ATTENZIONE: siete caldamente invitati a segnalare errori o sviste in modo che possano essere corretti.

Premessa. Nel compito potrebbero essere richieste "varianti minori" di quanto segue. Un esempio: potrebbero essere richiesti gli analoghi dei Teoremi 11, 12 e 13 per funzioni integrabili in senso improprio in (a, b] con $-\infty \le a < b < +\infty$ (in altre parole: quando la "singolarità" è in a invece che in b).

1. INTEGRALI

Definizione 1 (Somme superiori, inferiori e integrabilità).

Sia $f:[a,b] \to \mathbb{R}$ una funzione limitata e \mathscr{D} una suddivisione di [a,b], ovvero un insieme finito $\mathscr{D} = \{x_0, x_1, \dots, x_n\} \subset [a,b]$ di punti di [a,b] tali che

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

La somma inferiore $s(\mathcal{D}, f)$ e la somma superiore di f relative a \mathcal{D} sono definite, rispettivamente, da

$$s(\mathcal{D}, f) := \sum_{i=1}^{n} (x_i - x_{i-1}) \inf_{[x_{i-1}, x_i]} f$$

$$S(\mathcal{D}, f) := \sum_{i=1}^{n} (x_i - x_{i-1}) \sup_{[x_{i-1}, x_i]} f.$$

La funzione f è detta integrabile secondo Riemann (in breve: integrabile) su [a,b] se vale l'uguaglianza

 $\sup \left\{ s(\mathcal{D}, f) : \mathcal{D} \text{ suddivisione di } [a, b] \right\} = \inf \left\{ S(\mathcal{D}, f) : \mathcal{D} \text{ suddivisione di } [a, b] \right\}.$

Teorema 2 (Funzioni continue sono integrabili).

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua sull'intervallo chiuso e limitato [a,b]; allora f è integrabile secondo Riemann su [a,b].

Teorema 3 (Funzioni monotone sono integrabili).

Sia $f:[a,b]\to\mathbb{R}$ una funzione monotona sull'intervallo chiuso e limitato [a,b]; allora f è integrabile secondo Riemann su [a,b].

Teorema 4 (Funzioni con un numero finito di discontinuità sono integrabili).

Sia $f : [a, b] \to \mathbb{R}$ una funzione limitata sull'intervallo chiuso e limitato [a, b] e con una quantità finita di punti di discontinuità; allora f è integrabile secondo Riemann su [a, b].

Teorema 5 (Teorema fondamentale del calcolo integrale).

Sia $f:[a,b] \to \mathbb{R}$ una funzione integrabile secondo Riemann su [a,b] e sia $c \in [a,b]$. Se f è continua nel punto $x_0 \in [a,b]$, allora la funzione integrale $F_c:[a,b] \to \mathbb{R}$ definita da $F_c(x) := \int_c^x f(t)dt$ risulta derivabile in $x_0 \in F'_c(x_0) = f(x_0)$.

In particolare, se f è continua su [a, b] la funzione F_c risulta di classe \mathbf{C}^1 su [a, b] e $F'_c = f$.

Definizione 6 (Primitive e funzioni integrali).

Siano $I \subset \mathbb{R}$ e $f: I \to \mathbb{R}$. Una funzione $F: I \to \mathbb{R}$ si dice primitiva di f su I se Fè derivabile su $I \in F'(x) = f(x)$ per ogni $x \in I$.

Teorema 7 (Calcolo di integrali definiti).

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua sull'intervallo chiuso e limitato [a,b], e sia $F:[a,b]\to\mathbb{R}$ una primitiva di f. Allora $\int_a^b f(x)dx=F(b)-F(a)$.

Teorema 8 (Formula di integrazione per parti).

Siano $f, g: [a, b] \to \mathbb{R}$ due funzioni di classe \mathbb{C}^1 sull'intervallo chiuso e limitato [a, b]; allora

 $\int_a^b f'(x)g(x) dx = f(x)g(x)\Big|_a^b - \int_a^b f(x)g'(x) dx.$

Teorema 9 (Formula di integrazione per sostituzione).

Siano $\varphi:[a,b]\to I$ (dove $I\subset\mathbb{R}$ è un intervallo) una funzione di classe \mathbb{C}^1 sull'intervallo chiuso e limitato [a,b] e $f:I\to\mathbb{R}$ una funzione continua su I; allora

 $\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \int_{\varphi(a)=\alpha}^{\varphi(b)=\beta} f(x) dx.$

Se φ risulta invertibile su [a,b], allora vale anche

$$\int_{\alpha}^{\beta} f(x) dx = \int_{\varphi^{-1}(\alpha)}^{\varphi^{-1}(\beta)} f(\varphi(t)) \varphi'(t) dt.$$

Definizione 10 (Integrabilità in senso improprio).

Sia f:[a,b) $(-\infty < a < b \le +\infty)$ una funzione integrabile secondo Riemann su $[a,\omega]$ per ogni $\omega \in (a,b)$. La funzione f si dice integrabile in senso improprio (o generalizzato) su [a,b) se esiste il limite

(1)
$$\lim_{\omega \to b^{-}} \int_{a}^{\omega} f(t)dt$$

ed esso risulta finito. Tale limite viene denotato con $\int_a^b f(t)dt$ e si dice che l'integrale improprio $\int_a^b f(t)dt$ è convergente.

Se il limite (1) esiste ma non è finito si dice che l'integrale improprio $\int_a^b f(t)dt$ è divergente (a $+\infty$ o $-\infty$, a seconda del valore del limite (1)).

Teorema 11 (Criterio del confronto per integrali impropri).

Siano $f, g : [a, b) \to \mathbb{R} \ (-\infty < a < b \le +\infty)$ due funzioni tali che

$$0 \le f(x) \le g(x) \ \forall x \in [a, b)$$

f, g sono integrabili secondo Riemann su $[a, \omega]$ per ogni $\omega \in (a, b)$.

Allora:

- se $\int_a^b g(x) dx$ è convergente, anche $\int_a^b f(x) dx$ è convergente; se $\int_a^b f(x) dx$ è divergente, anche $\int_a^b g(x) dx$ è divergente.

Teorema 12 (Confronto asintotico per integrali impropri, limite finito e non nullo). Siano $f, g: [a, b) \to \mathbb{R} \ (-\infty < a < b \le +\infty)$ due funzioni tali che

$$f(x) \ge 0 \text{ e } g(x) > 0 \ \forall x \in [a, b)$$

f, g sono integrabili secondo Riemann su $[a, \omega]$ per ogni $\omega \in (a, b)$.

Supponiamo che esista $\lim_{x\to b^-} \frac{f(x)}{g(x)} = k \in (0, +\infty)$; allora valgono le implicazioni

$$\int_a^b f(x)dx$$
 è convergente $\iff \int_a^b g(x)dx$ è convergente $\int_a^b f(x)dx$ è divergente $\iff \int_a^b g(x)dx$ è divergente.

Teorema 13 (Confronto asintotico per integrali impropri, limite nullo o infinito). Nelle stesse ipotesi del Teorema 12: se $\lim_{x\to b^-} \frac{f(x)}{g(x)} = 0$ allora valgono le implicazioni

- se $\int_a^b g(x) dx$ è convergente, anche $\int_a^b f(x) dx$ è convergente; se $\int_a^b f(x) dx$ è divergente, anche $\int_a^b g(x) dx$ è divergente.

Se $\lim_{x\to b^-} \frac{f(x)}{g(x)} = +\infty$ allora valgono le implicazioni

- se $\int_a^b f(x) dx$ è convergente, anche $\int_a^b g(x) dx$ è convergente; se $\int_a^b g(x) dx$ è divergente, anche $\int_a^b f(x) dx$ è divergente.

Definizione 14 (Assoluta integrabilità).

Sia $I \subset \mathbb{R}$ un intervallo e $f: I \to \mathbb{R}$ una funzione. Diremo che f è assolutamente integrabile in senso improprio su I se l'integrale improprio $\int_I |f(t)| dt$ risulta convergente.

Teorema 15 (Criterio di assoluta integrabilità per integrali impropri).

Sia $I \subset \mathbb{R}$ un intervallo. Se $f: I \to \mathbb{R}$ è assolutamente integrabile in senso improprio su I, allora f è anche integrabile in senso improprio su I e vale la disuguaglianza

$$\left| \int_{I} f(x) \, dx \right| \le \int_{I} |f(x)| \, dx.$$
2. SERIE

Definizione 16 (Serie convergenti/divergenti/irregolari).

Sia $\{a_k\}_{k\in\mathbb{N}}$ una successione di numeri reali; per ogni $n\in\mathbb{N}$ definiamo le somme parziali $s_n := a_0 + a_1 + \dots + a_n$. Diremo che la serie $\sum_{k=0}^{\infty} a_k$ è convergente se esiste $\lim_{n\to+\infty} s_n$ e quest'ultimo è finito.

Se $\lim_{n\to+\infty} s_n = \pm \infty$ diremo che la serie $\sum_{k=0}^{\infty} a_k$ è divergente (a $+\infty$ o $-\infty$) e scriveremo $\sum_{k=0}^{\infty} a_k = +\infty$ (o $-\infty$).

Se il limite $\lim_{n\to+\infty} s_n$ non esiste, la serie $\sum_{k=0}^{\infty} a_k$ viene detta irregolare.

Teorema 17 (Serie convergenti e code).

La serie $\sum_{k=0}^{\infty} a_k$ è convergente/divergente/irregolare se e soltanto se una sua qualsiasi coda $\sum_{k=N}^{\infty} a_k$ è convergente/divergente/irregolare.

Teorema 18 (Condizione necessaria per la convergenza di una serie). Se la serie $\sum_{k=0}^{\infty} a_k$ è convergente, allora $\lim_{k\to+\infty} a_k = 0$.

Teorema 19 (Criterio di Cauchy per la convergenza di una serie). La serie $\sum_{k=0}^{\infty} a_k$ è convergente se e solo se per ogni $\epsilon > 0$ esiste $N \in \mathbb{N}$ tale che

$$\left| \sum_{k=n}^{m} a_k \right| = \left| a_n + a_{n+1} + \dots + a_m \right| < \epsilon \quad \text{per ogni } m > n \ge N.$$

Teorema 20 (Serie a termini positivi).

Se $\sum_{k=0}^{\infty} a_k$ è a termini positivi, allora o è convergente o è divergente a $+\infty$. In particolare, risulta convergente se e solo se le somme parziali $s_n = a_0 + a_1 + \cdots + a_n$ sono limitate.

Teorema 21 (Criterio del confronto integrale per serie a termini positivi). Sia $f:(0,+\infty)\to\mathbb{R}$ una funzione decrescente e tale che $f(x)\geq 0$ per ogni $x \in (0, +\infty)$. Allora la serie $\sum_{k=1}^{\infty} f(k)$ risulta convergente (risp. divergente) se e soltanto se l'integrale improprio $\int_{1}^{+\infty} f(x)dx$ è convergente (divergente).

Teorema 22 (Criterio del confronto per serie a termini positivi). Se esiste $N \in \mathbb{N}$ tale che $0 \le a_k \le b_k$ per ogni $k \ge N$, allora valgono le seguenti implicazioni:

- se $\sum_{k=0}^{\infty} b_k$ è convergente, allora $\sum_{k=0}^{\infty} a_k$ è convergente; se $\sum_{k=0}^{\infty} a_k = +\infty$, allora $\sum_{k=0}^{\infty} b_k = +\infty$.

Teorema 23 (Confronto asintotico per serie a termini positivi, limite finito e non nullo).

Supponiamo che esista $N \in \mathbb{N}$ tale che $a_k \geq 0$ e $b_k > 0$ per ogni $k \geq N$, e che inoltre esista il limite $\lim_{k\to+\infty}\frac{a_k}{b_k}=l$ con $l\neq 0,\ l\neq +\infty$. Allora

$$\sum_{k=0}^{\infty} a_k \text{ è convergente } \iff \sum_{k=0}^{\infty} b_k \text{ è convergente}$$

$$\sum_{k=0}^{\infty} a_k \text{ è divergente } \iff \sum_{k=0}^{\infty} b_k \text{ è divergente.}$$

Teorema 24 (Confronto asintotico per serie a termini positivi, limite nullo o infi-

Nelle stesse ipotesi del Teorema 23: se $\lim_{k\to+\infty}\frac{a_k}{b_k}=0$ valgono le implicazioni

- se $\sum_{k=0}^{\infty} b_k$ è convergente, anche $\sum_{k=0}^{\infty} a_k$ è convergente; se $\sum_{k=0}^{\infty} a_k$ è divergente $(a + \infty)$, anche $\sum_{k=0}^{\infty} b_k$ è divergente $(a + \infty)$.

Se $\lim_{k\to +\infty} \frac{a_k}{b_k} = +\infty$ valgono le implicazioni

- se $\sum_{k=0}^{\infty} a_k$ è convergente, anche $\sum_{k=0}^{\infty} b_k$ è convergente; se $\sum_{k=0}^{\infty} b_k$ è divergente (a $+\infty$), anche $\sum_{k=0}^{\infty} a_k$ è divergente (a $+\infty$).

Definizione 25 (Serie assolutamente convergenti).

La serie $\sum_{k=0}^{\infty} a_k$ si dice assolutamente convergente se la serie dei valori assoluti $\sum_{k=0}^{\infty} |a_k|$ è convergente.

Teorema 26 (Criterio di assoluta convergenza per serie).

Se la serie $\sum_{k=0}^{\infty} a_k$ è assolutamente convergente, allora risulta anche convergente e vale la disuguaglianza

$$\left| \sum_{k=0}^{\infty} a_k \right| \le \sum_{k=0}^{\infty} |a_k| \,.$$

Teorema 27 (Criterio di Leibnitz).

Supponiamo che esista $N \in \mathbb{N}$ tale che

- $a_k \ge 0$ per ogni $k \ge N$;
- $\lim_{k\to\infty} a_k = 0$;
- $a_{k+1} \leq a_k$ per ogni $k \geq N$.

Allora la serie $\sum_{k=0}^{\infty} (-1)^k a_k$ è convergente. Se le ipotesi precedenti valgono con N=0, allora si hanno le disuguaglianze

$$0 \le a_0 - a_1 \le \sum_{k=0}^{\infty} (-1)^k a_k \le a_0$$

Teorema 28 (Criterio del rapporto).

Supponiamo che esista $\lim_{k\to+\infty} \left| \frac{a_{k+1}}{a_k} \right| = r$. Allora

- se $0 \le r < 1$ la serie $\sum_{k=0}^{\infty} a_k$ è assolutamente convergente (in particolare è convergente);
- se r > 1 la serie $\sum_{k=0}^{\infty} a_k$ non è convergente e anzi $\lim_{k \to +\infty} |a_k| = +\infty$.

Se r > 1 e la serie è a termini positivi, allora $\sum_{k=0}^{\infty} a_k = +\infty$.

Teorema 29 (Criterio della radice).

Supponiamo che esista $\lim_{k\to+\infty} \sqrt[k]{|a_k|} = r$. Allora

- se $0 \le r < 1$ la serie $\sum_{k=0}^{\infty} a_k$ è assolutamente convergente (in particolare è convergente);
- se r > 1 la serie $\sum_{k=0}^{\infty} a_k$ non è convergente e anzi $\lim_{k \to +\infty} |a_k| = +\infty$.

Se r > 1 e la serie è a termini positivi, allora $\sum_{k=0}^{\infty} a_k = +\infty$.

3. FUNZIONI DI DUE VARIABILI REALI

Definizione 30 (Nozioni base di topologia in \mathbb{R}^2).

Sia $D \subset \mathbb{R}^2$; un punto $(x_0, y_0) \in \mathbb{R}^2$ si dice

- interno a D se esiste r > 0 tale che $B((x_0, y_0), r) \subset D$;
- esterno a D se è interno a $\mathbb{R}^2 \setminus D$, cioè se esiste r > 0 tale che $B((x_0, y_0), r) \subset \mathbb{R}^2 \setminus D$;

• di frontiera per D se non è né interno né esterno a D, cioè se per ogni r > 0 si ha che $D \cap B((x_0, y_0), r) \neq \emptyset$ e $D \setminus B((x_0, y_0), r) \neq \emptyset$.

I simboli $\mathring{D}, \partial D$ indicano, rispettivamente, l'insieme dei punti interni (parte interna) e l'insieme dei punti di frontiera (frontiera o bordo) di D. Il simbolo \overline{D} (chiusura di D) denota l'insieme dei punti interni o di frontiera, cioè l'unione $\mathring{D} \cup \partial D$. E' evidente che $\mathring{D} \subset D \subset \overline{D}$.

L'insieme D si dice *aperto* se ogni suo punto è interno, cioè se $D = \mathring{D}$. L'insieme D si dice *chiuso* se $D = \overline{D}$; in maniera equivalente, se il complementare $\mathbb{R}^2 \setminus D$ è aperto.

Il punto (x_0, y_0) è detto di accumulazione per D se per ogni r > 0 esiste $(x, y) \neq (x_0, y_0)$ tale che $(x, y) \in D \cap B((x_0, y_0), r)$ (cioè se esistono punti di D diversi da (x_0, y_0) arbitrariamente vicini a (x_0, y_0)). Equivalentemente: se esiste una successione $\{(x_n, y_n)\}_n \subset D$ di punti di D diversi da (x_0, y_0) che converge ad (x_0, y_0) . Il punto (x_0, y_0) è detto isolato se esiste r > 0 tale che $D \cap B((x_0, y_0), r) = \{(x_0, y_0)\}$.

Definizione 31 (Limiti di funzioni in due variabili).

Siano $f: D \to \mathbb{R}$ una funzione definita su $D \subset \mathbb{R}^2$, $(x_0, y_0) \in \mathbb{R}^2$ un punto di accumulazione per $D \in l \in \mathbb{R}$. Si dice che

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l$$

se per ogni $\epsilon > 0$ esiste r > 0 tale che

$$|f(x,y)-l| < \epsilon \text{ per ogni } (x,y) \in D \cap B((x_0,y_0),r), \ (x,y) \neq (x_0,y_0).$$

Si dice che $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = +\infty$ (risp. $-\infty$) se per ogni M > 0 esiste r > 0 tale che f(x,y) > M (risp. f(x,y) < -M) per ogni $(x,y) \in D \cap B((x_0,y_0),r)$ con $(x,y) \neq (x_0,y_0)$.

Teorema 32 (Teorema "ponte" per limiti di funzioni di due variabili).

Siano $f: D \to \mathbb{R}$ una funzione definita su $D \subset \mathbb{R}^2$ e $(x_0, y_0) \in \mathbb{R}^2$ un punto di accumulazione per D. Allora $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = l$ se e solo se, per ogni successione (x_n, y_n) di punti di $D \setminus \{(x_0, y_0)\}$ tale che $\lim_{n\to\infty} (x_n, y_n) = (x_0, y_0)$, si ha $\lim_{n\to\infty} f(x_n, y_n) = l$.

Teorema 33 (Condizioni sufficienti per avere insiemi aperti/chiusi).

Supponiamo che $f, g: \mathbb{R}^2 \to \mathbb{R}$ siano funzioni continue ed $s, t \in \mathbb{R}$. Allora gli insiemi

$$\{(x,y) \in \mathbb{R}^2 : f(x,y) < t\}, \ \{(x,y) \in \mathbb{R}^2 : f(x,y) > t\}, \ \{(x,y) \in \mathbb{R}^2 : f(x,y) \neq t\}, \ \{(x,y) \in \mathbb{R}^2 : s < f(x,y) < t\}, \ \{(x,y) \in \mathbb{R}^2 : f(x,y) < t \in g(x,y) < s\}$$

sono aperti, mentre gli insiemi

$$\{(x,y) \in \mathbb{R}^2 : f(x,y) \le t\}, \ \{(x,y) \in \mathbb{R}^2 : f(x,y) \ge t\}, \ \{(x,y) \in \mathbb{R}^2 : f(x,y) = t\}, \ \{(x,y) \in \mathbb{R}^2 : s \le f(x,y) \le t\}, \ \{(x,y) \in \mathbb{R}^2 : f(x,y) \le t \in g(x,y) \le s\}$$
 sono chiusi.

Teorema 34 (Limiti nell'origine in coordinate polari).

Sia $f: D \to \mathbb{R}$ una funzione definita su $D \subset \mathbb{R}^2$ tale che (0,0) è interno a D. Allora $\lim_{(x,y)\to(0,0)} f(x,y) = l \in \mathbb{R}$ se e solo se

$$\lim_{\rho \to 0^+} \left(\sup_{\varphi \in [0,2\pi]} \left| f(\rho \cos \varphi, \rho \sin \varphi) - l \right| \right) = 0.$$

Teorema 35 (Bolzano-Weierstrass per funzioni di due variabili).

Sia $f: D \to \mathbb{R}$ una funzione continua su un dominio $D \subset \mathbb{R}^2$ chiuso e limitato. Allora f assume massimo e minimo in D.

Definizione 36 (Derivate parziali, gradiente e differenziabilità).

Sia $f: D \to \mathbb{R}$ una funzione continua su un dominio $D \subset \mathbb{R}^2$, e sia (x_0, y_0) un punto interno a D. Le *derivate parziali* di f in (x_0, y_0) rispetto ad x e y sono definite, rispettivamente, dai limiti (se esistono)

$$f'_x(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0) := \lim_{t \to 0} \frac{f(x_0 + t, y_0) - f(x_0, y_0)}{t}$$

e

$$f'_y(x_0, y_0) = \frac{\partial f}{\partial y}(x_0, y_0) := \lim_{t \to 0} \frac{f(x_0, y_0 + t) - f(x_0, y_0)}{t}.$$

Il gradiente di f in (x_0, y_0) è il vettore

$$\nabla f(x_0, y_0) := (f'_x(x_0, y_0), f'_y(x_0, y_0)).$$

La funzione f si dice differenziabile in (x_0, y_0) se esistono entrambe le derivate parziali $f'_x(x_0, y_0), f'_y(x_0, y_0)$ e vale

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)-f(x_0,y_0)-f'_x(x_0,y_0)(x-x_0)-f'_y(x_0,y_0)(y-y_0)}{\sqrt{|x-x_0|^2+|y-y_0|^2}} = 0.$$

Teorema 37 (del differenziale totale).

Sia $f: D \to \mathbb{R}$ una funzione definita su un dominio aperto $D \subset \mathbb{R}^2$ e sia $(x_0, y_0) \in D$. Supponiamo che le derivate f'_x, f'_y esistano su tutto D e che siano continue in (x_0, y_0) . Allora f è differenziabile in (x_0, y_0) .

In particolare, se f'_x , f'_y esistono e sono continue su tutto D (si usa dire che f è di classe \mathbb{C}^1 su D), allora f è differenziabile su tutto D.

Questa è una definizione!

Definizione 38 (Punti critici, estremi assoluti/relativi, punti di sella).

Sia $f: D \to \mathbb{R}$ una funzione definita su un dominio aperto $D \subset \mathbb{R}^2$. Diremo che $(x_0, y_0) \in D$ è un

- punto critico (o stazionario) se f ammette derivate parziali in (x_0, y_0) e $\nabla f(x_0, y_0) = (0, 0)$;
- massimo (minimo) assoluto se $f(x_0, y_0) \stackrel{(\leq)}{\geq} f(x, y)$ per ogni $(x, y) \in D$;

- massimo (minimo) relativo se esiste r > 0 tale che $f(x_0, y_0) \stackrel{(\leq)}{\geq} f(x, y)$ per ogni $(x, y) \in B((x_0, y_0), r)$;
- massimo (minimo) relativo forte se esiste r > 0 tale che $f(x_0, y_0) \stackrel{(<)}{>} f(x, y)$ per ogni $(x, y) \in B((x_0, y_0), r)$ con $(x, y) \neq (x_0, y_0)$;
- punto di sella se è punto critico e non è né massimo né minimo relativo.

Teorema 39 (Condizione necessaria per essere estremo relativo). Se $f: D \to \mathbb{R}$ è una funzione definita su un dominio aperto $D \subset \mathbb{R}^2$, $(x_0, y_0) \in D$ è un massimo/minimo relativo e f ammette derivate parziali in (x_0, y_0) , allora (x_0, y_0) è un punto critico per f, cioè $\nabla f(x_0, y_0) = (0, 0)$.

Teorema 40 (Natura dei punti critici per funzioni due volte differenziabili). Supponiamo che $f: D \to \mathbb{R}$ sia una funzione definita su un dominio aperto $D \subset \mathbb{R}^2$, che $(x_0, y_0) \in D$ sia un punto critico per f e che f sia due volte differenziabile in (x_0, y_0) . Valgono allora le seguenti implicazioni:

- se det $Hf(x_0, y_0) > 0$ e $f''_{xx}(x_0, y_0) > 0$, allora (x_0, y_0) è un minimo relativo forte (e si dice che la matrice $Hf(x_0, y_0)$ è definita positiva);
- se det $Hf(x_0, y_0) > 0$ e $f''_{xx}(x_0, y_0) < 0$, allora (x_0, y_0) è un massimo relativo forte (e si dice che la matrice $Hf(x_0, y_0)$ è definita negativa);
- se det $Hf(x_0, y_0) < 0$, allora (x_0, y_0) è un punto di sella (e si dice che la matrice $Hf(x_0, y_0)$ è non definita).

Definizione 41 (Punti regolari su vincoli).

Un punto (x_0, y_0) tale che $g(x_0, y_0) = c$ si dice *punto regolare* per il vincolo $\{(x, y) \in \mathbb{R}^2 : g(x, y) = c\}$ se g è differenziabile in $(x_0, y_0) \in \nabla g(x_0, y_0) \neq (0, 0)$.

Teorema 42 (Teorema del moltiplicatore di Lagrange).

Supponiamo che (x_0, y_0) sia un estremo di f sul vincolo $\{(x, y) \in \mathbb{R}^2 : g(x, y) = c\}$ (in particolare $g(x_0, y_0) = c$). Allora si verifica una delle seguenti possibilità:

- almeno una tra $f \in g$ non è differenziabile in (x_0, y_0) ;
- $f \in g$ sono differenziabili in $(x_0, y_0) \in \nabla g(x_0, y_0) = (0, 0)$;
- $f \in g$ sono differenziabili in (x_0, y_0) , (x_0, y_0) è un punto regolare per il vincolo ed esiste $\lambda \in \mathbb{R}$ tale che $\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$. Tale λ viene detto moltiplicatore di Lagrange.