
Esempio 1

Nel 1601 Keplero formulò la terza legge del moto planetario

T = Cx3/2

dove x è la distanza dal sole in milione di km., T è il periodo
dell’orbita misurato in giorni e C è una costante. Le coppie (x ,T )
osservate per gli 8 planeti e Plutone sono

Mercurio 57.59 87.99
Venere 108.11 224.70
Terra 149.57 365.26
Marte 227.84 686.98
Giove 778.14 4332.4
Saturno 1427.0 10759
Urano 2870.3 30684
Nettuno 4499.9 60188
Plutone 5909.0 90719

Determinare C cosicchè T = Cx3/2.
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Esempio 1

La costante C non è immediatamente calcolabile. Infatti:

>> x= [ 5 7 . 5 9 ; 1 0 8 . 1 1 ; 1 4 9 . 5 7 ; 2 2 7 . 8 4 ; 7 7 8 . 1 4 ; . . .
1 4 2 7 . 0 ; 2 8 7 0 . 3 ; 4 4 9 9 . 9 ; 5 9 0 9 . 0 ] ;

>> T= [ 8 7 . 9 9 ; 2 2 4 . 7 0 ; 3 6 5 . 2 6 ; 6 8 6 . 9 8 ; 4 3 3 2 . 4 ; . . .
10759 ;30684 ;60188 ;90719 ] ;

>> fo rmat long e

>> C=T . / ( x . ˆ ( 3/2 ) )
C = 2.013319499958850 e−01

1.998960771429300 e−01
1.996803707178690 e−01
1.997556793162881 e−01
1.995914513555481 e−01
1.995886992640107 e−01
1.995358969439935 e−01
1.993910306711459 e−01
1.997226267954996 e−01

>>

Qual’e’ il valore attribuire a C?
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Esempio 2

Siano m la magnitudine apparente di una cometa, ∆ e r

rispettivamente le distanze in unità astronomiche della cometa
dalla Terra e dal Sole, g la magnitudine assoluta e ξ un
coefficiente. Noto che

m = g + 5 log10 (∆) + ξ log10 (r)

e determinati alcuni valori di m, ∆, r , determinare g e ξ. Quindi si
desiderano calcolare i migliori A ≈ g , B ≈ ξ tali che

A + B log10 (r) ≈ m − 5 log10 (∆).

Esempio. La tabella seguente riporta le stime di magnitudine
visuale m della cometa periodica Wild 2, rilevate da J. Bortle,
nochè r e ∆. I valori corrispondenti sono stati calcolati dagli
elementi orbitali (IAUC 3177). Calcolare g e ξ.
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Esempio 2

1978 UT m r ∆

FEB. 4.01 11.4 1.987 1.249
FEB. 5.00 11.5 1.981 1.252
FEB. 9.02 11.5 1.958 1.266
FEB. 10.02 11.3 1.952 1.270
FEB. 25.03 11.5 1.865 1.335
MAR. 7.07 11.3 1.809 1.382
MAR. 14.03 11.5 1.772 1.415
MAR. 30.05 11.0 1.693 1.487
APR. 3.05 11.1 1.674 1.504
APR. 10.06 10.9 1.643 1.532
APR. 26.07 10.7 1.582 1.592
MAG. 1.08 10.6 1.566 1.610
MAG. 8.07 10.7 1.545 1.634
MAG. 26.09 10.8 1.507 1.696
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Plot risultati
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Figura: Grafico che illustra l’approssimazione ai minimi quadrati
A + B log10 (r) ≈ m − 5 log10 (∆). Ascissa: r , ordinata: curva e
m − 5 log10 (∆).
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Approssimazione ai minimi quadrati

Questi due problemi rientrano nella famiglia più ampia che segue.
◮ Sia fissata una certa funzione f : Ω ⊂ R → R di cui è noto il

valore nei punti {xk}k=1,...,n ⊂ Ω. Hp. f ∈ C (Ω), Ω = (a, b)
anche non limitato (per semplicità , si può generalizzare).

Si cerchino a = (aj)j=1,...,m per cui la funzione

ψ∗(x) =
m

∑

j=1

ajφj (x)

minimizza tra tutte le funzioni del tipo ψ(x) =
∑m

j=1 cjφj (x),

‖f −ψ‖2,d :=

√

√

√

√

n
∑

k=1

|f (xk) − ψ(xk)|2 =

√

√

√

√

n
∑

k=1

|f (xk) −

m
∑

j=1

cjφj(xk)|2

La funzione ψ∗ si dice approssimante ai minimi quadrati (discreti)

di f nello spazio S = span({φk}k=1,...,m).
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Approssimazione ai minimi quadrati e sistemi lineari

Posto ‖x‖2 :=
√

∑n
k=1 |xk |2 e definiti

◮ V la matrice n × m le cui componenti sono Vi ,j = φj(xi ),

◮ y il vettore n × 1 le cui componenti sono yk = f (xk),

◮ a il vettore m × 1 le cui componenti sono ak ,

il problema di approssimazione ai minimi quadrati consiste nel
risolvere il sistema sovradeterminato V a = y cosicchè sia minima
‖V a − y‖2 in quanto

‖V a − y‖2 =

√

√

√

√

n
∑

k=1

|yk − (V a)k |2 =

√

√

√

√

n
∑

k=1

|yk −

m
∑

j=1

Vk,jaj |2

=

√

√

√

√

n
∑

k=1

|f (xk) −
m

∑

j=1

ajφj(xk)|2 = ‖f −
m

∑

j=1

ajφj‖2,d

NB: Si osservi che V è rettangolare e il problema V a = y potrebbe
non avere sol. classica a.
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Funzione peso e prodotto scalare

Al momento non risulta chiaro come risolvere questo sistema
sovradeterminato V a = y cosicchè sia minima ‖V a− y‖2.

Sia w : Ω = (a, b) → R una funzione peso (continua, strettamente
positiva in (a, b), singolarità integrabili agli estremi sono ammesse).

◮ Jacobi: w(x) = (1 − x)α(1 + x)β , x ∈ (−1, 1), α, β > −1.
Casi speciali: α = β = 0 (Legendre), α = β = −1/2
(Chebyshev), α = β (Gegenbauer).

Due classici prodotti scalari di due funzioni w -integrabili sono

◮ (f , g)c :=
∫

Ω f (x)g(x)w(x)dx , caso continuo;

Proprietá: commutativa, linearitá, (f , f ) ≥ 0 per ogni f .
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Al momento non risulta chiaro come risolvere questo sistema
sovradeterminato V a = y cosicchè sia minima ‖V a− y‖2.

Sia w : Ω = (a, b) → R una funzione peso (continua, strettamente
positiva in (a, b), singolarità integrabili agli estremi sono ammesse).

◮ Jacobi: w(x) = (1 − x)α(1 + x)β , x ∈ (−1, 1), α, β > −1.
Casi speciali: α = β = 0 (Legendre), α = β = −1/2
(Chebyshev), α = β (Gegenbauer).

◮ Gauss: w(x) = exp(−x2), x ∈ R.

Due classici prodotti scalari di due funzioni w -integrabili sono

◮ (f , g)c :=
∫

Ω f (x)g(x)w(x)dx , caso continuo;

◮ (f , g)d :=
∑n

i=1 f (xi)g(xi )wi , caso discreto.

I coeffs. wi del caso discreto dipendono dalla funz. peso w .

Proprietá: commutativa, linearitá, (f , f ) ≥ 0 per ogni f .
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Norme, prod. scalari e ortogonalità

Definiamo ‖f ‖ =
√

(f , f ). Osserviamo che:

◮ ‖x‖2 :=
√

∑n
k=1 |xk |2 =

√

(x, x)Rn dove (·, ·)Rn è l’usuale
prodotto scalare di R

n.

◮ ‖f − ψ‖2,d :=
√

∑n
k=1 |f (xk) − ψ(xk)|2 =

√

(f − ψ, f − ψ)d

Alcune definizioni ulteriori.

◮ Due funzioni f , g si dicono ortogonali se (f , g) = 0.

◮ Una sequenza finita o infinita di funzioni {φk}k=1,... si dice
sistema ortogonale se (φi , φj) = 0 per i 6= j , (φi , φi ) > 0.

◮ Un sistema ortogonale {φk}k=1,... per cui (φi , φi ) = 1 si dice
sistema ortonormale.
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Riassunto

◮ Dobbiamo cercare una funzione ψ∗ =
∑m

k=1 φk che meglio
approssimi f nei punti 2 a 2 distinti {xk}, nel senso di
minimizzare

‖f − ψ‖2,d :=

√

√

√

√

n
∑

k=1

|f (xk) − ψ(xk)|2 =
√

(f − ψ, f − ψ)d ,

con (f , g)d :=
∑n

i=1 f (xi )g(xi ), quindi per wi = 1.
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k=1 φk che meglio
approssimi f nei punti 2 a 2 distinti {xk}, nel senso di
minimizzare

‖f − ψ‖2,d :=

√

√

√

√

n
∑

k=1

|f (xk) − ψ(xk)|2 =
√

(f − ψ, f − ψ)d ,

con (f , g)d :=
∑n

i=1 f (xi )g(xi ), quindi per wi = 1.

◮ Il problema si converte in una questione di algebra lineare:
risolvere il sistema sovradeterminato V a = y cosicchè sia
minima

‖V a− y‖2 =
√

(V a − y,V a − y)Rn .
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Alcuni teoremi

Teorema. [Pitagora] Se (f , g) = 0 allora

‖f + g‖2 = ‖f ‖2 + ‖g‖2.

Teorema. Se φ1, . . . , φn è un sistema ortogonale, allora i φj sono
linearmente indipendenti.

Teorema. Se φ1, . . . , φn è un sistema ortogonale, allora

‖

m
∑

j=1

cjφj‖
2 = (

m
∑

j=1

cjφj ,

m
∑

k=1

ckφk) =

m
∑

j=1

c2
j ‖φj‖

2

per ogni {cj}j=1,...,m.
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Teorema miglior approssimazione minimi quadrati

Teorema. Siano {φj}1,...,m ∈ C (Ω) funzioni linearmente
indipendenti. Allora la soluzione del problema

‖f − ψ∗‖2 = min
ψ∈span{φj}j=1,...,m

‖f − ψ‖2

è
ψ∗ =

∑

1,...,m

c∗j φj

dove i coefficienti c∗j verificano le cosidette equazioni normali

m
∑

k=1

(φj , φk)c∗k = (φj , f ), j = 1, . . . ,m.

La soluzione è caratterizzata dalla proprietà di ortogonalitá cioè
che ψ∗ − f è ortogonale a tutti gli φk , con k = 1, . . . ,m, cioè

(ψ∗, φk) = (f , φk), k = 1, . . . ,m. (1)
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Teorema miglior approssimazione minimi quadrati: dim.

Sia c = (ck)1,...,m, una vettore di coefficienti e supponiamo che per
almeno un indice j sia cj 6= c∗j , cioè c 6= c∗ = (c∗k )1,...,m. Allora

m
∑

j=1

cjφj − f =





m
∑

j=1

cjφj − ψ∗



 + (ψ∗ − f )

=

m
∑

j=1

(cj − c∗j )φj + (ψ∗ − f ) (2)

Se u = ψ∗ − f è ortogonale a tutti i φj , allora è ortogonale pure
alla combinazione lineare di φj come ad esempio

v =

m
∑

j=1

(cj − c∗j )φj =

m
∑

j=1

cjφj − ψ∗ ∈ span {φk}k=1,...,m.
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Teorema miglior approssimazione minimi quadrati: dim.

Dal teorema di Pitagora, poichè (u, v) = 0 implica
‖u + v‖2 = ‖u‖2 + ‖v‖2, da ‖

∑m
j=1(cj − c∗j )φj‖ > 0 poichè

c 6= c∗ abbiamo

‖

m
∑

j=1

cjφj − f ‖2 = ‖





m
∑

j=1

cjφj − ψ∗



 + (ψ∗ − f )‖2

= ‖

m
∑

j=1

cjφj − ψ∗‖2 + ‖ψ∗ − f ‖2

= ‖

m
∑

j=1

(cj − c∗j )φj‖
2 + ‖ψ∗ − f ‖2

> ‖ψ∗ − f ‖2 (3)
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Teorema miglior approssimazione minimi quadrati: dim.

Di conseguenza se ψ∗ ∈ span{φk}k=1,...,m e ψ∗ − f è ortogonale a
tutti i φk allora ψ∗ è la miglior approssimazione di f in
span{φk}k=1,...,m. Rimane allora da mostrare che le condizioni di
ortogonalità





m
∑

j=1

c∗j φj − f , φk



 = 0, k = 1, . . . ,m

possano essere soddisfatte per un qualche c∗ = (cj )j=1,...,m.
Questo problema è equivalente alla soluzione del sistema di
equazioni normali

m
∑

k=1

(φj , φk)c∗k = (φj , f ), j = 1, . . . ,m (4)
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Teorema miglior approssimazione minimi quadrati: dim.

Se φ1, . . . , φm sono m vettori linearmente indipendenti che
formano un sistema ortogonale, si ha che

m
∑

k=1

(φj , φk)c∗k = (φj , φj )c
∗
j

e quindi da (??) che

(φk , φk)c∗k = (φk , f ).

Visto che (φk , φk) 6= 0 (se cos̀ı non fosse 0 = (φk , φk) = ‖φk‖
2

avremmo φk = 0 e quindi {φj}j=1,...,m non sarebbe un sistema di
vettori linearmente indipendenti) si vede subito che (c∗k )k esistono
unici e uguali a

c∗k =
(φk , f )

(φk , φk)
.
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Teorema miglior approssimazione minimi quadrati: dim.

Se invece φ1, . . . , φm non formano un sistema ortogonale, il
sistema di equazioni normali ha una e una sola soluzione se il
sistema omogeneo di equazioni

m
∑

k=1

(φj , φk)c∗k = 0, j = 1, . . . ,m (5)

ha la sola soluzione nulla.
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Teorema miglior approssimazione minimi quadrati: dim.

Se cos̀ı non fosse, esisterebbe c∗ = (cj )j=1,...,m per cui da (??)

‖
m

∑

j=1

cjφj‖
2 =





m
∑

j=1

cjφj ,
m

∑

k=1

ckφk





=

m
∑

k=1

ck

m
∑

j=1

cj (φj , φk)

=

m
∑

k=1

ck · 0

= 0 (6)

e quindi essendo ‖ · ‖ una norma, necessariamente
∑m

j=1 c∗j φj = 0,
il che contraddice il fatto che i φk erano linearmente indipendenti.
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Corollario miglior approssimazione minimi quadrati

Teorema. Se {φj}j=1,...,m è un sistema ortogonale allora i
coefficienti c∗j (detti in questo caso di Fourier) sono calcolabili più
semplicemente con la formula

c∗j =
(f , φj )

(φj , φj)
, j = 1, . . . ,m.
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Risoluzione minimi quadrati iniziale

◮ Si determina una base ortogonale {φ⊥k } dello spazio vett.
S = span({φk}k=1,...,m) (algoritmo di Gram-Schmidt);

NB: Quando visto si può generalizzare, con le dovute cautele, in
ambiti più astratti e a certi spazi S che non sono di dimensione
finita.
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S = span({φk}k=1,...,m) (algoritmo di Gram-Schmidt);

◮ Si calcola c∗j =
(f ,φj )
(φj ,φj)

, j = 1, . . . ,m;

◮ Si ottiene ψ∗ =
∑

j c∗j φ
⊥
k .

NB: Quando visto si può generalizzare, con le dovute cautele, in
ambiti più astratti e a certi spazi S che non sono di dimensione
finita.
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Minimi quadrati in Matlab/Octave

Per risolvere il problema ai minimi quadrati in Matlab (sistema
sovradeterminato), basta usare il comando \.

Risolviamo l’esempio 1, salvando nel file esempio1.m il seguente
codice.

x = [ 5 7 . 5 9 ; 1 0 8 . 1 1 ; 1 4 9 . 5 7 ; 2 2 7 . 8 4 ; 7 7 8 . 1 4 ; . . .
1 4 2 7 . 0 ; 2 8 7 0 . 3 ; 4 4 9 9 . 9 ; 5 9 0 9 . 0 ] ;

T = [ 8 7 . 9 9 ; 2 2 4 . 7 0 ; 3 6 5 . 2 6 ; 6 8 6 . 9 8 ; 4 3 3 2 . 4 ; . . .
10759 ;30684 ;60188 ;90719 ] ;

%T=C x ˆ{3/2} .
V=x . ˆ ( 3/2 ) ; C=V\T ;
fo rmat long e ;
C

[ T C∗V ]
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Risultati esempio 1

% da t i =[UT m r d e l t a ]
dati=[ 4 .01 11 .4 1.987 1.249

5 .00 11 .5 1.981 1.252
9 .02 11 .5 1.958 1.266
10.02 11 .3 1.952 1.270
25.03 11 .5 1.865 1.335
7 .07 11 .3 1.809 1.382
14.03 11 .5 1.772 1.415
30.05 11 .0 1.693 1.487
3 .05 11 .1 1.674 1.504
10.06 10 .9 1.643 1.532
26.07 10 .7 1.582 1.592
1 .08 10 .6 1.566 1.610
8 .07 10 .7 1.545 1.634
26.09 10 .8 1.507 1.696 ] ;

UT=dati ( : , 1 ) ; m=dati ( : , 2 ) ; r=dati ( : , 3 ) ; delta=dati ( : , 4 ) ;
% g+x∗ l o g ( r )=m−5∗ l o g ( d e l t a ) , DETERMINARE g , x .
% ph i1 ( x )=1, ph i2 ( x )=l og ( r ) , c1=g , c2=x .
V=[ones ( s i z e ( UT ) ) l og10 ( r ) ] ; y=m−5∗ l og10 ( delta ) ; c=V\y ;
fo rmat long e ; c , [ m−5∗ l og10 ( delta ) V∗c ]
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Risultati esempio 2

>> esempio2

c =
7.302213778674195 e+00
1.257799522762583 e+01

ans =
1.091718780812932 e+01 1.105294512806965 e+01
1.101197835562795 e+01 1.103642529515424 e+01
1.098783147159332 e+01 1.097263236899629 e+01
1.078098139522022 e+01 1.095586748446904 e+01
1.087259367149703 e+01 1.070681088792163 e+01
1.059745978480910 e+01 1.054027484404377 e+01
1.074621780069845 e+01 1.042738923226925 e+01
1.013844515739023 e+01 1.017825990653182 e+01
1.021376081872188 e+01 1.011660880693023 e+01
9.973706173517074 e+00 1.001450202245726 e+01
9.690284682991749 e+00 9.807831922881672 e+00
9.565870619840751 e+00 9.752303577681410 e+00
9.633739739018015 e+00 9.678555345780794 e+00
9.652870760396526 e+00 9.542521416264551 e+00

>>
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Minimi quadrati e smoothing

Digitiamo sulla shell di Matlab

>> x=0:0 .01 :2∗ p i ;
>> y=s i n (2∗x ) +(10ˆ(−1) ) ∗ rand ( s i z e (x ) ) ;
>> p l o t (x , y , ’ r− ’ ) ;

◮ Interpretazione: perturbazione della funzione sin(2x)
nell’intervallo [0, 2π].
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◮ Necessitá: ricostruire sin(2x) (e non funz. perturbata).

Alvise Sommariva Minimi quadrati. 24/ 29



Minimi quadrati e smoothing

Digitiamo sulla shell di Matlab

>> x=0:0 .01 :2∗ p i ;
>> y=s i n (2∗x ) +(10ˆ(−1) ) ∗ rand ( s i z e (x ) ) ;
>> p l o t (x , y , ’ r− ’ ) ;

◮ Interpretazione: perturbazione della funzione sin(2x)
nell’intervallo [0, 2π].

◮ Necessitá: ricostruire sin(2x) (e non funz. perturbata).

◮ Nota: non ha senso utilizzare un interpolante polinomiale p di
grado n nè una spline interpolante visto che ricostruirebbero
la funzione perturbata.

Alvise Sommariva Minimi quadrati. 24/ 29



Minimi quadrati e polyfit

Scriviamo sulla shell di Matlab/Octave help polyfit. In una
recente release di Matlab appare

POLYFIT Fit polynomial to data .
POLYFIT (X , Y , N ) finds the coefficients of a

polynomial P (X )
of degree N that fits the data , P ( X ( I ) )˜=Y (I ) , in a

least

−squares sense .

In altri termini polyfit calcola i coefficienti del polinomio pN di
grado N che meglio approssima (in norma 2 discreta) la funzione f

avente nel vettore di nodi X i valori Y (cioè Y (i) := f (X (i))).
Operativamente si cerca il polinomio pN per cui risulta minima

‖f − pN‖2,d =

√

∑

i

|f (xi ) − pN(xi )|2.
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Applicazione polyfit

◮ Posto f (x) = sin (x) e f̃ (x) = sin (x) + δ(x), confrontiamo
graficamente per n = 2, . . . , 8, nei nodi xk = kh, h = 2π/999,
k = 0, . . . , 999, la funzione perturbata f (x) = sin (x) + δ(x)
con la approssimante ai minimi quadrati p∗

n.
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Applicazione polyfit

◮ Posto f (x) = sin (x) e f̃ (x) = sin (x) + δ(x), confrontiamo
graficamente per n = 2, . . . , 8, nei nodi xk = kh, h = 2π/999,
k = 0, . . . , 999, la funzione perturbata f (x) = sin (x) + δ(x)
con la approssimante ai minimi quadrati p∗

n.

◮ Valutiamo per n = 2, . . . , 8 la quantità ‖f − p∗
n‖2,d e

‖f̃ − p∗
n‖2,d .
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Applicazione polyfit

◮ Posto f (x) = sin (x) e f̃ (x) = sin (x) + δ(x), confrontiamo
graficamente per n = 2, . . . , 8, nei nodi xk = kh, h = 2π/999,
k = 0, . . . , 999, la funzione perturbata f (x) = sin (x) + δ(x)
con la approssimante ai minimi quadrati p∗

n.

◮ Valutiamo per n = 2, . . . , 8 la quantità ‖f − p∗
n‖2,d e

‖f̃ − p∗
n‖2,d .

◮ Valutiamo per n = 2, . . . , 8 la quantità ‖f − p∗
n‖∞,d e

‖f̃ − p∗
n‖∞,d , dove ricordiamo

‖g‖∞,d = max
k=0,...,999

|g(xk)|.
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Applicazione polyfit

Salviamo in esempio3.m:

x=l i n s p a c e (0 ,2∗ p i , 1000) ;
y=s i n (2∗x ) ; yy=y+(10ˆ(−2) ) ∗ rand ( s i z e ( x ) ) ;
f o r n=2:8

coeff=p o l y f i t (x , yy , n ) ; % COEFFS . BEST APPROX (B.A . )
z=po l y v a l ( coeff , x ) ; % VALORE B.A. NEI NODI ”x ” .
p l o t (x , yy , ’ r− ’ ,x , z , ’ k− ’ ) ;
err2=norm(z−y , 2 ) ; err2p=norm (z−yy , 2 ) ; % ERRS .
errinf=norm(z−y , inf ) ; errinfp=norm(z−yy , inf ) ; %

ERRS .
f p r i n t f ( ’ \n\ t [DEG] :%2 .0 f ’ ,n ) ;
f p r i n t f ( ’ [ 2 ] :%2 . 2 e %2.2 e ’ , err2 , err2p ) ;
f p r i n t f ( ’ [ INF ] :%2 .2 e %2.2 e ’ , errinf , errinfp ) ;
pause (2) ;

end
f p r i n t f ( ’ \n \n ’ ) ;
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Risultati

>> % [ERR . ] [ 2 ] : SIN.−SIN PERT. [ INF ] : SIN.−SIN PERT.
>> esempio3

[ DEG ] : 2 [ 2 ] : 2 . 0 6 e+01 2 .06 e+01 [ INF ] : 1 . 1 3 e+00 1 .13 e+00
[ DEG ] : 3 [ 2 ] : 1 . 8 9 e+01 1 .89 e+01 [ INF ] : 1 . 1 6 e+00 1 .16 e+00
[ DEG ] : 4 [ 2 ] : 1 . 8 9 e+01 1 .89 e+01 [ INF ] : 1 . 1 6 e+00 1 .16 e+00
[ DEG ] : 5 [ 2 ] : 6 . 8 6 e+00 6 .86 e+00 [ INF ] : 6 . 6 7 e−01 6 .64e−01
[ DEG ] : 6 [ 2 ] : 6 . 8 6 e+00 6 .86 e+00 [ INF ] : 6 . 6 8 e−01 6 .64e−01
[ DEG ] : 7 [ 2 ] : 1 . 2 3 e+00 1 .22 e+00 [ INF ] : 1 . 4 8 e−01 1 .44e−01
[ DEG ] : 8 [ 2 ] : 1 . 2 3 e+00 1 .22 e+00 [ INF ] : 1 . 4 7 e−01 1 .44e−01

>>
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Plot risultati
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Figura: Grafico che illustra l’approssimazione ai minimi quadrati di grado
5 su una perturbazione della funzione sin (2x) (campionamento in nodi
equispaziati)).
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Nota: polyfit e interpolazione

Supponiamo fissati i punti {xk}k=1,...,m (a due a due distinti) e sia
pm−1 il polinomio che interpola le coppie (xk ,f (xk)) per
k = 1, . . . ,m Evidentemente da f (xi ) = pm−1(xi ) per i = 1, . . . ,m
abbiamo

‖f − pm−1‖2,d =

√

√

√

√

m
∑

i=1

|f (xi) − pm−1(xi )|2 = 0,

e quindi il polinomio interpolatore risulta la approssimante ai
minimi quadrati di f (relativa alla norma 2 discreta basata sui
punti {xk}k=1,...,m).

Di conseguenza, il comando coeffs=polyfit(x,y,n-1) darà i
coefficienti del polinomio interpolatore qualora i vettori x , y

abbiano dimensione n.

Alvise Sommariva Minimi quadrati. 30/ 29


