Esempio di parte B del compito di Istituzioni di Analisi Matematica 1

(giustificare le risposte, 2 ore di tempo)

P. Mannucci, A. Sommariva

Dicembre 2014.

1. (8 punti) Studiare la funzione

$$f(x) = x^{2x}, x \in \mathbb{R}^+$$

(Dominio, segno, eventuali simmetrie, limiti alla frontiera, eventuali asintoti, continuità e derivabilità, crescenza e decrescenza, eventuali minimi e massimi relativi ed assoluti, eventuali attacchi di f', abbozzo del grafico. Non è richiesto lo studio di f''.)

Bozza soluzione

Per x=0 la funzione non è definita (la scrittura 0^0 non ha senso). Per x>0 si ha $f(x):=x^{2x}=e^{2x\cdot\log x}$.

- Il dominio è $D = \mathbb{R}^+ \setminus \{0\}$ in quanto $2x \cdot \log x \in \mathbb{R}$ per ogni $x \in D$.
- \bullet Non sussistono particolari simmetrie. Si noti che il dominio non include \mathbb{R}^- .
- Da $\lim_{x\to 0^+} 2x \cdot \log x = 0$ in quanto

$$\lim_{x \to 0^+} x \cdot \log x = \lim_{x \to 0^+} \frac{\log x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = 0$$

abbiamo

$$\lim_{x \to 0^+} x^{2x} = \lim_{x \to 0^+} e^{2x \cdot \log x} = 1.$$

Da $\lim_{x\to+\infty} 2x \cdot \log x = +\infty$ abbiamo

$$\lim_{x \to +\infty} x^{2x} = \lim_{x \to +\infty} e^{2x \cdot \log x} = +\infty.$$

• Essendo $\lim_{x\to+\infty}x^{2x}=+\infty$. non vi possono essere asintoti orizzontali a $+\infty$. Se ci fossero asintoti obliqui

$$m = \lim_{x \to +\infty} \frac{x^{2x}}{x} = \lim_{x \to +\infty} x^{2x-1} = \lim_{x \to +\infty} e^{(2x-1) \cdot \log x} = +\infty$$

deduciamo che non ci sono asintoti obliqui a $+\infty$. A $-\infty$ non ha senso (non esiste un suo intorno contenuto in D).

• La funzione è continua e derivabile in D in quanto $\phi(x) := x^{2x} = e^{2x \cdot \log x}$ e $2x \cdot \log x$ è continua e derivabile in D, e la composta di $\psi(x) = e^x \operatorname{con} \phi(x)$ è continua e derivabile in D in quanto $\psi(x)$ è continua e derivabile in D. In particolare, dalla regola della catena (per funzioni composte)

$$Dx^{2x} = De^{2x \cdot \log x} = (2\log x + 2)e^{2x \cdot \log x}.$$

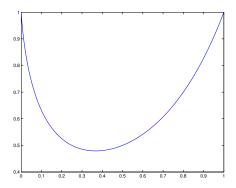


Figura 1: Grafico di f in (0,1].

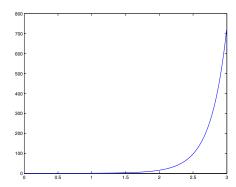


Figura 2: Grafico di f in (0,3].

• Osserviamo che in $D = \mathbb{R}^+ \setminus \{0\}$, con facili conti

$$Dx^{2x} > 0 \Leftrightarrow (2\log x + 2)e^{2x \cdot \log x} > 0 \Leftrightarrow (2\log x + 2) > 0 \Leftrightarrow \log x > -1$$

cioè $x>e^{-1}\approx 0.3678794411714423$. Quindi decresce in $(0,e^{-1}]$ e cresce in $[e^{-1},+\infty)$. Osserviamo che $f(e^{-1})=(e^{-1})^{2e^{-1}}\approx 0.4791417087880153$. Non avendo la funzione continua f(x) altri minimi, visto che $\lim_{x\to 0^+}f(x)=1$, $\lim_{x\to +\infty}f(x)=+\infty$, deduciamo che e^{-1} è un minimo assoluto.

- Essendo la derivata continua in D, non ha senso studiare attacchi della funzione f'.
- 2. (8 punti) Calcolare per ogni valore reale del parametro α il limite

$$\lim_{x \to 0^+} \frac{\sin(x^2) - x}{x^\alpha - \sin^2(x)}$$

Bozza soluzione

Osserviamo che

- se $\alpha < 0$ allora $\lim_{x\to 0^+} x^{\alpha} = +\infty$ e quindi il limite in questione è del tipo $0/+\infty$ e quindi vale 0;
- se $\alpha = 0$ allora $\lim_{x\to 0^+} x^{\alpha} = 1$ e quindi il limite in questione è del tipo 0/1 e quindi vale 0;

Studiamo quindi il caso in cui $\alpha>0$. Ricordiamo che in un intorno di 0 si ha $\sin(y)=y-(y^3/6)+o(y^3)$ e quindi

•
$$\sin(x^2) = x^2 - (x^6/6) + o(x^6);$$

•
$$\sin^2(x) = (x - (x^3/6) + o(x^3))^2 = x^2 + (x^6/36) + o(x^6) - 2x \cdot (x^3/6) + 2x \cdot o(x^3) = x^2 - (1/3)x^4 + o(x^4).$$

Così

•
$$\sin(x^2) - x = x^2 - (x^6/6) + o(x^6) - x = -x + o(x);$$

•
$$x^{\alpha} - \sin^2(x) = x^{\alpha} - (x^2 - (1/3)x^4 + o(x^4))$$
 implica che

1. per
$$\alpha < 2$$
, si ha $x^{\alpha} - \sin^2(x) = x^{\alpha} - (x^2 - (1/3)x^4 + o(x^4)) = x^{\alpha} + o(x^{\alpha})$;

2. per
$$\alpha = 2$$
, si ha $x^{\alpha} - \sin^2(x) = x^{\alpha} - (x^2 - (1/3)x^4 + o(x^4)) = (1/3)x^4 + o(x^4)$;

3. per
$$\alpha > 2$$
, si ha $x^{\alpha} - \sin^2(x) = x^{\alpha} - (x^2 - (1/3)x^4 + o(x^4)) = -x^2 + o(x^2)$;

Di conseguenza, per la tecnica degli asintotici

• per $\alpha < 2$,

$$\lim_{x \to 0^+} \frac{\sin(x^2) - x}{x^{\alpha} - \sin^2(x)} = \lim_{x \to 0^+} \frac{-x}{x^{\alpha}} = \lim_{x \to 0^+} -x^{1-\alpha}$$

che vale 0 per $\alpha \in (0,1)$, -1 per $\alpha = 1$, $-\infty$ per $\alpha \in (1,2)$.

• per $\alpha = 2$,

$$\lim_{x \to 0^+} \frac{\sin(x^2) - x}{x^{\alpha} - \sin^2(x)} = \lim_{x \to 0^+} \frac{-x}{(1/3)x^4} = -\infty$$

• per $\alpha > 2$,

$$\lim_{x \to 0^+} \frac{\sin(x^2) - x}{x^\alpha - \sin^2(x)} = \lim_{x \to 0^+} \frac{-x}{-x^2} = +\infty$$

3. (7 punti) Si dica se converge il seguente integrale

$$\int_{2}^{+\infty} \frac{1 + \sin^2(x)}{1 + x^2} dx$$

Bozza soluzione

Notiamo che $1 + \sin^2(x) \le 2$ per $x \in [2, +\infty)$ e che $1/(1 + x^2) \le 1/x^2$. Quindi

$$\frac{1+\sin^2(x)}{1+x^2} \le \frac{2}{1+x^2} \le \frac{2}{x^2}.$$

Ma

$$\int_{2}^{+\infty} \frac{2}{x^{2}} dx = 2 \int_{2}^{+\infty} \frac{1}{x^{2}} dx = -2 \lim_{t \to +\infty} \frac{1}{x} \Big|_{2}^{t} = -2 \lim_{t \to +\infty} \left((1/t) - (1/2) \right) = 1.$$

Quindi essendo applicabile il criterio del confronto, l'integranda converge (numericamente si vede che l'integrale definito vale circa 0.67...).

4. (7 punti)

Determinare il valore dei parametri a, b reali affinchè la funzione seguente:

$$f(x) = \begin{cases} \sin x + \cos x - e^x & x > 0, \\ 2ae^x - 3b\cos(x) & x \le 0 \end{cases}$$

- (a) sia continua in \mathbb{R} ;
- (b) (facoltativo) sia derivabile in \mathbb{R} .

Bozza soluzione

Osserviamo che la funzione f è derivabile (e quindi continua!) in tutti i punti di $\mathbb{R}\setminus\{0\}$, essendo tali

$$\sin x + \cos x - e^x$$

in $\mathbb{R}^- \setminus \{0\}$ e

$$2ae^x - 3b\cos(x)$$

in $\mathbb{R}^+ \setminus \{0\}$.

Per quanto riguarda $x^* = 0$ osserviamo che $f(0) = 2a \cdot e^0 - 3b \cdot \cos(0) = 2a - 3b$ e che

- $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \sin x + \cos x e^x = 0;$
- $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} 2ae^x 3b\cos(x) = 2a 3b;$

e che quindi la funzione risulta continua quando 2a - 3b = 0. Inoltre poichè

- $D(\sin x + \cos x e^x) = \cos x \sin x e^x$;
- $D(2ae^x 3b\cos(x) = 2ae^x + 3b\sin(x);$

abbiamo

- $\lim_{x\to 0^-} f'(x) = \lim_{x\to 0^-} \cos x \sin x e^x = 0;$
- $\lim_{x\to 0^+} f'(x) = \lim_{x\to 0^+} 2ae^x + 3b\sin(x) = 2a;$

e quindi perchè sia derivabile in 0, oltre che a 2a - 3b = 0, serve che 2a = 0, cioè a = 0 e dovendo essere 2a - 3b = 0, pure b = 0.

Nota

Ci possono essere esercizi su

- 1) Studi di funzione.
- 2) Limiti e continuità di funzioni.
- 3) Limiti di successioni.
- 4) Serie.
- 5) Integrali indefiniti, definiti e generalizzati.
- 6) Ricerca di max e min liberi e vincolati per funzioni di due variabili.