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Introduction

In this talk we will briefly discuss cheap numerical cubature on multivariate domains

introduce some basics on the topic and theoretical results;

show the numerical advantages of this approach.
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Purpose

Let
Ω be a domain of R2 or R3,
f ∈ C(Ω).

We intend to numerically approximate the integration functional

L(f ) :=
∫
Ω
f (x)dΩ

by a discrete one

LM(f ) :=
NM∑
i=1

wif (Pi)

so that the degree of exactness ADE is M, i.e.

L(p) = LM(p), p ∈ PM ,

being PM the set of polynomials over Ω, of total degree M.
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Requests

Concerning

LM(f ) :=
NM∑
i=1

wi f (Pi)

we suppose that
the points Pi may be external to Ω;
some weights wi may be negative, but the index of stability
named conditioning of the cubature formula

cond({wi}) :=
∑NM

i=1 |wi |∑NM
i=1 wi

tends to 1 when increasing the degree (of exactness) M;
the determination of the nodes {Pi}i=1,...,NM and the weights
{wi}i=1,...,NM is fast;
the latter does not require the solution of a linear system.
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Key ideas

Suppose that

Ω ⊆ B ⊂ Rd , where B is a hypercube (usually named bounding
box),
f ∈ C(B);
{ϕk}k=1,...,νM is an orthonormal basis of PM , w.r.t. some
absolutely continuous measure µ on B.

One can approximate f in the bounding box B by the polynomial
hyperinterpolant

HM(f ) =
νM∑
k=1

(f , ϕk)ϕk

where

(f , ϕk) =
NM∑
i=1

ui f (Pi)ϕk(Pi)

in which the r.h.s. is a cubature formula with positive weights ui ,
{Pi} ⊂ B, with ADE = 2M.
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Key ideas

Our approach to obtain such LM is essentially the following:

compute a polynomial hyperinterpolant HM(f ) of f on a
hypercube B containing the domain Ω;
apply the integration functional L to the hyperinterpolant HM .

As in the similar case of classical interpolatory rules, these ideas
can be converted in determining nodes and weights in the
bounding box so that the rule has degree of exactness M on the
integration domain Ω.
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Example: implementation on polyhedra

Suppose that the integration domain Ω is a polyhedron. Determine:
1 a Cartesian bounding box for the polyhedron;
2 the nodes {Pi} and weights u = {ui}, 1 ≤ i ≤ NM , of a

cubature formula exact for P2M for a given absolutely
continuous measure dµ = σ(P)dP on the bounding box;

3 an orthonormal basis {ϕ1, . . . , ϕν} of PM with respect to dµ,
4 the corresponding moments m = {m1, . . . ,mN} on Ω,
mj =

∫
Ω ϕj(P) dP, e.g. by the divergence theorem;

5 the Vandermonde-like matrix

V = Vn({Pi}) = [ϕj(Pi)] ∈ RNM×ν

6 compute the weights as

w = diag(u)Vm ,

or in a Matlab-like notation w = u. ∗ Vm .
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Example
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On the left: quadrature nodes of the cheap rule on the nonconvex polyhedral element
Ω1 for degree 4, as red dots if the pertinent weight is negative, as green dots
otherwise. The size of the dots is visually proportional to the weight magnitude.
On the right, distribution of the weights in increasing order (in red: negative weights,
in green: positive weights). We report that the smaller weight is wmin ≈ −3.6 · 10−3,
the larger is wmax ≈ 2.1 · 10−2, and the smaller size is |w|min ≈ 2.6 · 10−5.
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Pro and cons

Pros:
Application to polytopal FEM (fast and stable computation of
the integrals of products of polynomials naturally arising on
arbitrary polyhedral elements, avoiding sub-tessellation into
tetrahedra);
moment computation does not require polyhedral tesselation;
many computations can be done just once and repeated on
different integration domains;
w.r.t. techniques based on approximate Fekete points

cubature stability is ensured;
no QR factorization or linear system solution is involved.

Cons:
Though stability is ensured some weights may be negative;
the integrands require in general evaluations outside the
integration domain.
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Theoretical results

Using the previous notation and assumptions, let
(X ,u) = ({Pi}, {ui)}), 1 ≤ i ≤ NM , be the nodes and positive
weights of a quadrature formula for integration in dµ, exact on
P2M (the polynomials with total degree not exceeding 2M),
h ∈ L2

µ(K).
mj =

∫
Ω ϕj(P) h(P) dµ, 1 ≤ j ≤ νM .

wi = ui
∑ν

j=1 ϕj(Pi)mj , 1 ≤ i ≤ NM .

Then, the formula

L(f ) =
∫
Ω
f (P)h(P)dµ ≈

NM∑
i=1

wi f (Pi) = LM(f ) (1)

has degree of exactness M and is stable, since one can prove that

lim
M→∞

NM∑
i=1

|wi | =
∫
Ω
|h(P)| dµ . (2)
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Recent work

Recently we have extended this strategy to
numerical cubature in multivariate domains as

bivariate domains whose boundary can be tracked by
parametric splines,
multivariate domains with complicated gerometries in which
moments are computed by Quasi-Montecarlo methods.

general linear functionals L, for example differentiation
functionals as

∂αf (P) , P = (x1, . . . , xd) ∈ B , (3)

corresponding to (the pointwise evaluation of) a partial
differential operator ∂α = ∂α1

x1 . . . ∂αd
xd .

Remark
All the Matlab and Python routines are available as open-source
software.
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Numerical results: cubature

In this last section, we give some hints on what has been done
over polyhedra.

Figure: Examples of polyhedral domains. Left: Ω1 (nonconvex, 20 facets);
Center: Ω2 (convex, 760 facets); Right: Ω3 (multiply connected, 20 facets).
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Numerical results: cubature

deg 4 6 8 10 12 14 16 18 20
Ω1 1.2e-03 1.4e-03 1.7e-03 2.3e-03 3.4e-03 5.1e-03 7.7e-03 1.9e-02 3.4e-02
Ω2 3.0e-02 3.4e-02 4.3e-02 5.9e-02 8.2e-02 1.2e-01 1.8e-01 4.4e-01 9.7e-01
Ω3 8.1e-04 9.0e-04 1.1e-03 1.7e-03 2.3e-03 3.5e-03 5.4e-03 1.3e-02 2.6e-02

Table: Average cputimes (in seconds) of CheapQ on the domains above,
varying the algebraic degree of exactness.

deg n 4 6 8 10 12 14 16 18 20
Ω1 1.55 1.40 1.30 1.25 1.23 1.21 1.19 1.17 1.17
Ω2 1.30 1.14 1.21 1.12 1.13 1.12 1.10 1.10 1.09
Ω3 1.63 1.81 1.89 1.86 1.82 1.79 1.74 1.67 1.63

Table: Ratios
∑ν

j=1 |wj |/vol(Ωi) for CheapQ on the domains above, varying
the algebraic degree of exactness.
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Numerical results: differentiation
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Figure: Small crosses: relative differentiation errors in the 2-norm on the
first 100 Halton points in [−1, 1]2, for 100 trials of random polynomials
pn(x, y) = (c0 + c1x + c2y)n, n = 2, 4, . . . , 16. Circles: geometric mean of
the relative errors.
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Numerical results: differentiation
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Figure: Small crosses: relative differentiation errors in the 2-norm on the
first 100 Halton points in [−1, 1]3, for 100 trials of random polynomials
pn(x, y, z) = (c0 + c1x + c2y + c3z)n in [−1, 1]3, n = 2, 4, . . . , 16. Circles:
geometric mean of the relative errors.
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