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Abstract. In this paper we consider numerical integration over the sphere by radial basis
functions (RBF). After a brief introduction on RBF and spherical radial basis functions (SRBF),
we show how to compute integrals of functions whose values are known at scattered data points.
Numerical examples are given.
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1. Introduction. Radial Basis Functions (RBF) and Spherical Radial Basis
Functions (SRBF) are well-established tools for approximating functions whose values
are known on scattered data, respectively on Rn and the unit sphere Sn−1 = {x ∈
Rn : |x| = 1} ⊂ Rn (the so-called unit n − 1-sphere). Given the values of a function
f at N centers X := {xi}i=1,...,N ⊆ Ω ⊆ Rn, one has to find scalars {λi}i=1,...,N such
that

f(x) ≈ sf,X(x) :=
N∑

i=1

λiφ(dist(x,xi)) (1.1)

where φ : R+ → R is the given RBF/SRBF and dist is the Euclidean or the geodesic
distance [4], [32] respectively. The function sf,X can be obtained, for instance, by
interpolation of f at the centers X, independently of their geometry. Such a property
is particularly appealing since it is not necessarily possible in the case of polynomial
interpolation, where the distribution of the centers may imply the singularity of the
corresponding Vandermonde matrix. By the Curtis-Mairhuber theorem [32, Theorem
2.3] there is no N−dimensional space of continuous functions on the domain Ω ⊆ Rn

(having an interior point) that contains a unique interpolant for every set of centers
X consisting of N ≥ 2 data points. Consequently it is natural to choose a family of
interpolants that depends on X, as in the case of RBF [7], [32].

A wide variety of RBF/SRBF have been proposed. Hardy introduced in 1971 the
Multiquadrics (denoted by MQ) and Inverse Multiquadrics (IMQ) in conjunction with
studies on topography, while Duchon in 1976-78 considered the Thin Plate Splines
(TPS) and the Polyharmonic Plate Splines (see [32, §8.6]).

The interest in RBF has increased during the last two decades, especially after
the work in 1982 by Franke on scattered data interpolation methods [10]. He showed
that interpolation by multiquadrics and thin plate splines led to very good results,
conjecturing also that the interpolation matrix that arises in the use of multiquadrics
is invertible. This result was proved in 1986 by Micchelli [20] who linked this problem
to the work of Schoenberg on positive definite functions [32, Theorem 7.13]. In [20]
the analysis covers a wider class of RBF, including the Thin Plate Splines and the
Gaussians (denoted by G). After these pioneering results, work blossomed in sev-
eral directions: the discovery of RBF having compact support, fast methods for the
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computation of RBF interpolants with thousand points (in spite of the high condi-
tion number of the interpolation matrix), error estimates and the properties of the
interpolation matrix and choice of a good scaling parameter.

Of course it is impossible to mention in detail all the research that has been done
on this subject, and from this point of view we suggest to the interested reader the
monographs [4], [5], [7], [32].

The problem of interpolation and approximation on scattered data of Sn by SRBF
has also been considered. Starting from the concept of positive definiteness on the
sphere (also introduced by Schoenberg [32, Corollary 17.9]), several authors have
studied the requirements under which the interpolation matrix is nonsingular, inde-
pendently of the distribution of the centers X ⊂ Sn (see [6] and references therein).
For examples of effective SRBF, see [1], [8], [11], [13].

If the values of the function f are known on scattered data over a square, some
results concerning numerical cubature by RBF have been obtained in [30]. On the
other hand, there has been an increasing interest in integrating functions on the
unit sphere by cubature rules on special sets of points ([23], [28], [29]) as well as on
scattered data on Sn, caps or more generally compact subsets of caps (see [18], [19]
also for various applications over Sn). The latter techniques allow for the construction
of rules with positive weights and a certain polynomial degree of precision depending
on the distribution of the points. In the framework of Galerkin methods, integrals of
convolution type on Sn have been studied in [11], [16] and [22].

The purpose of this paper is to show how the more often used RBF and SRBF
are able to approximate integrals of the form

If =
∫

S2
f(x)dµ(x) (1.2)

where S2 ⊂ R3 is the unit 2-sphere, dµ(x) denotes the surface measure on S2 and
f : S2 → R a function whose properties will be specified later. We will show that once
an RBF/SRBF approximation is at hand, the numerical cubature can be achieved
easily and that the rule is optimal in the sense of Golomb-Weinberger [32, Section 13].
In section 6 numerical experiments illustrate the performance of the method and the
size of the weights of the cubature rule.

2. Numerical integration on the sphere by RBF and SRBF. Let X =
{x1, . . . ,xN} ⊆ S2 be a set of N centers and let f : S2 → R be a continuous function
defined on S2. Suppose that you know an approximation sf,X which is a linear
combination of radial basis functions and low order polynomials

sf,X(x) :=
N∑

i=1

λiφ(‖x− xi‖2/σ) +
M−1∑

k=0

2k∑

l=0

γk,lPk,l(x), x ∈ S2. (2.1)

Here σ > 0 is the scaling parameter [25], φ is a conditionally positive RBF of order
M in R3 [32], and

Pk,l(x) = ξk1ηk2ζk3 , (2.2)

where x = (ξ, η, ζ)T and k = k1 + k2 + k3, k1, k2, k3 ≥ 0, so Pk,l is a homogenous
polynomial of degree k in three variables. For some RBF, M = 0 so there is no low
order polynomial component. Typically the function sf,X is obtained by interpolating
f on the centers but other strategies may be used (for instance least squares methods
[5], [8]) .
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We will restrict our attention to S2 to simplify the analysis but it is not difficult
to extend the results to the n−dimensional case.

If for every i = 1, . . . , N , the integral
∫

S2
φ(‖x− xi‖2/σ)dµ(x) (2.3)

exists, then integrating (2.1) over S2 gives

∫

S2
f(x)dµ(x) ≈

N∑

i=1

λi

∫

S2
φ(‖x− xi‖2/σ)dµ(x)

+
M−1∑

k=0

2k∑

l=0

γk,l

∫

S2
Pk,l(x)dµ(x). (2.4)

Every rotation R : S2 → S2 is an isometry, that is

φ(‖Rx−Rxi‖2/σ) = φ(‖x− xi‖2/σ). (2.5)

Consider the rotation R that maps the center xi to the North Pole P = (0, 0, 1). As
det(JacR−1) = 1, the substitution x′ = Rx gives

∫

S2
φ(‖x− xi‖2/σ)dµ(x)

=
∫

S2
φ(‖Rx−Rxi‖2/σ)dµ(x) (2.6)

=
∫

S2
φ(‖x′ −P‖2/σ) det(JacR−1) dµ(x′)

=
∫

S2
φ(‖x′ −P‖2/σ) dµ(x′). (2.7)

As this holds for every center {xi}i=1,...,N , (2.4) gives

∫

S2
f(x)dµ(x) ≈

(∫

S2
φ(‖x−P‖2/σ)dµ(x)

)
+

N∑

i=1

λi +
M−1∑

k=0

2k∑

l=0

γk,l

∫

S2
Pk,l(x)dµ(x). (2.8)

The first integral on the right side can be easily evaluated for most functions φ. A
point on the unit sphere S2 having cartesian coordinates (ξ, η, ζ) can also be described
by spherical coordinates (ψ, θ) with

ξ = cosψ sin θ,
η = sinψ sin θ,
ζ = cos θ.

(2.9)

Here ψ is the azimuthal angle in the xy plane measured from the positive part of the
x axis with 0 ≤ ψ < 2π (the longitude) and θ the polar angle from the z axis with
0 ≤ θ ≤ π (the colatitude).

3



RBF φ(r)
∫
φ(
√
s) ds

MQ (1 + r2)
1
2 2

3
(1 + s)

3
2

IMQ (1 + r2)−
1
2 2 (1 + s)

1
2

G exp(−r2) − exp(−s)

TPS r2 log r 1
4
s2 log s− 1

8
s2

Buhm. C2 r̃4 log r̃2 − 7
2
r̃4 + 16

3
r̃3 − 2r̃2 + 1

6
1
3
s̃3 log s̃− 23

18
s̃3 + 32

15
s̃

5
2 − s̃2 + 1

6
s̃

Wend. C0 (1− r)2+ − 4
3

s̃3/2 + 1
2

s̃2 + s̃

Wend. C2 (1− r)4+(4r + 1) 8
7

s̃
7
2 − 5s̃3 + 8s̃

5
2 − 5s̃2 + s̃

Wend. C4 (1− r)6+(35r2 + 18r + 3) − 128
3

s̃
9
2 + 7s̃5 + 105s̃4−

−128s̃
7
2 + 70s̃3 − 14s̃2 + 3s̃

Table 2.1
Indefinite integrals of some RBF.

Using this change of coordinates, remembering that the determinant of the Ja-
cobian matrix of the transformation is simply sin θ and setting s := 2 (1− cos θ)/σ2,
using

‖x−P‖22 = 2 (1− cos θ), (2.10)

we get

Iφ,σ =
∫

S2
φ

(‖x−P‖2/σ
)
dµ(x)

=
∫ 2π

0

∫ π

0

φ

(√
2 (1− cos θ)

σ2

)
sin θ dθ dψ

= πσ2

∫ 4/σ2

0

φ
(√
s
)
ds. (2.11)

For some RBF, an explicit expression for the indefinite integral
∫
φ (
√
s) ds are

provided in Table I. For RBF with (compact) support [0, 1] we used the notation
r̃ = min{r, 1}, s̃ = min{s, 1} and s+ := max(s, 0). In particular for the Wendland
[31] and Buhmann [3] RBF the upper limit of integration in the last integral in (2.11)
becomes min{4/σ2, 1}.

The approximation (2.8) of the integral also requires

IM =
M−1∑

k=0

2k∑

l=0

γk,l

∫

S2
Pk,l(x) dµ(x). (2.12)
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To this end, we observe that
∫

S2
Pk,l(x)dµ(x)

=
∫

S2
ξk1ηk2ζk3dµ(x)

=
∫ 2π

0

∫ π

0

(cosψ sin θ)k1 (sinψ sin θ)k2 (cos θ)k3 dθ dψ

=
∫ 2π

0

∫ π

0

cosk1ψ sink1+k2θ sink2ψ cosk3θ dθ dψ

=
(∫ 2π

0

cosk1ψ sink2ψ dψ

) (∫ π

0

cosk3θ sink1+k2θ dθ

)
. (2.13)

The Beta function β satisfies
∫ π/2

0

sinm1 θ cosm2 θ dθ =
1
2
β

(
m1 + 1

2
,
m2 + 1

2

)
, (2.14)

and β(t1, t2) = β(t2, t1), so
∫ π

0

sinm1 θ cosm2 θ dθ

=
∫ π/2

0

sinm1 θ cosm2 θ dθ +
∫ π

π/2

sinm1 θ cosm2 θ dθ

=
∫ π/2

0

sinm1 θ cosm2 θ dθ + (−1)m1

∫ π/2

0

cosm1 θ sinm2 θ dθ

=
1
2
β

(
m1 + 1

2
,
m2 + 1

2

)
+

(−1)m1

2
β

(
m2 + 1

2
,
m1 + 1

2

)

=
(

1 + (−1)m1

2

)
β

(
m1 + 1

2
,
m2 + 1

2

)
. (2.15)

Similarly if m1 and m2 are both even, then
∫ 2π

0

sinm1 θ cosm2 θ dθ = 2β
(
m1 + 1

2
,
m2 + 1

2

)
, (2.16)

while
∫ 2π

0
sinm1 θ cosm2 θ dθ = 0 in all the other cases. Thus, from (2.13), (2.15) and

(2.16), one can easily compute
∫
S2 Pk,l(x)dµ(x).

The only RBF in Table 2.1 for which M > 0 are the Multiquadrics (MQ) and
the Thin Plate Splines (TPS), which are conditionally positive of order 1 and 2 re-
spectively. In these cases, when γk,l are known, the computation of IM is particularly
easy. For the Multiquadrics it is simply required to integrate the constant 1 on S2,
hence

∫

S2
P0,0(x)dµ(x) = 4π. (2.17)

In the case of the Thin Plate Splines
∫

S2
ξ dµ(x) =

∫

S2
η dµ(x) =

∫

S2
ζ dµ(x) = 0, (2.18)
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SRBF Analytic Expression φ(α)

Sph. Multiq.
√

1 + h2 − 2hc

Sph. Multiq. II (1− h2) (1 + h2 − 2hc)3/2

Sph. Rec. Multiq. 1/
√

1 + h2 − 2hc

Abel-Poisson Spline (1− h2)/(1 + h2 − 2hc)3/2

Log. Spline 1
h

log(1 + 2h/(1− h +
√

1 + h2 − 2hc))

Sph. Spline I 1− a + b log((a + b)/b)

Sph. Spline II 1
2
(4− 3ab− 3c + ((4− 3c)c− 1) log b−
−b(3c− 1) log(a + b))

Table 2.2
SRBF, with a =

√
2− 2c, b = 1− c, c = cos(α), α ∈ [0, π] and h ∈ (0, 1).

which implies that
∫

S2
P0,0(x)dµ(x) = 4π,

∫

S2
P1,l(x)dµ(x) = 0, l = 1, 2, 3. (2.19)

For the integration by SRBF, suppose that

f(x) ≈
N∑

i=1

λiφ(d(x,xi)) +
M−1∑

k=0

2k∑

l=0

γk,lYk,l(x). (2.20)

where Yk,l, l = 0, . . . , 2k are spherical harmonics of degree k and d(x,y) = arccos(xT y)
is the geodesic distance (see [23], [29]).

As d(Rx,Ry) = d(x,y) for any rotation R : S2 → S2 then for any center xi ∈ X

Iφ,h =
∫

S2
φ(d(x,xi))dµ(x) =

∫

S2
φ( d(x,P) ) dµ(x). (2.21)

Using spherical coordinates θ, ψ from (2.9) with d(x,y) = arccos(xT y) (so d(x, P̄) =
θ) we have

Iφ,h =
∫ 2π

0

∫ π

0

φ (θ) sin θ dθ dψ = 2π
∫ π

0

φ (θ) sin θ dθ. (2.22)

Some of the more common SRBF are listed in Table 2.2, in which the argument
α ∈ [0, π] is the geodesic distance and h ∈ (0, 1) is a spherical localization parame-
ter. For more information about the Spherical Multiquadrics and Spherical Inverse
Multiquadric see [8], for Spherical Multiquadrics II [1], while for Spherical Spline I,
Spherical Spline II, Poisson Spline and Logarithmic Spline consider [1], [11] and [13].
Note that in [8] the argument of the SRBF is the geodesic distance d(x,y) while in
[13] it is a function of c = xT y = cos d(x,y).

As in the case of the RBF, we show in Table III that for most of the SRBF the
indefinite integral

∫
φ (θ) sin θ dθ (2.23)
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SRBF Indefinite integrals
∫
φ(θ) sin θ dθ

Sph. Multiq. (1 + h2 − 2hc)3/2/(3h)

Sph. Multiq. II (1− h2)(1 + h2 − 2hc)5/2/(5h)

Sph. Rec. Multiq.
√

1 + h2 − 2hc/h

Abel-Poisson Spline −(1− h2)/(h
√

1 + h2 − 2hc)

Log. Spline Long Expression

Sph. Spline I see (2.24)
Sph. Spline II see (2.25)

Table 2.3
Indefinite integrals of SRBF, with a =

√
2− 2c, b = 1− c, c = cos(θ), θ ∈ [0, π] and h ∈ (0, 1).

is known explicitly. For the Log Spline and Spherical Spline I and II a short espression
is not available. According to Maple and putting c = cos(θ), a =

√
2− 2c, b = 1− c,

we get in the case of Spherical Spline I

ln
(

1 +
2
a

)
Iφ,1 =

(c2 − 2c− 3)
2

ln
(
a+ 2
a

)
+

(ac− c+ a− 1)
2

− ln(2− 2c) + 2 ln 2

(2.24)
while for Spherical Spline II

Iφ,1 = −c+
2a
3

+
5ac
6

+
(−ac2 + c2 + c ln(b) + c3 ln(b))

2
− c2 ln(b)− 3

4

− (c− 2c2 + c3) ln (a+ 1− c)
2

− 2 ln (a+ 2) . (2.25)

To finish our analysis we simply observe that the integral of the spherical harmon-
ics Yk,l over S2, is always equal to 0, except for the case k = l = 0 when, depending
on the normalization of Yk,l, it is 4π.

Summarizing, numerical integration based on approximation/interpolation by a
linear combination of RBF/SRBF is particularly inexpensive when the coefficients
{λi}, {γk,l} in (2.1) or (2.20) are known. In practice, one has to compute only one
definite integral where the indefinite integral is known explicitly.

3. Cubature and optimal recovery. The results in this section are an ap-
plication to integration of a more general theory on linear functionals developed by
Golomb-Weinberger [32, Section 13], in the framework of optimal recovery in Hilbert
spaces. It is required that the space is endowed with a reproducing kernel, a tool that
is well-known to researchers in approximation theory from 1950 [32, Section 10].

Suppose that H is a real Hilbert space of functions f : Ω → R, where Ω is a
region containing at least one point. Furthermore let (·, ·)H and ‖f‖H = (f, f)1/2

H
be respectively the inner product and the corresponding norm in H. A function
KH : Ω× Ω → R is called a reproducing kernel for H if

1. KH(·,x) ∈ H for all x ∈ Ω;
2. f(x) = (f,KH(·,x))H for all f ∈ H and all x ∈ Ω.

Such a Hilbert space H is often referred to by the acronym RKHS. Among the prop-
erties of reproducing kernels we mention the following

1. KH(x,y) = (KH(·,y),KH(·,y))H for all x ∈ Ω;
2. KH(x,y) = KH(y,x) for x, y ∈ Ω;
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3. If f, fn ∈ H, n ∈ N are given such that fn converges to f in the Hilbert space
norm then fn also converges pointwise to f .

It is not difficult to show that every RKHS has exactly one reproducing kernel. Let
us consider now the linear functional

I : f →
∫

Ω

f(x) dµ(x), f ∈ H (3.1)

where µ(x) is a measure on Ω. It is easy to prove that if
∫

Ω

√
KH(x,x) dµ(x) < +∞, (3.2)

then the functional I is also bounded because
∣∣∣∣
∫

Ω

f(x) dµ(x)
∣∣∣∣ =

∣∣∣∣
∫

Ω

(f,KH(·,x))H dµ(x)
∣∣∣∣

≤ ‖f‖H
∫

Ω

‖KH(·,x)‖H dµ(x)

≤ ‖f‖H
∫

Ω

√
(KH(·,x),KH(·,x))H dµ(x)

= ‖f‖H
∫

Ω

√
KH(x,x) dµ(x). (3.3)

By the Riesz theorem [32], there is a unique vI ∈ H such that

If = (f, vI)H, for all f ∈ H. (3.4)

As KH(·,x) ∈ H,

IKH(·,x) =
∫

Ω

KH(x′,x)dµ(x′) = (KH(·,x), vI)H = vI(x), (3.5)

gives

vI =
∫

Ω

KH(·,x)dµ(x). (3.6)

Given a fixed set of nodes X = {xi}i=1,...,N ⊂ Ω, if the N by N matrix A defined
by Ai,j = KH(xi,xj), i, j = 1, . . . , N is non singular, then there are N weights
{wi,N}i=1,...,N (uniquely determined) such that

∫

Ω

KH(x,xj) dµ(x) =
N∑

i=1

wi,NKH(xi,xj), j = 1, . . . , N. (3.7)

Note that by (3.7), the function

s
(int)
I,X (x) :=

N∑

i=1

wi,NKH(xi,x) (3.8)

is the interpolant of the representer vI on the set of nodes X.
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At this point, if V := span{KH(xi, ·)} then one can define the cubature rule

Q
(int)
V f :=

N∑

i=1

wi,Nf(xi) = (f, s(int)
I,X )H (3.9)

which can be interpreted as approximating (f, vI)H by (f, s(int)
I,X )H.

Observe that Q(int)
V f :=

∑N
i=1 wi,Nf(xi) is meaningless when f ∈ L2(Ω), but

L2(Ω) is not a RKHS so what has been described above cannot be applied. In general,
H is a RKHS if and only if the point evaluation functionals are continuous, i.e. δx ∈ H∗
for all x ∈ Ω, where H∗ is the dual space of H. This property suggests why (3.9)
makes sense when H is a RKHS.
The rule Q(int)

V is exact on V , as for f =
∑N

i=1 γiKH(xi, ·)
∫

Ω

f(x) dµ(x) =
∫

Ω

N∑

i=1

γiKH(xi,x) dµ(x)

=
N∑

i=1

γi

∫

Ω

KH(xi,x) dµ(x)

=
N∑

i=1

γi

N∑

j=1

wj,NKH(xi,xj)

=
N∑

j=1

wj,N




N∑

j=1

γiKH(xi,xj)




=
N∑

i=1

wi,Nf(xi). (3.10)

Notice that in (3.10) the weights {wi,N} are independent of the integrand f as they
were obtained by interpolating the representer vI on the set of nodes X.

Another approach consists in approximating If via the orthogonal projection PV

onto V = span{KH(xi, ·)} with respect to the inner product (·, ·)H of the RKHS H.
If vI is the representer previously defined, then from

(PV f, g)H = (f, PV g)H for all f, g ∈ H (3.11)

we can define another quadrature rule Q(proj)
V by

Q
(proj)
V f :=

∫

Ω

(PV f)(x) dµ(x)H = (PV f, vI)H = (PV vI , f)H. (3.12)

Maybe a little surprisingly, the quadrature rule Q(int)
V coincides with Q

(proj)
V when

applied to functions f ∈ H. To this purpose, we first notice that by the properties of
PV

Q
(proj)
V f = (f, PV vI)H = (PV f, vI)H, f ∈ H, (3.13)

Q
(int)
V f = (f, s(int)

I )H = (PV f, s
(int)
I )H, f ∈ H. (3.14)
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Thus Q(proj)
V f = Q

(int)
V f on H, if and only if they coincide on V , i.e.

(KH(xi, ·), vI) = (KH(xi, ·), s(int)
I ), i = 1, . . . , N. (3.15)

But (3.15) holds since, vI is the representer of I on H and Q(int) is exact on V giving

(KH(xi, ·), vI) =
∫

Ω

KH(xi, ·) dµ(x) = (KH(xi, ·), s(int)
I ), i = 1, . . . , N. (3.16)

4. An abstract setting. Denoting by H∗ the dual space of H, a cubature rule

Qwf :=
N∑

i=1

wi,Nf(xi,N ) (4.1)

with weights w = {wi,N} is said optimal in the RKHS H if it minimizes the worst
case error

EH(Qw) :=

∥∥∥∥∥I −
N∑

i=1

wi,Nδxj,N

∥∥∥∥∥
H∗

(4.2)

over all the rules with nodes {xi,N}. From (3.6) vI =
∫
Ω
KH(·,x)dµ(x) is the Riesz

representer, so we get as in [12]

EH(Qw) = sup
f∈H,‖f‖H=1

∣∣∣∣∣
∫

Ω

f(x)dµ(x)−
N∑

i=1

wi,Nf(xi,N )

∣∣∣∣∣

= sup
f∈H,‖f‖H=1

∣∣∣∣∣

(
f,

∫

Ω

KH(·,x)dµ(x)−
N∑

i=1

wi,NKH(·,xi,N )

)

H

∣∣∣∣∣

=

∥∥∥∥∥
∫

Ω

KH(·,x)dµ(x)−
N∑

i=1

wi,NKH(·,xi,N )

∥∥∥∥∥
H

=

∥∥∥∥∥vI −
N∑

i=1

wi,NKH(·,xi,N )

∥∥∥∥∥
H
. (4.3)

This implies that the minimum of Q(opt)
V is attained by

Q
(opt)
V = Q

(proj)
V = Q

(int)
V . (4.4)

It is interesting at this point to see some examples of RKHS in which optimal
recovery can be applied.

It is well known that if ϕ : Ω × Ω → R is a symmetric (completely) positive
definite kernel, then its associated native space KH = Nϕ(Ω) is a Hilbert space with
reproducing kernel ϕ (see, e.g. [32, p. 138]). By (3.7), we have that for a fixed set of
nodes X (that are also centers of the radial basis function), the weights {wi,N} such
that

∫

Ω

ϕ(x,xj) dµ(x) =
N∑

i=1

wi,N ϕ(xi,xj), j = 1, . . . , N. (4.5)

10



This provides the cubature rule

Q
(int)
V f :=

N∑

i=1

wi,Nf(xi) (4.6)

that is optimal with respect to the inner product of the RKHS Nϕ(Ω). Notice that
by (4.5) Q(int)

V is the rule of our numerical experiments since

N∑

i=1

wi,Nf(xi) =
N∑

i=1

wi,N

N∑

j=1

λjϕ(xi,xj)

=
N∑

j=1

λj

N∑

i=1

wi,Nϕ(xi,xj) =
N∑

j=1

λj

∫

Ω

ϕ(x,xj) dµ(x).

The case of conditionally positive definite kernels is more complicated, but again
it is possible to show that their native spaces Nϕ(Ω) are RKHS with respect to a
known inner product dependent on ϕ (see, e.g. [32], p.146).

For a detailed error analysis see [30] where upper bounds of the cubature error
have been achieved in terms of mesh-norm and separation distance.

5. Numerical implementation. The results this section are probably known
to experts in RBF, but in our opinion they are still useful for a general audience. In
our numerical implementation, the coefficients {λi}, {γk,l} have been computed by
interpolating the values {fi} at the centers {xi}i=1,...,N ⊂ Ω := Rn. In the case of
conditionally positive RBF of degree M one has to solve the linear system

N∑

i=1

λiφ(‖xj − xi‖2/σ) +
M−1∑

k=0

2k∑

l=0

γk,lPk,l(xj) = f(xj), j = 1, . . . , N (5.1)

where xj ∈ S2, j = 1, . . . , N , plus the additional conditions

N∑

i=1

λiPk,l(xi) = 0, k = 0, . . . ,M − 1, l = 0, . . . , 2k. (5.2)

The linear system defined by (5.1), (5.2), can be rewritten as
[

A Q
QT 0

] [
λ
γ

]
=

[
f
0

]
(5.3)

where λ = (λ1, . . . , λN )T , γ = (γ0,0, γ1,0, γ1,1, γ1,2, . . . , γM−1,2(M−1))T

Ai,j = φ(‖xi − xj‖2/σ), i, j = 1, . . . , N (5.4)
Qi,j = Pk,l(xi), i = 1, . . . , N, k = 0, . . . ,M, l = 0, . . . , 2k, j = k2 + l + 1 (5.5)

and solved by an appropriate numerical method [5].
The case of the SRBF is similar, with

Ai,j = φ(d(xi,xj)), i, j = 1, . . . , N (5.6)
Qi,j = Yk,l(xi), i = 1, . . . , N, j = k2 + l + 1. (5.7)

11



where d(x,y) is the geodesic distance and Yk,l, k = 0, . . . ,M − 1, l = 0, . . . , 2k the
spherical harmonics.

By the uncertainty relation [26] the attainable error and the condition number
κ(V ) of the matrix

V =
[

A Q
QT 0

]
(5.8)

cannot both be kept small.
As result, a large number of centres N in (2.1) can lead to a better approximation

but also to a very ill-conditioned interpolation matrix. To mitigate this problem
several techniques have been proposed [2], [5], [32, p. 253]. One of the more common
approaches is due to Floater and Iske [9], which is used here for S2 although more
general domains Ω ⊆ Rn can be treated. The condition number of V depends on the
separation distance (including the factor 2 means this is the packing radius on the
sphere)

ρX =
1
2

min
xi∈X

min
xj∈X

xj 6=xi

‖xi − xj‖2, (5.9)

while the available error estimates (see [5], [26], [32]) depend on the mesh norm (in
some papers also called fill-in distance or the covering radius on the sphere)

hX,Ω = sup
x∈Ω

min
i=1,...,N

‖x− xi‖2. (5.10)

The ideal situation is to have a large separation distance ρX and a small mesh
norm hX,Ω. A common criterion is the mesh ratio

qX,Ω :=
hX,Ω

ρX
≥ 1, (5.11)

which one wants to keep as small as possible.
The given set of centers X = {xi} is often decomposed into a hierarchy of nested

subsets

X1 ⊂ X2 ⊂ . . . XL−1 ⊂ XL = X (5.12)

in which, roughly speaking, the ratio qX`,Ω is “small” and at each level the inter-
polation problem has a “small” condition number. To reach this target, in [9], [14]
different thinning algorithms have been proposed and analysed in connection to a
variant of the so called k-center problem.

Once the subsets {X`}`=1,...,L are at hand, we can interpolate the data f |X`
=

{fi,`} relative to the centers X` = {xi,`} by the Multilevel Scheme described in [9],
[14] and analysed in [21]. To be more precise, starting with ` = 1, at the `-th level
one matches the error function

f − (s1 + . . .+ s`−1) (5.13)

by a RBF (or SRBF) s`, as described respectively in (2.1) and (2.20).
12



Denoting by g|X`
the restriction of the function g : Ω → R to the set X` ⊂ Ω we

can rewrite the sequence of interpolation problems (5.13) as

s1|X1 = f |X1

s2|X2 = (f − s1)|X2

. . . (5.14)

sL−1|XL−1 = (f −
L−2∑

k=1

sk)|XL−1

sL|XL
= (f −

L−1∑

k=1

sk)|XL
.

As X = XL it follows that that

(s1 + . . .+ sL)|X = f |X (5.15)

i.e. sf,X = s1 + . . .+ sL. Note that in general at level ` of the scheme (5.14) we can
choose the RBF scaling parameter σ` (or the spherical localization paramater h) as
well as which RBF/SRBF to use. For a wide class of domains Ω, Iske [15] suggests
using at the first level globally supported Thin Plates Splines, and in the next levels
compactly supported RBF with scaling parameters σ` monotonically decreasing. A
procedure for computing a good σ` is also given.

The multilevel interpolation method (5.14) can be easily used for our numerical
integration purposes. This is a consequence of the fact that from (5.15) we can assume
that

f ≈ sX1 + . . .+ sXL (5.16)

hence in the domain Ω ⊂ Rn

∫

Ω

f(x) dx ≈
∫

Ω

s1(x) dx + . . .+
∫

Ω

sL(x) dx. (5.17)

When Ω = S2, one can of course use the technique described in the previous section
for computing the L terms on the right hand side of (5.17).

In our Matlab program, we have implemented these thinning algorithms and
multilevel scheme to provide a good approximation of the function f in the centers
X. The set X is a portion of the data from the orbit of a MAGSAT/NASA satellite
and decomposed into subsets X` as established respectively by the separation distance
based thinning algorithm [9]. As alternative one can use the progressive algorithm
proposed and analysed in [14].

A sketch of our code is hence the following:

1. Set the value of the integral I equal to 0;
2. Compute by thinning a hierarchical decomposition {X`}`=1,...,L of the initial

set of centers X;
3. At level `, once it has been decided the RBF/SRBF to use (and its para-

meters), compute the function s` by solving the linear system required by
(5.14);

4. Compute I` =
∫
S2 s` and put I = I + I`;

5. Iterate steps 3. and 4. of this algorithm until a stopping criterion is satisfied
or ` = L.

13



First example: the Franke function f1

RBF σ e2 e∞ eI κ(V ) ‖V −1‖2
MQ 0.200 6-E04 1-E02 1-E06 2+E07 2+E07
G 0.250 7-E04 9-E03 7-E05 8+E07 2+E07
IMQ 0.250 8-E04 1-E02 2-E05 5+E05 2+E07
Wend.C2 1.350 7-E04 1-E02 8-E06 6+E04 2+E07
TPS 1.000 7-E04 1-E02 9-E04 3+E05 2+E07

SRBF h e2 e∞ eI κ(V ) ‖V −1‖2
Abel-Poisson spline 0.675 8-E04 9-E03 5-E05 1+E06 1+E03
Log. spline 0.825 7-E04 1-E02 5-E06 2+E06 2+E03
Sph. Rec. Multiq. 0.775 6-E04 9-E03 2-E05 1+E06 5+E02

Table 6.1
Numerical results for the Franke function f1.

6. Numerical examples. We now show the behaviour of these cubature rules
when applied to two well-known test functions restricted to the unit sphere S2. Before
passing to the examples, we briefly describe some technical details.

The initial set of centers XT consists of 10000 points obtained by thinning a
selected portion of MAGSAT data XM [17]. In practice, we use a subset X containing
only the first 1000 points of XT that already provides a good compromise between
separation distance ρX and mesh norm hX,S2 . In our specific case hX,S2 ≈ 0.11,
ρX ≈ 0.037 and qX,S2 = hX,S2/ρX ≈ 3.22. We perform our cubature tests on two
Franke functions [10] adapted by Renka to the three dimensional case [24], namely

f1(x, y, z) = 0.75 exp
(−(9x− 2)2/4− (9y − 2)2/4− (9z − 2)2/4

)

+ 0.75 exp
(−(9x+ 1)2/49− (9y + 1)/10− (9z + 1)/10

)

+ 0.5 exp
(−(9x− 7)2/4− (9y − 3)2/4− (9z − 5)2/4

)

− 0.2 exp
(−(9x− 4)2 − (9y − 7)2 − (9z − 5)2

)
(6.1)

and

f2(x, y, z) = (1 + tanh (−9x− 9y + 9z)) /9. (6.2)

The value of If1 computed by Maple to 20 significant digits is

If1 =
∫

S2
f1(x) dµ(x) ≈ 6.6961822200736179523, (6.3)

while

If2 =
∫

S2
f2(x) dµ(x) =

4π
9
. (6.4)

We estimate the interpolation errors as follows. First we generate 3000 random points
XR with a uniform probability distribution and evaluate the RBF/SRBF interpolant
sX as well as the test functions f1, f2, on XR and then we compute the relative errors

e2(f) :=
‖sX |XR − f |XR‖2

‖f |XR‖2
, e∞(f) :=

‖sX |XR − f |XR‖∞
‖f |XR‖∞

. (6.5)
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Second example: the Franke function f2

RBF σ e2 e∞ eI κ(V ) ‖V −1‖2
MQ 0.775 1-E01 2-E02 1-E04 2+E15 1+E12
G 0.225 2-E01 3-E02 8-E06 3+E10 2+E10
IMQ 0.925 2-E01 2-E02 9-E05 5+E15 4+E12
Wend.C2 1.600 9-E02 7-E03 5-E04 1+E05 2+E03
TPS 1.000 9-E02 9-E03 4-E04 3+E05 4+E02

SRBF h e2 e∞ eI κ(V ) ‖V −1‖2
Abel-Poisson spline 0.350 2-E02 2-E01 5-E05 5+E15 5+E12
Log. spline 0.450 2-E02 1-E02 2-E04 3+E15 3+E12
Sph. Rec. Multiq. 0.400 2-E02 2-E02 9-E05 5+E15 5+E12

Table 6.2
Numerical results for the Franke function f2.

The relative quadrature error is

eI(f) =
| ∫S2 f(x) dµ(x)−Q(int)f |

| ∫S2 f(x) dµ(x)| . (6.6)

where Q(int)f is one of the rules introduced in the previous sections. The 2−norm
condition number of the interpolation matrix V is denoted by κ(V ). Values of κ(V )
larger than one over the machine precision, that is larger than 1015 must be treated
with care.

In Tables 6.1 and 6.2, we consider only nearly optimal values of the scaling/lo-
calization parameters without showing what happens for general σ (or h). As is
well-known for interpolation by RBF [25], a bad choice of σ may produce poor nu-
merical results. For example, in the case of the function f1 and σ = 2, radial basis
functions MQ, G and IMQ provide results whose errors e2, e∞, eI are bigger than
10−1. Numerical experiments show that in general the TPS and the RBF with com-
pact support (e.g. Wendland and the Buhmann) are more robust, since they provide
good results even for non optimal σ (typically in parallel with not too high condition
numbers). Table 6.2 also reports the values of ‖V −1‖2, a fundamental parameter for
analysing the sensitivity to perturbations of the RBF/SRBF process (see [30]).

In Tables 6.3, we report the performance of the Multilevel scheme (5.14) when
it is used to approximate If2 by the strategy described in (5.17). To this purpose,
we consider interpolants s` (with ` = 1, . . . L) that are linear combinations of the
(possibly scaled) Wendland function φ(r) = (1−r)4+(4r+1). Furthermore, we take as
centers the first 200, 400, 600, 800 and 1000 points of the thinned set X, while for the
sparsity of the interpolation matrix V , we compute the percentage of nonzero entries.
In particular we illustrate the differences between the stationary case, in which the
ratio between the mesh-norm hX,S2 and scaling the parameter σ is constant (in our
tests we set σ = 4hX,S2), and the non-stationary case in which we have choosen σ = 1.

The numerical results show the main advantages of the multilevel scheme in the
stationary case not only for interpolation but also for cubature. With the exception
of the first level, the linear systems that arise in (5.3) are sparser and also have better
condition numbers, without affecting after these improvements the cubature error eI .

Finally, in Table 6.4 we give information about the cubature weights w. At this
15



Multilevel method and the Franke function f2

Points σ κ(V ) Sparsity eI

200 1 3+E02 25% 8-E03
400 1 1+E03 25% 3-E03
600 1 4+E03 25% 2-E03
800 1 8+E03 25% 1-E03
1000 1 1+E04 25% 6-E04

Points σ κ(V ) Sparsity eI

200 1.06 3+E02 28% 8-E03
400 0.70 2+E02 13% 3-E03
600 0.61 4+E02 9% 2-E03
800 0.53 3+E02 7% 1-E03
1000 0.43 4+E02 6% 5-E04

Table 6.3
Stationary and non-stationary multilevel method applied to f2.

stage we need to be careful, especially in the case of RBF/SRBF conditionally positive
of order M > 0. We will use the bold face to represent vectors. With an obvious
notation, the (possibly augmented) linear system (5.3) can be rewritten as

A(aug)c(aug) = f (aug). (6.7)

On the other hand, knowing the weights w and denoting by (·, ·)RN the scalar product
in RN , one can write

If ≈ (w, f)RN . (6.8)

Now we have to compute the weights w. If I(aug) is the vector

I(aug) =
(
Iφ,σeN

b

)
(6.9)

where eN = (1, . . . , 1) ∈ RN and b is the vector whose entries are the integrals of
the polynomials required by the conditionally positive RBF/SRBF, then for a certain
w(aug) ∈ RN+M2

we have

If ≈ (c(aug), I(aug))RN+M2 = (w(aug), f (aug))RN+M2 . (6.10)

Consequently, by (6.7) and the fact that (A(aug))−1 is symmetric, we get

(w(aug), f (aug))RN+M2 = (c(aug), I(aug))RN+M2

= ((A(aug))−1f (aug), I(aug))RN+M2

= (f (aug), (A(aug))−1I(aug))RN+M2 . (6.11)

Since (6.11) holds for any f (aug), we have

w(aug) = (A(aug))−1I(aug). (6.12)
16



Weights

RBF Min Max %
∑

(wi)+
∑

(wi)−
MQ −2-E02 5-E02 87% 13.5 −0.9
G −2-E02 5-E02 88% 13.3 −0.7
IMQ −3-E02 6-E02 86% 13.7 −1.1
Wend.C2 +1-E03 3-E02 100% 12.6 0
TPS +4-E03 3-E02 100% 12.6 0

SRBF Min Max %
∑

(wi)+
∑

(wi)−
Abel-Poisson spline −4-E02 7-E02 84% 13.9 −1.3
Log. spline −3-E02 5-E02 87% 13.5 −1.0
Sph. Rec. Multiq. −3-E02 6-E02 85% 13.8 −1.2

Table 6.4
Weights of the RBF/SRBF used in the numerical tests on the Franke function f2.

As the last M2 components of f (aug) are zero, we deduce that only the first N terms
of w(aug) are relevant for the cubature. Thus the vector w of cubature weights for use
in (6.8) is just the first N elements of the solution w(aug) to A(aug)w(aug) = I(aug).

The same results can alternatively be established working directly with the Riesz
representer vI of the linear functional I.

In Table 6.4, Min, Max are respectively the minimum and maximum weights,
% is the percentage of positive terms in the vector w,

∑
(wi)+ and

∑
(wi)− are

respectively the sum of positive and negative weights. One common stability criterion,∑
(wi)+ À −∑

(wi)−, is satisfied by all the RBF/SRBF. In particular the percentage
of positive weights is particularly high for the Wendland C2 and the Thin Plate
Splines.
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