A) Calcolare i seguenti integrali indefiniti:

$$1. \int e^{(\pi+1)x} dx$$

$$2. \int \cos^4 x \, dx$$

$$3. \int 7^{2x} dx$$

4.
$$\int \frac{1}{\sqrt{2x+1} - \sqrt{2x-1}} dx$$

$$5. \int \frac{\log^3 x}{x} \, dx$$

$$6. \int \frac{1}{x \log^3 x} \, dx$$

7.
$$\int \sin(2x)\sin(\pi x)\,dx$$

8.
$$\int \frac{1}{\cos^4 x} dx$$
 (sugg.: $1 = \cos^2 x + \sin^2 x$)

9.
$$\int \cos x \sqrt{\sin x} \, dx$$

$$10. \int \frac{\cos x}{2\sqrt{\sin x}} e^{\sqrt{\sin x}} dx$$

B) Calcolare i seguenti integrali definiti:

$$1. \int_0^\pi \cos^2 x \, dx$$

2.
$$\int_0^1 x^2 3^{x^3} dx$$

$$3. \int_0^{\pi} \cos(-x)\cos(7x) dx$$

$$4. \int_0^{\pi/2} \sin(4x) \sin x \, dx$$

5.
$$\int_0^{\pi/2} \cos^3 x \, dx$$

6.
$$\int_0^{\pi} \cos^6 x \, \sin^3 x \, dx$$

7.
$$\int_0^{\pi} e^{\sin 2x} \cos 2x \, dx$$

8.
$$\int_{1/2}^{2} \left| \frac{\log x}{x} \right| dx$$

9.
$$\int_{-1}^{1} \left| \frac{\arctan x}{1+x^2} \right| dx$$

10.
$$\int_{-1}^{2} \left| \frac{x^3}{1+x^8} \right| dx \quad \text{(sugg.: } x^8 = (x^4)^2, (x^4)' = \dots)$$

C) Dire se le funzioni

$$f(x) = \left\{ \begin{array}{ll} 0 & \text{se } x \in [0,1] \\ 1+x^2 & \text{se } x \in]1,2] \end{array} \right. \qquad g(x) = \left\{ \begin{array}{ll} 0 & \text{se } x \in [0,2] \cap \mathbb{Q} \\ 9-x^3 & \text{se } x \in [0,2] \setminus \mathbb{Q} \end{array} \right.$$

sono integrabili in [0,2], giustificando la risposta, ed eventualmente calcolare $\int_0^2 f(x)dx$ e/o $\int_0^2 g(x)dx$. Si determinino tutti i punti di [0,2] in cui $f \in g$ risultano continue e i punti in cui le loro funzioni integrali (se esistono!) sono derivabili.

Suggerimento. Si noti che

$$g(x)$$
 $\begin{cases} = 0 & \text{se } x \in [0, 2] \cap \mathbb{Q} \\ \geq 1 & \text{se } x \in [0, 2] \setminus \mathbb{Q} \end{cases}$

Si deduca che, per ogni intervallo $[x_{i-1}, x_i] \subset [0, 2]$, vale

$$\inf_{[x_{i-1},x_i]}g=0 \qquad \text{e} \qquad \sup_{[x_{i-1},x_i]}g\geq 1\,.$$

Usare questo fatto per dedurre che, per ogni suddivisione $\mathcal{D} = \{x_0, x_1, \dots, x_n\}$ di [0, 2], le somme inferiore e superiore di g relative a \mathcal{D} soddisfano

$$s(\mathcal{D}, g) = 0, \quad S(\mathcal{D}, g) \ge 2.$$

Si concluda che g non è integrabile secondo Riemann su [0,2].

D) Dimostrare che la funzione

$$F(x) := \int_7^x \frac{3t}{1 + (\arctan t)^2} dt$$

è di classe C^1 su \mathbb{R} ; calcolare la derivata F'. Dimostrare che F ammette un unico punto di minimo (assoluto) su \mathbb{R} ed esibire tale punto.

E) Dimostrare che la funzione

$$F(x) := \int_{3}^{x} \arctan(t|t|) dt$$

è di classe C^1 su \mathbb{R} . Calcolare la derivata F' e il valore F'(-1).

F) Dimostrare che la funzione

$$F(x) := \int_0^x \sin(t^2) \, dt$$

è di classe C^1 su \mathbb{R} ; calcolare la derivata F'. Dimostrare che F ammette un unico punto di massimo nell'intervallo [0,2] ed esibire tale punto.

G) Dimostrare che la funzione

$$F(x) := \int_{-e^x}^{x^3} \frac{1+t^2}{1+|t|} dt$$

è ben definita, continua e strettamente crescente su tutto \mathbb{R} . Dedurre che, qualsiasi sia l'intervallo [a,b], F assume massimo e minimo su [a,b] nei punti (rispettivamente) b ed a.

H) Dimostrare che la funzione

$$F(x) := \int_{x^2}^{\arctan x} (t^2 + |t|) dt$$

è derivabile su tutto \mathbb{R} . Calcolare F' ed il valore F'(0).

I) Dimostrare che la funzione

$$F(x) := \int_{\tan^2 x}^{e^x} \log(\cosh t) \, dt$$

è ben definita per $x \in]-\frac{\pi}{2},\frac{\pi}{2}[$. Dimostrare che F è anche derivabile su tale intervallo e calcolare F'.

L) Si consideri la funzione $h: \mathbb{R} \to \mathbb{R}$ definita da

$$h(x) := \int_1^{e^{x-1}} \frac{t}{(1+t^2)^3} dt.$$

Calcolare h'(1). Studiare la monotonia di h e trovare tutti i punti di massimo e minimo relativo. Dimostrare che il polinomio di Taylor di h(x) di grado 2 centrato in x=1 è

$$\frac{1}{8}(x-1) - \frac{1}{16}(x-1)^2$$

(sugg.: se si conosce h', si conosce anche h''). Dimostrare che h è invertibile su \mathbb{R} e, detta h^{-1} la sua inversa, si dimostri che $(h^{-1})'(0) = 8$ (sugg.: ricordare la formula per la derivata dell'inversa di una funzione).

M) a) Per il teorema di Heine-Cantor richiamato a lezione, la funzione $f(x) = x^2$ è uniformemente continua su ogni intervallo [a,b] chiuso e limitato [a,b]. Si dimostri che, al contrario, f NON è uniformemente continua su tutto $\mathbb R$ (illimitato).

Suggerimento. Dobbiamo dimostrare che esiste $\epsilon>0$ tale che, per ogni $\delta>0$, esistono x_δ ed y_δ tali che

$$|x_{\delta} - y_{\delta}| < \delta$$
 ma $|f(x_{\delta}) - f(y_{\delta})| = |x_{\delta}^2 - y_{\delta}^2| \ge \epsilon$.

Si considerino allora $\epsilon=1,\,x_{\delta}=2/\delta$ e $y_{\delta}=x_{\delta}+\delta/2.$

b) Si dimostri che la funzione f(x):=1/x è continua ma non uniformemente continua su]0,1] (intervallo limitato ma non chiuso!) Suggerimento. Come prima, dobbiamo dimostrare che esiste $\epsilon>0$ tale che, per ogni $\delta>0$, esistono x_δ ed y_δ tali che

$$|x_{\delta} - y_{\delta}| < \delta \quad \text{ma} \quad |f(x_{\delta}) - f(y_{\delta})| = |\frac{1}{x_{\delta}} - \frac{1}{y_{\delta}}| \ge \epsilon.$$

Si considerino allora $\epsilon=1,\,x_\delta=\min\{1,\delta\}$ e $y_\delta=\min\{1,\delta\}/2.$