Definiamo le funzioni seno iperbolico e coseno iperbolico, rispettivamente, come

$$\begin{aligned} \sinh: \mathbb{R} \to \mathbb{R} & & \cosh: \mathbb{R} \to \mathbb{R} \\ & \sinh x := \frac{e^x - e^{-x}}{2} & & \exp : \mathbb{R} \to \mathbb{R} \\ & & \cosh x := \frac{e^x + e^{-x}}{2} \,. \end{aligned}$$

Si tratta, evidentemente, di funzioni continue.

Esercizio 1. Dimostrare la relazione $\cosh^2 x - \sinh^2 x = 1 \ \forall x \in \mathbb{R}$.

Esercizio 2. Dimostrare che $\sinh' = \cosh e \cosh' = \sinh$.

Esercizio 3. Dimostrare che $\sinh x > 0$ se x > 0, $\sinh x < 0$ se x < 0 e $\sinh 0 = 0$. Si usi questo risultato, insieme all'esercizio 2, per dimostrare che

- cosh è decrescente su $(-\infty, 0)$ e crescente su $(0, +\infty)$. Dunque cosh ha un minimo assoluto in 0 e cosh 0 = 1;
- \sinh è crescente su \mathbb{R} (si usino l'esercizio 2 e il punto precedente);
- si studino i limiti di sinh x e $\cosh x$ per $x \to \pm \infty$; dedurre che Im $\sinh = \mathbb{R}$ e Im $\cosh = [1, +\infty)$.

Tracciare i grafici di sinh e cosh, osservando che sinh è una funzione dispari mentre cosh è pari.

Dall'esercizio 3 segue che sinh è invertibile su \mathbb{R} (perché monotona), mentre cosh non è invertibile su \mathbb{R} ma lo è su $[0, +\infty)$. Le inverse si chiamano arcoseno iperbolico (o anche settore seno iperbolico) e arcocoseno iperbolico (o anche settore coseno iperbolico) e si denotano, rispettivamente,

$$\begin{split} & \arcsin h := (\sinh)^{-1} \ : \ \mathbb{R} \to \mathbb{R} \qquad (o \ anche \ settsinh) \\ & \ arccosh := (\cosh_{|[1,+\infty)})^{-1} \ : \ [1,+\infty) \to [0,+\infty) \qquad (o \ anche \ settcosh) \end{split}$$

Tali funzioni si possono calcolare esplicitamente nel seguente modo. Supponiamo di voler calcolare arcsinh t; posto $x=\operatorname{arcsinh} t$, dovrà evidentemente valere

$$t = \sinh x = \frac{e^x - e^{-x}}{2}$$

da cui, con facili conti, $(e^x)^2 - 2te^x - 1 = 0$. Risolvendo l'equazione di secondo grado si ottiene

$$e^x = t \pm \sqrt{t^2 + 1}$$

e la soluzione col segno — è da scartare in quanto restituirebbe un valore negativo per e^x (verificare!). Dunque

$$x = \operatorname{arcsinh} t = \log(t + \sqrt{t^2 + 1}) \quad \forall t \in \mathbb{R}.$$

Esercizio 4. Procedendo in maniera analoga, si verifichi che

$$\mathrm{arccosh}\, t = \log(t + \sqrt{t^2 - 1}) \qquad \forall\, t \geq 1 \,.$$

(Attenzione! $\operatorname{arccosh} t$ è definito solo per $t \geq 1$.)

Esercizio 5. Verificare che

$$\operatorname{arcsinh}'(t) = \frac{1}{\sqrt{t^2 + 1}} \quad \forall t \in \mathbb{R}$$

$$\operatorname{arccosh}'(t) = \frac{1}{\sqrt{t^2 - 1}} \quad \forall t \ge 1.$$

Si noti che, a differenza di arccosh, la funzione $\log(t+\sqrt{t^2-1})$ è definita per ogni $t\in(-\infty,-1]\cup[1,+\infty)$ e, su questo insieme, ha per derivata $\frac{1}{\sqrt{t^2-1}}$.

Osservazione. Oltre che derivando direttamente, le derivate dell'esercizio 5 si possono ottenere anche tramite la formula di derivazione delle funzioni inverse.