

Effective numerical integration on complex shaped elements by discrete signed measures

Laura Rinaldi, **Alvise Sommariva**, Marco Vianello

Approximation: Theory, Methods and Applications
Rende (I), January, 27-30, 2026

Dedicated to Ezio Venturino

Introduction

In this talk we will briefly discuss **cheap numerical cubature** on multivariate domains

- introduce some **basics** on the topic and theoretical results;
- show the **numerical advantages** of this approach.

Joint work with Laura Rinaldi and Marco Vianello.

Work **partially supported** by

- the DOR funds of the University of Padova,
- INdAM-GNCS 2025 Project “Polynomials, Splines and Kernel Functions: from Numerical Approximation to Open-Source Software”.

Research **accomplished within** the

- RITA,
- SIMAI Activity Group ANA&A,
- Community of Practice “Green Computing” of the Arqus European University Alliance.

Purpose

Let

- Ω be a domain of \mathbb{R}^2 or \mathbb{R}^3 ,
- $f \in C(\Omega)$.

We intend to numerically approximate the integration functional

$$\mathcal{L}(f) := \int_{\Omega} f(x) d\Omega$$

by a discrete one

$$\mathcal{L}_M(f) := \sum_{i=1}^{N_M} w_i f(P_i)$$

so that the degree of exactness ADE is M , i.e.

$$\mathcal{L}(p) = \mathcal{L}_M(p), \quad p \in \mathbb{P}_M,$$

being \mathbb{P}_M the set of polynomials over Ω , of total degree M .

Concerning

$$\mathcal{L}_M(f) := \sum_{i=1}^{N_M} w_i f(P_i)$$

we suppose that

- the points P_i may be external to Ω ;
- some weights w_i may be negative, but the index of stability named **conditioning of the cubature formula**

$$\text{cond}(\{w_i\}) := \frac{\sum_{i=1}^{N_M} |w_i|}{\sum_{i=1}^{N_M} w_i}$$

tends to 1 when increasing the degree (of exactness) M ;

- the **determination of the nodes** $\{P_i\}_{i=1,\dots,N_M}$ and the weights $\{w_i\}_{i=1,\dots,N_M}$ is **fast**;
- the latter does not require the solution of a linear system.

Key ideas

Suppose that

- $\Omega \subseteq B \subset \mathbb{R}^d$, where B is a hypercube (usually named *bounding box*),
- $f \in C(B)$;
- $\{\phi_k\}_{k=1, \dots, \nu_M}$ is an orthonormal basis of \mathbb{P}_M , w.r.t. some absolutely continuous measure μ on B .

One can approximate f in the bounding box B by the polynomial hyperinterpolant

$$\mathcal{H}_M(f) = \sum_{k=1}^{\nu_M} (f, \phi_k) \phi_k$$

where

$$(f, \phi_k) = \sum_{i=1}^{N_M} u_i f(P_i) \phi_k(P_i)$$

in which the r.h.s. is a cubature formula with positive weights u_i , $\{P_i\} \subset B$, with $ADE = 2M$.

Our approach to obtain such \mathcal{L}_M is essentially the following:

- *compute a polynomial hyperinterpolant $\mathcal{H}_M(f)$ of f on a hypercube B containing the domain Ω ;*
- *apply the integration functional \mathcal{L} to the hyperinterpolant \mathcal{H}_M .*

As in the similar case of classical interpolatory rules, these ideas can be converted in **determining nodes and weights** in the bounding box so that the rule has degree of exactness M on the integration domain Ω .

Example: implementation on polyhedra

Suppose that the integration domain Ω is a polyhedron. Determine:

- 1 a Cartesian **bounding box** for the polyhedron;
- 2 the **nodes** $\{P_i\}$ and **weights** $\mathbf{u} = \{u_i\}$, $1 \leq i \leq N_M$, of a cubature formula exact for \mathbb{P}_{2M} for a given absolutely continuous measure $d\mu = \sigma(P)dP$ on the bounding box;
- 3 an **orthonormal basis** $\{\phi_1, \dots, \phi_\nu\}$ of \mathbb{P}_M with respect to $d\mu$,
- 4 the corresponding **moments** $\mathbf{m} = \{m_1, \dots, m_N\}$ on Ω ,
 $m_j = \int_{\Omega} \phi_j(P) dP$, e.g. by the divergence theorem;
- 5 the **Vandermonde-like matrix**

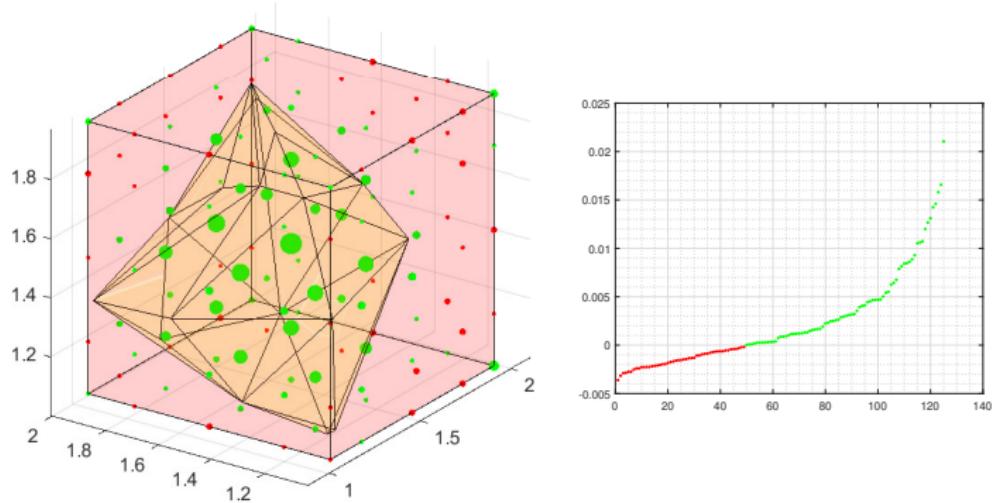
$$V = V_n(\{P_i\}) = [\phi_j(P_i)] \in \mathbb{R}^{N_M \times \nu}$$

- 6 compute the weights as

$$\mathbf{w} = \text{diag}(\mathbf{u}) V \mathbf{m} ,$$

or in a Matlab-like notation $\mathbf{w} = \mathbf{u} . * V \mathbf{m}$.

Example



- On the left: quadrature nodes of the cheap rule on the nonconvex polyhedral element Ω_1 for degree 4, as red dots if the pertinent weight is negative, as green dots otherwise. The size of the dots is visually proportional to the weight magnitude.
- On the right, distribution of the weights in increasing order (in red: negative weights, in green: positive weights). We report that the smaller weight is $w_{\min} \approx -3.6 \cdot 10^{-3}$, the larger is $w_{\max} \approx 2.1 \cdot 10^{-2}$, and the smaller size is $|w|_{\min} \approx 2.6 \cdot 10^{-5}$.

Pros:

- Application to **polytopal FEM** (fast and stable computation of the integrals of products of polynomials naturally arising on arbitrary polyhedral elements, avoiding sub-tessellation into tetrahedra);
- **moment computation** does not require polyhedral tessellation;
- **many computations can be done just once** and repeated on different integration domains;
- w.r.t. techniques based on approximate Fekete points
 - **cubature stability** is ensured;
 - **no QR factorization or linear system solution** is involved.

Cons:

- Though stability is ensured **some weights may be negative**;
- the integrands require in general **evaluations outside the integration domain**.

Theoretical results

Using the previous notation and assumptions, let

- $(X, \mathbf{u}) = (\{P_i\}, \{u_i\})$, $1 \leq i \leq N_M$, be the nodes and positive weights of a quadrature formula for integration in $d\mu$, exact on \mathbb{P}_{2M} (the polynomials with total degree not exceeding $2M$),
- $h \in L^2_\mu(K)$.
- $m_j = \int_{\Omega} \phi_j(P) h(P) d\mu$, $1 \leq j \leq \nu_M$.
- $w_i = u_i \sum_{j=1}^{\nu} \phi_j(P_i) m_j$, $1 \leq i \leq N_M$.

Then, the formula

$$\mathcal{L}(f) = \int_{\Omega} f(P) h(P) d\mu \approx \sum_{i=1}^{N_M} w_i f(P_i) = \mathcal{L}_M(f) \quad (1)$$

has degree of exactness M and is stable, since one can prove that

$$\lim_{M \rightarrow \infty} \sum_{i=1}^{N_M} |w_i| = \int_{\Omega} |h(P)| d\mu. \quad (2)$$

Recently we have extended this strategy to

- numerical cubature in multivariate domains as
 - bivariate domains whose boundary can be tracked by parametric splines,
 - multivariate domains with complicated geometries in which moments are computed by Quasi-Montecarlo methods.
- general linear functionals \mathcal{L} , for example differentiation functionals as

$$\partial^\alpha f(P) , \quad P = (x_1, \dots, x_d) \in B , \quad (3)$$

corresponding to (the pointwise evaluation of) a partial differential operator $\partial^\alpha = \partial_{x_1}^{\alpha_1} \dots \partial_{x_d}^{\alpha_d}$.

Remark

All the Matlab and Python routines are available as open-source software.

In this last section, we give some hints on what has been done over polyhedra.

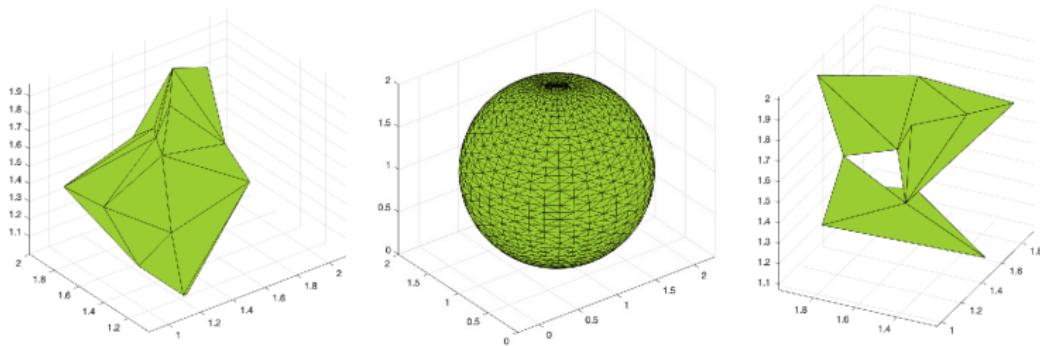


Figure: Examples of polyhedral domains. Left: Ω_1 (nonconvex, 20 facets); Center: Ω_2 (convex, 760 facets); Right: Ω_3 (multiply connected, 20 facets).

Numerical results: cubature

deg	4	6	8	10	12	14	16	18	20
Ω_1	1.2e-03	1.4e-03	1.7e-03	2.3e-03	3.4e-03	5.1e-03	7.7e-03	1.9e-02	3.4e-02
Ω_2	3.0e-02	3.4e-02	4.3e-02	5.9e-02	8.2e-02	1.2e-01	1.8e-01	4.4e-01	9.7e-01
Ω_3	8.1e-04	9.0e-04	1.1e-03	1.7e-03	2.3e-03	3.5e-03	5.4e-03	1.3e-02	2.6e-02

Table: Average cputimes (in seconds) of *CheapQ* on the domains above, varying the algebraic degree of exactness.

deg n	4	6	8	10	12	14	16	18	20
Ω_1	1.55	1.40	1.30	1.25	1.23	1.21	1.19	1.17	1.17
Ω_2	1.30	1.14	1.21	1.12	1.13	1.12	1.10	1.10	1.09
Ω_3	1.63	1.81	1.89	1.86	1.82	1.79	1.74	1.67	1.63

Table: Ratios $\sum_{j=1}^{\nu} |w_j| / \text{vol}(\Omega_i)$ for *CheapQ* on the domains above, varying the algebraic degree of exactness.

Numerical results: differentiation

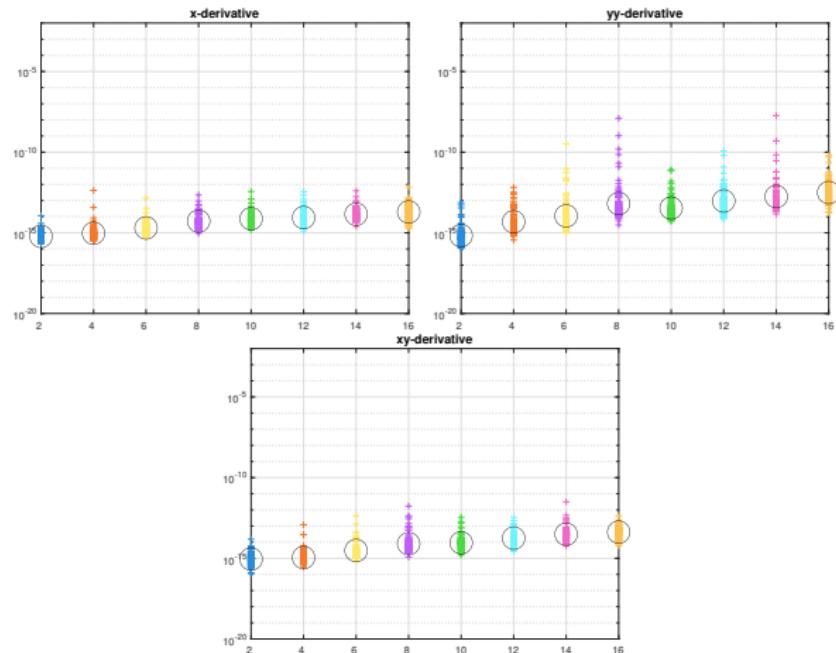


Figure: Small crosses: relative differentiation errors in the 2-norm on the first 100 Halton points in $[-1, 1]^2$, for 100 trials of random polynomials $p_n(x, y) = (c_0 + c_1x + c_2y)^n$, $n = 2, 4, \dots, 16$. Circles: geometric mean of the relative errors.

Numerical results: differentiation

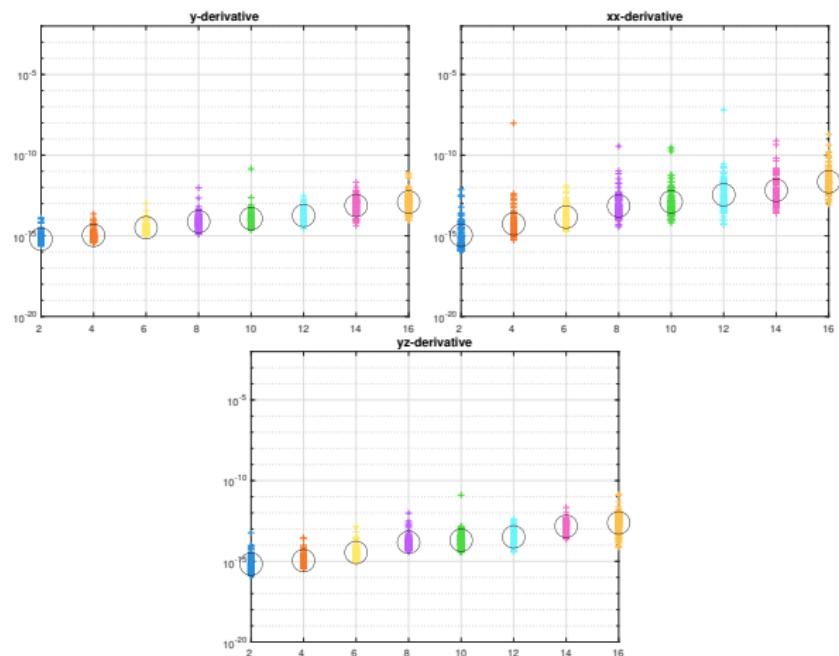


Figure: Small crosses: relative differentiation errors in the 2-norm on the first 100 Halton points in $[-1, 1]^3$, for 100 trials of random polynomials $p_n(x, y, z) = (c_0 + c_1x + c_2y + c_3z)^n$ in $[-1, 1]^3$, $n = 2, 4, \dots, 16$. Circles: geometric mean of the relative errors.

Bibliography

- C. Langlois, T. van Putten, H. Bériot, E. Deckers, *Frugal numerical integration scheme for polytopal domains*, Eng. Comput., Volume 41 (2025), 1211-1224, (2025)
→ A cheap technique on polyhedral elements based on Approximate Fekete points.
- A. Sommariva and M. Vianello, *Cheap and stable quadrature on polyhedral elements*, Finite Elements in Analysis and Design, Volume 251, October 2025, 104409.
→ Introduction of cheap technique on polyhedral elements.
- L. Rinaldi, A. Sommariva and M. Vianello, *Effective numerical integration on complex shaped elements by discrete signed measures*, Finite Elements in Analysis and Design, Volume 254, February 2026, 104505.
→ Cheap technique on general elements.
- A. Sommariva, M. Vianello, *TetraFreeQ: tetrahedra-free quadrature on polyhedral elements*, Appl. Numer. Math. 200 (2024), 389-398.
→ Computation of polynomial moments on polyhedra, without tessellation.
- L. Rinaldi, A. Sommariva and M. Vianello, *ORTHOUCUB: integral and differential cubature rules by orthogonal moments*, submitted,
→ Extension to general functionals, Matlab/Python codes with description.