , n. Se il metodo èconsistente, cioèx∗ = Px∗+c abbiamox(k)−x∗ =
P (x(k−1) − x∗) = P k(x0 − x∗) =

∑n
s=1 csP

kus =
∑n

s=1 csλ
k
sus e quindi se|λk

s | < 1 per
ognis = 1, . . . , n ek = 1, 2, . . ., abbiamo

‖x(k) − x∗‖ = ‖
n
∑

s=1

csλ
k
sus‖ ≤

n
∑

s=1

|cs||λk
s |‖us‖ → 0

mentre se per qualchek si ha|λk| ≥ 1 eck 6= 0 allora‖x(k)−x∗‖ non converge a0 al crescere
di k. Infatti, seλl ≥ 1 è l’autovalore di massimo modulo, abbiamo che la componente clλ

l
s

5

FIGURA 2.1.Kurt Wilhelm Sebastian Hensel (1861-1941).

relativa all’autovettoreus non tende a 0 e quindix(k) − x∗ non tende a 0. Di conseguenza
non è vero che il metodo è convergente per qualsiasi sceltadel vettorex(0). Di conseguenza

TEOREMA 2.4. SeP è diagonalizzabile allora un metodo iterativo stazionarioconsi-
stentex(k+1) = Px(k) + c converge per ogni vettore inizialex0 se e solo seρ(P) < 1.
Dimostriamo ora una sua generalizzazione, scoperta da Hensel nel 1926 [3, p.313].

TEOREMA 2.5. Un metodo iterativo stazionario consistentex(k+1) = Px(k) + c con-
verge per ogni vettore inizialex0 se e solo seρ(P) < 1.

DIMOSTRAZIONE. La dimostrazione è tratta da [3, p.236].
• Seρ(P) < 1, allora il problemax = Px + c ha una e una sola soluzionex∗. Infatti,

x = Px + c ⇔ (I − P)x = c

e la matriceI − P ha autovalori1 − λk conk = 1, . . . , n tali che

0 < |1 − |λk|C|R ≤ |1 − λk|C,

poichè|λk|C ≤ ρ(P) < 1 e quindi

det(I − P) =

n
∏

k=1

(1 − λk) 6= 0,

per cui la matriceI − P è invertibile e il sistema(I − P)x = c ha una e una sola
soluzionex∗. Siae(k) = x(k) − x∗. Come stabilito dal Teorema2.1, sia inoltre una

norma naturale‖ · ‖ tale che

ρ(P) ≤ ‖P‖ = ρ(P) + (1 − ρ(P))/2 < 1.

Essendox(k+1) = Px(k) + c e x = Px + c, sottraendo membro a membro le

equazioni si ottiene

e(k+1) = Pe(k+1) = P ke(0)

da cui essendo‖ · ‖ una norma naturale

‖e(k+1)‖ = ‖Pe(k)‖ = ‖P ke(0)‖ ≤ ‖P k‖‖e(0)‖. (2.1)

6

Poichè il raggio spettrale è minore di 1 dal Teorema2.2abbiamo che‖P k‖ → 0 da
cui per (2.1) necessariamente‖e(k+1)‖ → 0 e quindi per le proprietà delle norme
e(k+1) → 0 cioèx(k) → 0. Si noti che questa direzione della dimostrazione poteva

essere vista come applicazione del teorema di punto fisso di Banach che stabilisce
che seK è un insieme non vuoto e chiuso di uno spazio di BanachV eT : K → K
è una mappaL contrattiva, cioè‖T (x) − T (y)‖ < L‖x − y‖ con 0 ≤ L < 1,
allora esiste ed è unicox∗ ∈ K tale chex∗ = T (x∗) e inoltre per ognix(0) ∈ K
la sequenza{x(k)}k ⊆ K definita dax(k+1) = T (x(k)), k = 0, 1, . . . converge ad
x∗. Per una dimostrazione si veda ad esempio [2, p.133], [4, p.133]. Il problema che
stiamo analizzando corrisponde a porreK = V = Rn dotati di una norma‖ · ‖ tale
che

ρ(P) ≤ ‖P‖ = (1 + ρ(P))/2 < 1,

eT (x) = Px + c. CertamenteT è contrattiva in quanto perL = (1 + ρ(P))/2 < 1
abbiamo

‖T (x)−T (y)‖ = ‖Px + c−Py − c‖ ≤ ‖P (x− y)‖ ≤ ‖P‖‖x− y‖ = L‖x− y‖.

Di conseguenza per ognix(0) ∈ Rn la sequenzax(k+1) = Px(k) + c converge ax∗

soluzione dix = Tx e quindi, per definizione diT , tale chex = Px + c.

• Supponiamo che la successionex(k+1) = Px(k) + c converga ax∗ per qualsiasi
x(0) ∈ Rn ma che siaρ(P) ≥ 1. Siaλmax il massimo autovalore in modulo di
P e scegliamox(0) tale chee(0) = x(0) − x∗ sia autovettore diP relativamente
all’autovaloreλmax. EssendoPe(0) = λmaxe(0) e e(k+1) = P ke(0) abbiamo che

e(k+1) = λk
maxe

(0)

da cui, qualsiasi sia la norma‖ · ‖, per ognik = 1, 2, . . . si ha

‖e(k+1)‖ = |λk
max|C‖e(0)‖ ≥ ‖e(0)‖

il che comporta che la successione non è convergente (altrimenti per qualchek
sarebbee(k) < e(0)).

2.3. Sulla velocit̀a di convergenza.Abbiamo visto che

‖e(k)‖ ≤ ‖P k‖‖e(0)‖, e(k) = x(k) − x∗ (2.2)

See(k−1) 6= 0, la quantità‖e(k)‖/‖e(k−1)‖ esprime la riduzione dell’errore alk-simo passo
e

σk =

(‖e(k)‖
‖e(k−1)‖ . . .

‖e(1)‖
‖e(0)‖

)

1
k

la riduzione media per passo dell’errore relativo ai primik passi (cf. [3, p.239]).
Si dimostra che

TEOREMA 2.6. SiaA ∈ Cn×n e‖ · ‖ una norma naturale. Allora

lim
k

‖Ak‖ 1
k = ρ(A)

7

Quindi perk sufficientemente grande si ha

‖P k‖ ≈ ρk(P).

Sotto queste ipotesi, se

‖e(k+m)‖ ≈ ‖Pm‖‖e(k)‖ (2.3)

abbiamo

‖e(k+m)‖ ≈ ‖Pm‖‖e(k)‖ ≈ ρ
1
m (P)‖e(k)‖ (2.4)

per cui affinchè

‖e(k+m)‖/‖e(k)‖ ≈ ρm(P) ≈ ǫ

applicando il logaritmo naturale ad ambo i membri, si vede serve sia,

m log (ρ(P)) ≈ log ǫ ⇒ m ≈ ln ǫ

log (ρ(P))

Se

R(P) = − log(ρ(P))

è la cosidettavelocità di convergenza asintoticadel metodo iterativo relativo aP , si può
cosı̀ stimare che il numero di iterazionim necessarie per ridurre l’errore di un fattoreǫ
relativamente allak-sima iterazione, cioè affinchè

‖e(k+m)‖/‖e(k)‖ = ǫ.

Si vede facilmente che è circa

m ≈
⌈− log(ǫ)

R(P)

⌉

.

Conseguentemente seP è la matrice d’iterazione di un metodo stazionario convergente
(e consistente), essendoρ(P) < 1, minore èρ(P) necessariamente è maggioreR(P) e si può
stimareil numero di iterazioni per ridurre l’errore di un fattoreǫ. Si desidera quindi cercare
metodi conρ(P) più piccolo possibile.

3. I metodi di Richardson. Fissatoα, la versione di base del metodo di Richardson
consiste in un metodo iterativo del tipo

x(k+1) − x(k) = αr(k). (3.1)

D’altra parte come visto precedentemente i metodi di Jacobie di Gauss-Seidel e le loro
versionirilassatesono metodi iterativi del tipo

Mx(k+1) = Nx(k) + b, (3.2)

per opportune scelte delle matriciM (che dev’essere invertibile),N tali che

A = M − N. (3.3)

8

Se

r(k) = b − Ax(k) (3.4)

è il residuoallak-sima iterazione allora da (3.2) e (3.3)

M(x(k+1) − x(k)) = Nx(k) + b − Mx(k) = b − Ax(k) = r(k) (3.5)

Ne consegue che i metodi di Jacobi e di Gauss-Seidel e le loro versionirilassatesono gene-
ralizzazioni di un metodo di Richardson del tipo

M(x(k+1) − x(k)) = αr(k) (3.6)

in cui la matrice invertibileM è detta diprecondizionamento.

3.1. Facoltativo. Il metodo di Richardson precondizionatocon parametro fissoα
ottimale. Per un opportuno parametro di accelerazioneα > 0 (da non confondersi con
quello di SOR), si può fornire un’ovvia generalizzazione del metodo (3.5)

M(x(k+1) − x(k)) = α r(k), k ≥ 0. (3.7)

Evidentemente (3.5) corrisponde alla sceltaα = 1.
Il parametroα > 0 viene scelto cosı́ da minimizzare il raggio spettrale dellamatrice di

iterazione. In questo caso si vede che da

M(x(k+1) − x(k)) = α (b − Ax(k)) (3.8)

necessariamente

Mx(k+1) = Mx(k) + α (b − Ax(k)) = (M − αA)x(k) + α b, (3.9)

e quindi con le precedenti notazioni

Mα =
M

α
, Nα =

M − α A

α
(3.10)

per cui la matrice di iterazioneRα = M−1
α Nα diventa

C = M−1(M − α A) = I − α M−1A. (3.11)

SeM−1A è definita positiva eλmin e λmax sono rispettivamente il minimo e massimo
autovalore diM−1A, allora il valore ottimale del parametroα, cioè quello per cui è minimo
il raggio spettrale della matrice d’iterazioneM − α A è

αott =
2

λmin + λmax
(3.12)

ed in corrispondenza si ha che la matrice di iterazioneRαott ha raggio spettrale

αott =
λmax− λmin
λmin + λmax

(3.13)

Per capirlo si dimostra dapprima che qualsiasi siaλ ∈ [λmin, λmax] si ha

|1 − αλ| ≤ max(|1 − αλmin|, |1 − αλmax|)
9

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FIGURA 3.1.Grafici di |1 − αλmax| e |1 − αλmin| (rispettivamente in rosso e in blu).

e che

min
α∈R

max(|1 − αλmin|, |1 − αλmax|)

lo si ottiene quando la rettay = αλmax− 1 interseca la rettay = 1 − αλmin, che è proprio
perα = αott.

Si osservi che la scelta diα non dipende dall’iterazione; di conseguenza (3.7) definisce
il cosidettometodo di Richardson stazionario precondizionato, per distinguerlo dalmetodo
di Richardson non stazionario precondizionato

M(x(k+1) − x(k)) = αk (b − Ax(k)). (3.14)

conαk che non è necessariamente costante.

4. I metodi di discesa.Una classica famiglia di metodi di Richardson non stazionari è
quella dei metodi didiscesa. SiaA una matrice simmetrica definita positiva. Si osserva che
sex∗ è l’unica soluzione diAx = b allora è pure il minimo del funzionale

φ(x) =
1

2
xT Ax − bT x, x ∈ R

n

Un genericometodo di discesaconsiste nel generare una successione

x(k+1) = x(k) + αkp(k)

dovep(k) è una direzione fissata secondo qualche criterio. Vediamo di seguito alcuni di questi
metodi.

4.1. Il metodo del gradiente classico.Si dimostra [4, p.341] che il parametroαk

ottimale cosicchèφ(x(k+1)) sia minimo una volta sceltap(k) è

αk =
(r(k))T p(k)

(p(k))T Ap(k)

Nel metodo del gradiente si sceglie quale direzionep(k) = grad(φ(x))|x=x(k) . Ma se
r(k) = b − Ax(k), allora

grad(φ(x))|x=x(k) =
1

2
grad(xT Ax)|x=x(k) − grad(bT x)|x=x(k)

= Ax(k) − b = −r(k) (4.1)

10

e quindip(k) = r(k) (è essenziale la direzione ma non il segno e per convincersene si calcoli
la successione anche con segno oppostop(k) = −r(k) per parametroαk ottimale).

Di conseguenza il metodo del gradiente è definito dalla successione tipica dei metodi di
Richardson non stazionari

x(k+1) = x(k) + αkr(k)

dove

αk =
(r(k))T p(k)

(p(k))T Ap(k)
=

‖r(k)‖2
2

(r(k))T Ar(k)
.

Nel caso del metodo del gradiente, vale la stima

‖e(k)‖A ≤
(

κ(A) − 1

κ(A) + 1

)k

‖e(0)‖A

che mostra che più grande è il numero di condizionamentoκ(A) più è vicino a1 la quantità
κ(A)−1
κ(A)+1 il che giustifica unapossibileconvergenza lenta del metodo.

4.2. Il metodo del gradiente coniugato.Il metodo del gradiente coniugato (di cui for-
niremo solo il codice e alcune brevi indicazioni) fu descritto nel 1952 da Hestenes e Stiefel
ma per quanto destasse subito l’interesse dell’ambiente matematico non venne molto utiliz-
zato fino al 1971, quando Reid suggerı̀ il suo utilizzo per la risoluzione di sistemi sparsi (cioè
con molte componenti nulle) di grandi dimensioni [3], [14].

La successione delle iterazioni del gradiente coniugato èquella propria dei metodi di
discesa,

x(k+1) = x(k) + αkp(k), αk =
(r(k))T r(k)

(p(k))T Ap(k)

dovep(0) = r(0) e

p(k) = r(k) + βkp(k−1), βk =
(r(k))T r(k)

(r(k−1))T r(k−1)
.

Con questa scelta si prova che

(p(k))T Ap(k−1) = 0,

cioè i vettorip(k) ep(k−1) sonoA-coniugati.

4.2.1. Convergenza del gradiente coniugato.Il metodo del gradiente coniugato ha
molte proprietà particolari. Ne citiamo alcune.

• Sia

Kk = span(r(0), Ar(0), . . . , Ak−1r(0))

perk ≥ 1. Allora la k-sima iterata dal metodo del gradiente coniugato minimizzail
funzionaleφ nell’insiemex(0) + Kk [7, p.12].

11

• SeA è una matrice simmetrica e definita positiva di ordinen, si può dimostrare
che il metodo è convergente e fornisce in aritmetica esattala soluzione del sistema
Ax = b in al massimon iterazioni.
Questo teorema tradisce un po’ le attese, sia perchè in generale i calcoli non sono
compiuti in aritmetica esatta, sia perchè in molti casi della modellistica matematica
n risulta essere molto alto.

• Si può dimostrare [3, p. 279] che seA è simmetrica e definita positiva,

‖x‖A =
√

xT Ax

e

ek = x∗ − x(k)

allora

‖ek‖A ≤
(

√

K2(A) − 1
√

K2(A) + 1

)2k

‖e0‖A.

Questo risultato stabilisce che la convergenza del gradiente coniugato è lenta qualora
si abbiano alti numeri di condizionamento

K2(A) := ‖A‖2‖A−1‖2 =
maxi |λi|
minj |λj |

(ove al solito{λi} sono gli autovalori diA). Esistono varie versioni di questa
disuguaglianza. Ad esempio in [11, p. 151]:

‖ek‖A ≤
(

2ck

1 + 2ck

)

‖e0‖A

dove

c :=

√

K2(A) − 1
√

K2(A) + 1
.

• SiaA simmetrica e definita positiva. Si supponga che ci siano esattamentek ≤ n
autovalori distinti diA. Allora il metodo del gradiente coniugato converge in al pi`u
k iterazioni.

• Sia A simmetrica e definita positiva. Si suppongab sia combinazione lineare di
k ≤ n autovettori distinti diA. Allora il metodo del gradiente coniugato con la
sceltax(0) = 0 converge in al piùk iterazioni.

L’analisi del metodo è piuttosto complessa. Qualora interessati si confronti con [1, p.
562-569], [3, p. 272-283], [4, p. 340-356], [7, p. 11-29], [11, p. 145-153].

5. Convergenza dei Jacobi, Gauss-Seidel ed SOR.Lo studio della convergenza dei
metodi di Jacobi, Gauss-Seidel ed SOR [16] è un proposito complicato e ci limiteremo a
citare, senza dimostrazione, alcuni classici risultati [3, p. 231-315].

Ricordiamo che

12

1. A è a predominanza diagonale (per righe) se per ognii = 1, . . . , n risulta

|ai,i| ≥
n
∑

j=1,j 6=s

|ai,j |

e per almeno un indices si abbia

|as,s| >
n
∑

j=1,j 6=s

|as,j |.

Ad esempio la matrice

A =





4 −4 0
−1 4 −1
0 −4 4





è a predominanza diagonale (per righe).
2. A è a predominanza diagonale in senso stretto (per righe) se per ognii = 1, . . . , n

risulta

|ai,i| >
n
∑

j=1,j 6=i

|ai,j |.

Ad esempio la matrice

A =





4 −1 0
−1 4 −1
0 −1 4





è a predominanza diagonale in senso stretto (per righe).
3. A è a predominanza diagonale per colonne (in senso stretto) seAT è a predominanza

diagonale per righe (in senso stretto).
4. A è tridiagonale seai,j = 0 per|i − j| > 1. Ad esempio la matrice

A =













4 −1 0 . . . 0
−1 4 −1 . . . 0
0 −1 4
0 −1
0 0 . . . −1 4













è tridiagonale.
5. A è definita positiva se e solo se i suoi autovalori sono positivi.

La matrice

A =





4 −1 0
−1 4 −1
0 −1 4





è definita positiva come si può vedere usando i seguenti comandi Matlab/Octave

13

>> A=[4 -1 0; -1 4 -1; 0 -1 4]
A =

4 -1 0
-1 4 -1

0 -1 4
>> eig(A)
ans =

2.5858
4.0000
5.4142

>>

6. A di ordinen ≥ 2 è riducibile se esiste una matrice di permutazioneΠ e un interok
con0 < k < n, tale che

B = ΠAΠT =

(

A1,1 A1,2

0 A2,2

)

in cui A1,1 ∈ Ck×k, A2,2 ∈ C(n−k)×(n−k). SeA non è riducibile si dice cheA è
irriducibile.

Il metodo di Jacobi risulta convergente in uno dei seguenti casi [3, p. 247]:
1. A è a predominanza diagonale in senso stretto;
2. A è a predominanza diagonale ed è irriducibile;
3. A è a predominanza diagonale in senso stretto per colonne;
4. A è a predominanza diagonale per colonne ed è irriducibile.

TEOREMA 5.1.SiaA una matrice quadrata a predominanza diagonale. Allora il metodo
di Jacobi converge alla soluzione diAx = b, qualsiasi sia il puntox(0) iniziale. Dimostra-
zione. Supponiamo cheA sia a predominanza diagonale in senso stretto per righe. Allora per
ogni i = 1, . . . , n risulta

|ai,i| >

n
∑

j=1,j 6=i

|ai,j |.

Nel caso del metodo di Jacobi

M = D, N = E + F, P = M−1N = D−1(E + F), (5.1)

da cui

Pi,j =

{ ai,j

ai,i
sei 6= j

0 sei = j

Di conseguenza

‖P‖∞ = max
i

n
∑

j=1

|Pi,j | = max
i

n
∑

j=1

|ai,j |
|ai,i|

< 1

ed essendoρ(P) ≤ ‖P‖1 < 1 abbiamo che il metodo di Jacobi è convergente.
TEOREMA 5.2. Il metodo di Gauss-Seidel risulta convergente in uno dei seguenti casi

[3, p. 249]:

14

1. A è a predominanza diagonale in senso stretto.
2. SiaA una matrice simmetrica definita positiva, non singolare conelementi princi-

pali ai,i 6= 0. Allora Gauss-Seidel̀e convergente se e solo seA è definita positiva.
TEOREMA 5.3. Per matrici tridiagonali (a blocchi)A = (ai,j) con componenti diago-

nali non nulle, i metodi di Jacobi e Gauss-Seidel sono o entrambi convergenti o divergenti e il
tasso di convergenza del metodo di Gauss-Seidelè il doppio di quello del metodo di Jacobi (il
che vuol dire cheasintoticamentesono necessarie metà iterazioni del metodo di Gauss-Seidel
per ottenere la stessa precisione del metodo di Jacobi).

TEOREMA 5.4. SiaA simmetrica con elementi diagonali positivi. Allora il metodo SOR
converge se e solo se0 < w < 2 eA è definita positiva [6, p.215].

6. Test d’arresto. Consideriamo il sistema lineareAx = b avente un’unica soluzione
x∗ e supponiamo di risolverlo numericamente con un metodo iterativo stazionario del tipo

x(k+1) = Px(k) + c,

che siaconsistentecioè

x∗ = Px∗ + c.

6.1. Sul criterio dello step. Posto∆(k) := x(k+1) − x(k) e e(k) = x∗ − x(k), essendo

e(k) = x∗ − x(k) = (Px∗ + c) − (Px(k) + c)

= P (x∗ − x(k)) = Pe(k−1) (6.1)

abbiamo

‖e(k)‖2 = ‖x∗ − x(k)‖2 = ‖(x∗ − x(k+1)) + (x(k+1) − x(k))‖2

= ‖e(k+1) + ∆(k)‖2 = ‖Pe(k) + ∆(k)‖2 ≤ ‖P‖2 · ‖e(k)‖2 + ‖∆(k)‖2 (6.2)

Fissata dall’utente una tolleranzatol, si desidera interrompere il processo iterativo quando
|x∗−x(k)| ≤ tol. Non disponendo dix∗, il testdello step, consiste nell’interrompere il meto-
do iterativo allak + 1-sima iterazione qualora|x(k+1) − x(k)| ≤ tol. Di seguito desideriamo
vedere quando tale criterio risulti attendibile cioè

|x(k+1) − x(k)| ≈ |x∗ − x(k)|

SeP è simmetrica, allora esistono una matrice ortogonaleU , cioè tale cheUT = U−1, e una
matrice diagonale a coefficienti realiΛ per cui

P = UΛUT

ed essendoP eΛ simili hanno gli stessi autovalori{λk}k Di conseguenza, seP è simmetrica

‖P‖2 =
√

ρ(PPT) =
√

ρ(UΛUT (UΛUT)T)

=
√

ρ(UΛ2UT) (6.3)

EssendoUΛ2UT simile aΛ2, UΛ2UT e Λ2 hanno gli stessi autovalori uguali a{λ2
k}k e di

conseguenza lo stesso raggio spettrale, da cui

ρ(UΛ2UT) = ρ(Λ2)

15

e quindi ricaviamo

‖P‖2 =
√

ρ(Λ2) =
√

max
k

|λ2
k|

=
√

(max
k

|λk|2) =
√

(max
k

|λk|)2

= max
k

|λk| = ρ(P) (6.4)

Di conseguenza da (6.2)

‖e(k)‖2 ≤ ‖P‖2 · ‖e(k)‖2 + ‖∆(k)‖2

= ρ(P) · ‖e(k)‖2 + ‖∆(k)‖2

(6.5)

e seρ(P) < 1, cioè il metodo iterativo stazionario converge per qualsiasi scelta del vettore
iniziale, portandoρ(P) · ‖e(k)‖2 a primo membro e dividendo per1 − ρ(P) deduciamo

‖x(k+1) − x(k)‖2 = ‖e(k)‖2 =
1

1 − ρ(P)
‖∆(k)‖2 =

1

1 − ρ(P)
‖x∗ − x(k)‖2

da cui seP è simmetrica allora il criterio dello step è affidabile seρ(P) è piccolo.

6.2. Sul criterio del residuo. Si definisceresiduoallak-sima iterazione la quantità

r(k) := b − Ax(k)

ed essendob = Ax∗ abbiamo

b − Ax(k) = Ax∗ − Ax(k) = A(x∗ − x(k)) = Ae(k)

da cui

r(k) = Ae(k).

Interromperemo il processo iterativo quandor(k) ≤ tol, desiderando sia pure

‖x(k) − x∗‖
‖x∗‖ ≤ tol

Notiamo che
1. essendoA invertibile er(k) = Ae(k) ricaviamoe(k) = A−1r(k) da cui

‖e(k)‖ = ‖A−1r(k)‖ ≤ ‖A−1‖‖r(k)‖;

2. poichèb = Ax∗ abbiamo‖b‖ ≤ ‖A‖‖x∗‖ e quindi

1

‖x∗‖ ≤ ‖A‖
‖b‖ .

16

Di conseguenza, denotato conκ(A) = ‖A‖‖A−1‖ il numero di condizionamento (necessa-
riamente maggiore o uguale a 1), sex∗ 6= 0 abbiamo

‖e(k)‖
‖x∗‖ ≤ ‖A‖

‖b‖ ‖e(k)‖ ≤ ‖A‖
‖b‖ · ‖A−1‖‖r(k)‖ ≤ κ(A)

‖r(k)‖
‖b‖

Quindi

‖e(k)‖
‖x∗‖ ≤ κ(A)

‖r(k)‖
‖b‖ ≤ tol.

Il criterio d’arresto‖r(k)‖
‖b‖ ≤ tol è quindi molto conservativo quandoκ(A) ≫ 1.

7. Metodi iterativi in Matlab.

7.1. Metodo di Jacobi in Matlab. Un codice Matlab/Octave del metodo di Jacobi,fornito
in internet presso il sito di Netlib

http://www.netlib.org/templates/matlab/

è il seguente

function [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)

% -- Iterative template routine --
% Univ. of Tennessee and Oak Ridge National Laboratory
% October 1, 1993
% Details of this algorithm are described in "Templates for t he
% Solution of Linear Systems: Building Blocks for Iterative
% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,
% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio ns,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates. ps).
%
% [x, error, iter, flag] = jacobi(A, x, b, max_it, tol)
%
% jacobi.m solves the linear system Ax=b using the Jacobi Met hod.
%
% input A REAL matrix
% x REAL initial guess vector
% b REAL right hand side vector
% max_it INTEGER maximum number of iterations
% tol REAL error tolerance
%
% output x REAL solution vector
% error REAL error norm
% iter INTEGER number of iterations performed
% flag INTEGER: 0 = solution found to tolerance
% 1 = no convergence given max_it

iter = 0; % initialization
flag = 0;

bnrm2 = norm(b);
if (bnrm2 == 0.0), bnrm2 = 1.0; end

17

r = b - A * x;
error = norm(r) / bnrm2;
if (error < tol) return, end

[m,n]=size(A);
[M, N] = split(A , b, 1.0, 1); % matrix splitting

for iter = 1:max_it, % begin iteration

x_1 = x;
x = M \ (N * x + b); % update approximation

error = norm(x - x_1) / norm(x); % compute error
if (error <= tol), break, end % check convergence

end

if (error > tol) flag = 1; end % no convergence

Il codice di jacobi utilizza una funzionesplit che serve per calcolare le matriciM , N
che definiscono l’iterazione del metodo di Jacobi:

function [M, N, b] = split(A, b, w, flag)
%
% function [M, N, b] = split_matrix(A, b, w, flag)
%
% split.m sets up the matrix splitting for the stationary
% iterative methods: jacobi and sor (gauss-seidel when w = 1. 0)
%
% input A DOUBLE PRECISION matrix
% b DOUBLE PRECISION right hand side vector (for SOR)
% w DOUBLE PRECISION relaxation scalar
% flag INTEGER flag for method: 1 = jacobi
% 2 = sor
%
% output M DOUBLE PRECISION matrix
% N DOUBLE PRECISION matrix such that A = M - N
% b DOUBLE PRECISION rhs vector (altered for SOR)

[m,n] = size(A);

if (flag == 1), % jacobi splitting

M = diag(diag(A));
N = diag(diag(A)) - A;

elseif (flag == 2), % sor/gauss-seidel splitting

b = w * b;
M = w * tril(A, -1) + diag(diag(A));
N = -w * triu(A, 1) + (1.0 - w) * diag(diag(A));

end;

18

% END split.m

Ricordiamo che la funzionesplit non coincide con quella predefinita nelle ultime releases
di Matlab/Octave. Qualora la funzionesplit che vogliamo utilizzare sia salvata della direc-
tory corrente, una volta richiamata, i workspace di Matlab/Octave utilizzano proprio questa e
non quella descritta per altri usi in Matlab/Octave. Inoltre per quanto riguardatril e triu
in split dall’help di Matlab si capisce che estraggono rispettivamente la parte triangolare
inferiore e superiore di una matrice:

>> help tril

TRIL Extract lower triangular part.
TRIL(X) is the lower triangular part of X.
TRIL(X,K) is the elements on and below the K-th diagonal
of X . K = 0 is the main diagonal, K > 0 is above the
main diagonal and K < 0 is below the main diagonal.

See also TRIU, DIAG.

>> help triu

TRIU Extract upper triangular part.
TRIU(X) is the upper triangular part of X.
TRIU(X,K) is the elements on and above the K-th diagonal of
X. K = 0 is the main diagonal, K > 0 is above the main
diagonal and K < 0 is below the main diagonal.

See also TRIL, DIAG.

>> A=[1 2 3; 4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

>> tril(A)
ans =

1 0 0
4 5 0
7 8 9

>> triu(A)
ans =

1 2 3
0 5 6
0 0 9

>> tril(A,-1)
ans =

0 0 0
4 0 0
7 8 0

>> triu(A,1)
ans =

0 2 3

19

0 0 6
0 0 0

>> triu(A,-1)
ans =

1 2 3
4 5 6
0 8 9

>>

La routinejacobi è scritta da esperti di algebra lineare e si interrompe quando la norma 2
dello step relativo

‖x(k+1) − x(k)‖2

‖x(k+1)‖2

è inferiore ad una tolleranzatol prefissata oppure un numero massimo di iterazionimax it

è raggiunto. Ricordiamo che sev = (vi)i=1,...,n è un elemento diRn allora

‖v‖2 =

√

√

√

√

n
∑

i=1

v2
i .

Problema: cosa succede quando la matrice diagonale estratta daA è singolare? cosa succede
quando partendo dax0 6= 0, si ha per qualche indicek > 0 chexk = 0?

7.2. Metodo di Gauss-Seidel in Matlab.La versione di Gauss-Seidel con la scelta del
parametroω è nota in letteratura comeSOR, acronimo disuccessive over relaxation. Una
versione di SOR scaricabile presso il sito di Netlib [10] è la seguente
function [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)

% -- Iterative template routine --
% Univ. of Tennessee and Oak Ridge National Laboratory
% October 1, 1993
% Details of this algorithm are described in "Templates for t he
% Solution of Linear Systems: Building Blocks for Iterative
% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,
% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio ns,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates. ps).
%
% [x, error, iter, flag] = sor(A, x, b, w, max_it, tol)
%
% sor.m solves the linear system Ax=b using the
% Successive Over-Relaxation Method (Gauss-Seidel method when omega = 1).
%
% input A REAL matrix
% x REAL initial guess vector
% b REAL right hand side vector
% w REAL relaxation scalar
% max_it INTEGER maximum number of iterations
% tol REAL error tolerance
%
% output x REAL solution vector
% error REAL error norm
% iter INTEGER number of iterations performed

20

% flag INTEGER: 0 = solution found to tolerance
% 1 = no convergence given max_it

flag = 0; % initialization
iter = 0;

bnrm2 = norm(b);
if (bnrm2 == 0.0), bnrm2 = 1.0; end

r = b - A * x;
error = norm(r) / bnrm2;
if (error < tol) return, end

[M, N, b] = split(A, b, w, 2); % matrix splitting

for iter = 1:max_it % begin iteration

x_1 = x;
x = M \ (N * x + b); % update approximation

error = norm(x - x_1) / norm(x); % compute error
if (error <= tol), break, end % check convergence

end
b = b / w; % restore rhs

if (error > tol) flag = 1; end; % no convergence

Come per il metodo di Jacobi, il processo si interrompe quando la norma 2 dello step relativo

‖x(k+1) − x(k)‖2

‖x(k+1)‖2

è inferiore ad una tolleranzatol prefissata oppure un numero massimo di iterazionimax it

è raggiunto.
Per ulteriori dettagli si consulti ad esempio [4, p. 313-339].

7.3. Metodo del gradiente coniugato in Matlab. Per quanto riguarda il codice del
Gradiente Coniugato, un esempio è il filecg.m tratto da Netlib [10]:

function [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)

% -- Iterative template routine --
% Univ. of Tennessee and Oak Ridge National Laboratory
% October 1, 1993
% Details of this algorithm are described in "Templates for t he
% Solution of Linear Systems: Building Blocks for Iterative
% Methods", Barrett, Berry, Chan, Demmel, Donato, Dongarra ,
% Eijkhout, Pozo, Romine, and van der Vorst, SIAM Publicatio ns,
% 1993. (ftp netlib2.cs.utk.edu; cd linalg; get templates. ps).
%
% [x, error, iter, flag] = cg(A, x, b, M, max_it, tol)
%
% cg.m solves the symmetric positive definite linear system Ax=b

21

% using the Conjugate Gradient method with preconditioning .
%
% input A REAL symmetric positive definite matrix
% x REAL initial guess vector
% b REAL right hand side vector
% M REAL preconditioner matrix
% max_it INTEGER maximum number of iterations
% tol REAL error tolerance
%
% output x REAL solution vector
% error REAL error norm
% iter INTEGER number of iterations performed
% flag INTEGER: 0 = solution found to tolerance
% 1 = no convergence given max_it

flag = 0; % initialization
iter = 0;

bnrm2 = norm(b);
if (bnrm2 == 0.0), bnrm2 = 1.0; end

r = b - A * x;
error = norm(r) / bnrm2;
if (error < tol) return, end

for iter = 1:max_it % begin iteration

z = M \ r;
rho = (r’ * z);

if (iter > 1), % direction vector
beta = rho / rho_1;
p = z + beta * p;

else
p = z;

end

q = A* p;
alpha = rho / (p’ * q);
x = x + alpha * p; % update approximation vector

r = r - alpha * q; % compute residual
error = norm(r) / bnrm2; % check convergence
if (error <= tol), break, end

rho_1 = rho;

end

if (error > tol) flag = 1; end % no convergence

% END cg.m

22

Osserviamo che il procedimento itera finchè un numero massimo di iterazioni è raggiunto
oppure la norma 2 del residuo (relativo)

‖b − Ax(k)‖2

‖b‖2

immagazzinata nella variabileerror risulta inferiore ad una tolleranza prefissatatol . In
questo caso il criterio d’arresto del metodo del gradiente coniugato è diverso da quello dello
step relativo utilizzato nelle precedenti versioni diJacobi edSOR.

8. Un esperimento numerico.Consideriamo il sistema lineareAx = b doveA è la
matrice tridiagonale a blocchi (di Poisson)

A =













B −I 0 . . . 0
−I B −I . . . 0
0 −I B
0 −I
0 0 . . . −I B













con

B =













4 −1 0 . . . 0
−1 4 −1 . . . 0
0 −1 4
0 −1
0 0 . . . −1 4













La matriceA è facilmente esprimibile utilizzando la funzionemakefish scaricabile in
[10]

function mat = makefish(siz);
% make a Poisson matrix

leng = siz * siz;
dia = zeros(siz,siz);
off = -eye(siz,siz);

for i=1:siz, dia(i,i)=4; end;
for i=1:siz-1, dia(i,i+1)=-1; dia(i+1,i)=-1; end;

mat = zeros(leng,leng);
for ib=1:siz,

mat(1+(ib-1) * siz:ib * siz,1+(ib-1) * siz:ib * siz) = dia; end;
for ib=1:siz-1,

mat(1+(ib-1) * siz:ib * siz,1+ib * siz:(ib+1) * siz) = off;
mat(1+ib * siz:(ib+1) * siz,1+(ib-1) * siz:ib * siz) = off; end;

return;

Vediamo un esempio:

>> makefish(3)

ans =

4 -1 0 -1 0 0 0 0 0
-1 4 -1 0 -1 0 0 0 0

23

0 -1 4 0 0 -1 0 0 0
-1 0 0 4 -1 0 -1 0 0

0 -1 0 -1 4 -1 0 -1 0
0 0 -1 0 -1 4 0 0 -1
0 0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4 -1
0 0 0 0 0 -1 0 -1 4

>>

che evidentemente è una matrice di Poisson conB matrice quadrata di ordine3

B = 4 -1 0
-1 4 -1

0 -1 4

Per ulteriori dettagli sulle origini della matrice di Poisson, si considerino ad esempio [1, p.
557], [3, p. 283], [4, p. 334]. Le matrici di Poisson sono evidentemente simmetriche, tridia-
gonali a blocchi, diagonalmente dominanti e dal primo e dal secondo teorema di Gerschgorin
[3, p. 76-80], [4, p. 955] si può provare che sono non singolari. In particolare si può mostrare
cheA è definita positiva. Per accertarsene, calcoliamo il minimo autovalore della matrice di
Poisson conB ∈ M5, semplicemente digitando sulla shell di Matlab-Octave

>> A=makefish(5);
>> m=min(eig(A))
m =

0.5359
>>

Tale matrice di Poisson non è malcondizionata essendo

>> A=makefish(5);
>> cond(A)
ans =

13.9282
>>

Poniamo ora

b=ones(size(A,1),1);

e risolviamo il sistemaAx = b digitando

x_sol=A\b;

Nota la soluzione esatta confrontiamo i vari metodi risolvendo il sistema lineare con un
numero massimo di iterazionimaxit e una tolleranzatol come segue

maxit=200; tol=10ˆ(-8);

A tal proposito consideriamo l’m-file

24

demo_algebra_lineare.m

contenente il codice

maxit=200; tol=10ˆ(-8);

siz=5;
A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

x_sol=A\b; % SOLUZIONE ESATTA. METODO LU.

norm_x_sol=norm(x_sol);
if norm(x_sol) == 0

norm_x_sol=1;
end

x=zeros(size(b)); % VALORE INIZIALE.

% JACOBI.
[x_j, error_j, iter_j, flag_j] = jacobi(A, x, b, maxit, tol) ;

fprintf(’\t \n [JACOBI] [STEP REL., NORMA 2]: %2.2e [REL.ER R.]:
%2.2e’,error_j,norm(x_j-x_sol)/norm_x_sol);
fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f \n’,iter_j,fl ag_j);

% GAUSS-SEIDEL.
w=1;
[x_gs, error_gs, iter_gs, flag_gs] = sor(A, x, b, w, maxit, t ol);

fprintf(’\t \n [GAU.SEI.] [STEP REL., NORMA 2]: %2.2e [REL. ERR.]:
%2.2e’,error_gs,norm(x_gs-x_sol)/norm_x_sol);
fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f
\n’,iter_gs,flag_gs);

% SOR.
w_vett=0.8:0.025:2;

for index=1:length(w_vett)
w=w_vett(index);

[x_sor, error_sor(index), iter_sor(index), flag_sor(in dex)] = sor(A,
x, b, w, maxit, tol);

relerr(index)=norm(x_sor-x_sol)/norm_x_sol;
end

[min_iter_sor, min_index]=min(iter_sor);

fprintf(’\t \n [SOR OTT.] [STEP REL., NORMA 2]: %2.2e [REL.E RR.]:
%2.2e’,error_sor(min_index),relerr(min_index));
fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f [w]: %2.3f
\n’,min_iter_sor,flag_sor(min_index),w_vett(min_ind ex));

25

plot(w_vett,iter_sor,’r-’);

% GRADIENTE CONIUGATO.
M=eye(size(A));
[x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, to l);

fprintf(’\t \n [GRA.CON.] [STEP REL., NORMA 2]: %2.2e [REL. ERR.]:
%2.2e’,error_gc,norm(x_gc-x_sol)/norm_x_sol);
fprintf(’\t \n [ITER.]: %3.0f [FLAG]: %1.0f
\n’,iter_gc,flag_gc);

Lanciamo la demo nella shell di Matlab-Octave e otteniamo

>> demo_algebra_lineare

[JACOBI] [STEP REL., NORMA 2]: 8.73e-009 [REL.ERR.]: 5.65e -008
[ITER.]: 116 [FLAG]: 0

[GAU.SEI.] [STEP REL., NORMA 2]: 9.22e-009 [REL.ERR.]: 2.7 6e-008
[ITER.]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-009 [REL.ERR.]: 1.10 e-009
[ITER.]: 21 [FLAG]: 0 [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.41e-017 [REL.ERR.]: 2.2 1e-016
[ITER.]: 5 [FLAG]: 0

>>

Una breve analisi ci dice che

1. Come previsto dalla teoria, il metodo di Gauss-Seidel converge in approssimativa-
mente metà iterazioni di Jacobi;

2. Il metodo SOR ha quale costante quasi ottimalew = 1.350;
3. Il metodo del gradiente coniugato converge in meno iterazioni rispetto agli altri me-

todi (solo 5 iterazioni, ma si osservi il test d’arresto differente). Essendo la matrice
di Poisson di ordine25, in effetti ciò accade in meno di25 iterazioni come previsto.
Vediamo cosa succede dopo25 iterazioni:

>> maxit=25; tol=0;
>> siz=5; A = makefish(siz); b=ones(size(A,1),1);
>> [x_gc, error_gc, iter_gc, flag_gc] = cg(A, x, b, M, maxit, tol);
>> error_gc
error_gc =

3.6287e-039
>>

Il residuo relativo, seppur non nullo è molto piccolo.

Un punto delicato riguarda la scelta del parametroω ottimale (cioè minimizzante il rag-
gio spettrale di SOR). Sia questo valore uguale aω∗. Nel nostro codice abbiamo calcolato
per forza brutaω+, tra i numeri realiω+ ≤ 2 del tipowj = 0.8 + j · 0.025 quello per cui
venivano compiute meno iterazioni.

E’ possibile calcolareω∗ matematicamente? Nel caso della matrice di Poisson la risposta

26

è affermativa. Da [4, Teor.5.10, p.333]

ω∗ =
2

1 +
√

1 − ρ2(BJ)

e il raggio spettrale della matrice di iterazione valeω∗ − 1. doveρ(S) è il massimo degli au-
tovalori in modulo della matriceS (il cosidetto raggio spettrale) eBJ la matrice di iterazione
di Jacobi. Vediamo di calcolare questo valore nel caso dellasopracitata matrice di Poisson.
Dalla teoria, con ovvie notazioni,

BJ = I − D−1A

e quindi

>> format long;
>> D=diag(diag(A));
>> BJ=eye(size(A))-inv(D) * A;
>> s=eig(BJ);
>> s_abs=abs(s);
>> rho=max(s_abs);
>> w=2/(1+sqrt(1-rhoˆ2))
w =

1.33333333333333
>> maxit=50; tol=10ˆ(-8);
>> b=ones(size(A,1),1);
>> [x_sor, error_sor, iter_sor, flag_sor] = sor(A, x, b, w, m axit, tol);
>> iter_sor
iter_sor =

22
>>

Si rimane un po’ sorpresi dal fatto che perw = 1.350 il numero di iterazioni fosse inferiore
di quello fornito dal valore ottimale teoricow∗ = 1.333 Il fatto è che questo è ottenuto
cercando di massimizzare la velocità asintotica di convergenza. Purtroppo questo minimizza
una stima del numero di iterazionik minime da compiere e non quello effettivo.

Abbiamo detto che un punto chiave è la grandezza del raggio spettrale delle matrici di
iterazione e che è desiderabile che questo numero oltre ad essere strettamente minore di uno
sia il più piccolo possibile. Vediamo i raggi spettrali deimetodi esposti.

Salviamo inraggispettrali.m il seguente programma principale

maxit=50; tol=0;

siz=5;
A = makefish(siz); % MATRICE DI POISSON.
b=ones(size(A,1),1); % TERMINE NOTO.

[M, N] = split(A , b, 1.0, 1); % JACOBI.
P=inv(M) * N;
rho_J=max(abs(eig(P)));
fprintf(’\n \t [RAGGIO SPETTRALE][JACOBI]: %2.15f’,rho_ J);

[M, N, b] = split(A, b, 1, 2); % GS.
P=inv(M) * N;

27

rho_gs=max(abs(eig(P)));
fprintf(’\n \t [RAGGIO SPETTRALE][GAUSS-SEIDEL]: %2.15f ’,rho_gs);

D=diag(diag(A));
E=-(tril(A)-D);
F=-(triu(A)-D);
w=1.350;
M=D/w-E; N=(1/w-1) * D+F;
P=inv(M) * N;
rho_sor=max(abs(eig(P)));
fprintf(’\n \t [RAGGIO SPETTRALE][SOR BEST]: %2.15f’,rho _sor);

w=1.33333333333333;
[M, N, b] = split(A, b, w, 2); % SOR OPT.
M=D/w-E; N=(1/w-1) * D+F;
P=inv(M) * N;
rho_sor_opt=max(abs(eig(P)));
fprintf(’\n \t [RAGGIO SPETTRALE][SOR OPT]: %2.15f’,rho_ sor_opt);

Di seguito:

>> raggispettrali
[RAGGIO SPETTRALE][JACOBI]: 0.866025403784438
[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000
[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000001
[RAGGIO SPETTRALE][SOR OPT]: 0.333333380707781

>>

Il valore del raggio spettrale della matrice di iterazione del metodo SOR per parametro
ottimale, per quanto visto anticipatamente valeω∗−1, e l’esperimento numerico lo conferma.
Abbiamo poi osservato che in questo caso la velocità di convergenza del metodo di Gauss-
Seidel è il doppio di quella di Jacobi. PosteBGS , BJ le rispettive matrici di iterazione, e
dettaR la velocità di convergenza, osserviamo che da

R(BJ) := − ln (ρ(BJ)) (8.1)

R(BGS) := − ln (ρ(BGS)) (8.2)

R(BGS) := 2R(BJ) (8.3)

si ha

− ln (ρ(BGS)) = R(BGS) = 2R(BJ) = −2 ln (ρ(BJ)) = − ln (ρ(BJ))2

da cui essendo il logaritmo una funzione invertibile

ρ(BGS) = (ρ(BJ))2.

Il raggio spettrale della matrice di iterazione di Gauss-Seidel coincide quindi col quadrato
di quella di Jacobi ed infatti come è facile verificare

>> 0.866025403784438ˆ2
ans =

28

0.75000000000000
>>

Al momento non consideriamo il metodo del gradiente coniugato poichè non è di tipo
stazionario.

9. Facoltativo: Altre matrici interessanti. La matrice di H ilbert.. Per vedere alcuni
comandi di base aiutiamoci con delle matrici predefinite in Matlab/Octave. Digitiamo nella
shell di Matlab/Octave>> help elmat . In Matlab 6.5 abbiamo

>> help elmat

Elementary matrices and matrix manipulation.

Elementary matrices.
zeros - Zeros array.
ones - Ones array.
eye - Identity matrix.
repmat - Replicate and tile array.
rand - Uniformly distributed random numbers.
randn - Normally distributed random numbers.
linspace - Linearly spaced vector.
logspace - Logarithmically spaced vector.
freqspace - Frequency spacing for frequency response.
meshgrid - X and Y arrays for 3-D plots.
: - Regularly spaced vector and index into matrix.

...

Specialized matrices.
compan - Companion matrix.
gallery - Higham test matrices.
hadamard - Hadamard matrix.
hankel - Hankel matrix.
hilb - Hilbert matrix.
invhilb - Inverse Hilbert matrix.
magic - Magic square.
pascal - Pascal matrix.
rosser - Classic symmetric eigenvalue test problem.
toeplitz - Toeplitz matrix.
vander - Vandermonde matrix.
wilkinson - Wilkinson’s eigenvalue test matrix.

Questo ci dice che Matlab ha predefinito un set di matrici di particolare interesse. Se possibile
si suggerisce di provare i metodi che andremo ad introdurre con una matrice facente parte
dellagallery di Matlab. Ciò non appare possibile nelle recenti releasesdi Octave, come
GNU Octave 2.1.73. Da Matlab 6.5

>> help gallery

GALLERY Higham test matrices.
[out1,out2,...] = GALLERY(matname, param1, param2, ...)
takes matname, a string that is the name of a matrix family, an d
the family’s input parameters. See the listing below for ava ilable

29

matrix families. Most of the functions take an input argumen t
that specifies the order of the matrix, and unless otherwise
stated, return a single output.
For additional information, type "help private/matname", where matname
is the name of the matrix family.

cauchy Cauchy matrix.
chebspec Chebyshev spectral differentiation matrix.
chebvand Vandermonde-like matrix for the Chebyshev polyno mials.
chow Chow matrix -- a singular Toeplitz lower Hessenberg mat rix.
circul Circulant matrix.

...

poisson Block tridiagonal matrix from Poisson’s equation (sparse).
prolate Prolate matrix -- symmetric, ill-conditioned Toep litz matrix.
randcolu Random matrix with normalized cols and specified s ingular

values.
randcorr Random correlation matrix with specified eigenva lues.
randhess Random, orthogonal upper Hessenberg matrix.
rando Random matrix with elements -1, 0 or 1.
randsvd Random matrix with pre-assigned singular values an d specified

bandwidth.
redheff Matrix of 0s and 1s of Redheffer.
riemann Matrix associated with the Riemann hypothesis.
ris Ris matrix -- a symmetric Hankel matrix.
smoke Smoke matrix -- complex, with a "smoke ring" pseudospe ctrum.
toeppd Symmetric positive definite Toeplitz matrix.
toeppen Pentadiagonal Toeplitz matrix (sparse).
tridiag Tridiagonal matrix (sparse).
triw Upper triangular matrix discussed by Wilkinson and oth ers.
wathen Wathen matrix -- a finite element matrix (sparse, ran dom

entries).
wilk Various specific matrices devised/discussed by Wilki nson.

(Two output arguments)

GALLERY(3) is a badly conditioned 3-by-3 matrix.
GALLERY(5) is an interesting eigenvalue problem. Try to fin d
its EXACT eigenvalues and eigenvectors.

See also MAGIC, HILB, INVHILB, HADAMARD, WILKINSON, ROSSER , VANDER.

10. Facoltativo: gli esempi visti in Matlab funzionano anche in Octave.. Rivediamo
gli esperimenti in una recente release di Octave, come GNU Octave 2.1.73.

octave:12> makefish(3)
ans =

4 -1 0 -1 -0 -0 0 0 0
-1 4 -1 -0 -1 -0 0 0 0

0 -1 4 -0 -0 -1 0 0 0
-1 -0 -0 4 -1 0 -1 -0 -0
-0 -1 -0 -1 4 -1 -0 -1 -0

30

-0 -0 -1 0 -1 4 -0 -0 -1
0 0 0 -1 -0 -0 4 -1 0
0 0 0 -0 -1 -0 -1 4 -1
0 0 0 -0 -0 -1 0 -1 4

octave:13> A=makefish(5);
octave:14> m=min(eig(A))
m = 0.53590
octave:15> cond(A)
ans = 13.928
octave:16> b=ones(size(A,1),1);
octave:17> demo_algebra_lineare

[JACOBI] [STEP REL., NORMA 2]: 8.73e-09 [REL.ERR.]: 5.65e- 08
[ITER.]: 116 [FLAG]: 0

[GAU.SEI.] [STEP REL., NORMA 2]: 9.22e-09 [REL.ERR.]: 2.76 e-08
[ITER.]: 61 [FLAG]: 0

[SOR OTT.] [STEP REL., NORMA 2]: 2.31e-09 [REL.ERR.]: 1.10e -09
[ITER.]: 21 [FLAG]: 0 [w]: 1.350

[GRA.CON.] [STEP REL., NORMA 2]: 4.67e-17 [REL.ERR.]: 1.85 e-16
[ITER.]: 5 [FLAG]: 0

octave:18> format long;
octave:19> D=diag(diag(A));
octave:20> size(D)
ans =

25 25
octave:21> BJ=eye(size(A))-inv(D) * A;
octave:22> s=eig(BJ);
octave:23> s_abs=abs(s);
octave:24> rho=max(s_abs);
octave:25> w=2/(1+sqrt(1-rhoˆ2))
w = 1.33333333333333
octave:26> maxit=50; tol=10ˆ(-8);
octave:27> b=ones(size(A,1),1);
octave:28> [x_sor,error_sor,iter_sor,flag_sor]=sor(A ,x,b,w,maxit,tol);
octave:29> iter_sor
iter_sor = 22
octave:30> raggispettrali

[RAGGIO SPETTRALE][JACOBI]: 0.866025403784439
[RAGGIO SPETTRALE][GAUSS-SEIDEL]: 0.750000000000000
[RAGGIO SPETTRALE][SOR BEST]: 0.350000000000000
[RAGGIO SPETTRALE][SOR OPT]: 0.333333380472264

octave:31> 0.866025403784439ˆ2
ans = 0.750000000000001
octave:32>

31

RIFERIMENTI BIBLIOGRAFICI

[1] K. Atkinson, Introduction to Numerical Analysis, Wiley, 1989.
[2] K. Atkinson e W. Han,Theoretical Numerical Analysis, Springer, 2001.
[3] D. Bini, M. Capovani e O. Menchi,Metodi numerici per l’algebra lineare, Zanichelli, 1988.
[4] V. Comincioli, Analisi Numerica, metodi modelli applicazioni, Mc Graw-Hill, 1990.
[5] S.D. Conte e C. de Boor,Elementary Numerical Analysis, 3rd Edition, Mc Graw-Hill, 1980.
[6] L.A. Hageman e D.M. YoungApplied Iterative Methods, Dover, 2004.
[7] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.
[8] MacTutor (Matrices and Determinants)

http://www-groups.dcs.st-and.ac.uk/ history/HistTopics/Matricesand determinants.html.
[9] The MathWorks Inc.,Numerical Computing with Matlab,

http://www.mathworks.com/moler.
[10] Netlib,

http://www.netlib.org/templates/matlab/.
[11] A. Quarteroni e F. Saleri,Introduzione al calcolo scientifico, Springer Verlag, 2006.
[12] A. Suli e D. Mayers,An Introduction to Numerical Analysis, Cambridge University Press, 2003.
[13] Wikipedia (Metodo di Gauss-Seidel)

http://it.wikipedia.org/wiki/Metododi Gauss-Seidel.
[14] Wikipedia (Metodo del Gradiente Coniugato)

http://it.wikipedia.org/wiki/Metododel gradienteconiugato.
[15] Wikipedia (Metodo di Jacobi)

http://it.wikipedia.org/wiki/Metododi Jacobi.
[16] Wikipedia (Successive Over Relaxation)

http://it.wikipedia.org/wiki/SuccessiveOver Relaxation.

32

http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Matrices_and_determinants.html
http://www.mathworks.com/moler
http://www.netlib.org/templates/matlab/
http://it.wikipedia.org/wiki/Metodo_di_Gauss-Seidel
http://it.wikipedia.org/wiki/Metodo_del_gradiente_coniugato
http://it.wikipedia.org/wiki/Metodo_di_Jacobi
http://it.wikipedia.org/wiki/Successive_Over_Relaxation

