
An algebraic cubature formula

on curvilinear polygons ∗

G. Santin, A. Sommariva1 and M. Vianello1

May 3, 2011

Abstract

We implement in Matlab a Gauss-like cubature formula on bivariate
domains whose boundary is a piecewise smooth Jordan curve (curvilin-
ear polygons). The key tools are Green’s integral formula, together with
the recent software package Chebfun to approximate the boundary curve
close to machine precision by piecewise Chebyshev interpolation. Sev-
eral tests are presented, including some comparisons of this new routine
ChebfunGauss with the recent SplineGauss that approximates the bound-
ary by splines.

Keywords: algebraic cubature, Chebfun, Green’s formula.

1 Introduction.

The problem of integrating numerically at high precision a function over a gen-
eral bidimensional domain whose boundary is a piecewise smooth Jordan curve
(curvilinear polygon), is not a trivial task. General purpose cubature packages
typically require that the domain be splitted by the user into simpler geometric
elements, and are written in Fortran or C (cf., e.g., the Cubpack package [6]).
Even worse is the situation with standard integrators like Matlab’s dblquad,
when applied trivially by multiplying with the characteristic function of the
domain, since in such a case an artificial discontinuity at the boundary is in-
troduced, which causes inefficiency and often unreliability at high precision. A
substantial improvement has been given by the recent Matlab program TwoD
by Shampine, which is much more reliable and efficient, but still requires that
the domain be splitted into generalized rectangles or sectors; cf. [13].

In some recent papers, a cubature formula over polygons, and more gen-
erally bivariate compact domains whose boundary can be well approximated
parametrically by splines, has been proposed (see [14, 15]). Such a formula

∑

λ

wλf(xλ, yλ) ≈ IΩ(f) =

∫∫

Ω

f(x, y) dx dy , Ω ⊂ R
2 (1)

∗Work supported by the research project “Interpolation and Extrapolation: new algorithms

and applications” of the University of Padova and by the GNCS-INdAM.
1Dept. of Pure and Applied Mathematics, University of Padova, Italy

e-mail: alvise, marcov@math.unipd.it

1

is in particular exact in P
2
2n−1 (the space of bivariate polynomials of degree at

most 2n− 1), stable (since
∑

λ |wλ| is bounded with n), the nodes and weights
being explicitly known in terms of the univariate Gauss-Legendre ones.

The key point is the Green’s integral formula (see, e.g., [1])

IΩ(f) =

∮

∂Ω

Ff (x, y) dy , Ff(x, y) =

∫

f(x, y) dx , f ∈ C(Ω) (2)

that suggests to approximate the x-primitive Ff via a suitable Gauss-Legendre
discretization and then integrate along the boundary, again by a Gauss-Legendre
rule.

In this paper we apply the same idea, using the recent software package
Chebfun by Trefethen and others [18], which works in the Matlab environ-
ment, to approximate the boundary curve close to machine precision by piece-
wise Chebyshev interpolation. What we obtain is intermediate between a cu-
bature algorithm and a cubature formula: indeed, the final result is an al-
gebraic cubature formula with a fixed degree of exactness, but a key step is
the adaptive approximation of the domain boundary. We compare the perfor-
mance of our formula with the standard Matlab integrator dblquad and the
routine SplineGauss [16] on several domains, showing that the new routine
ChebfunGauss can achieve a given accuracy with a much lower number of func-
tion evaluations. Moreover, it turns out to be competitive also with the adaptive
vectorized cubature code TwoD by Shampine [13].

2 Piecewise polynomial boundaries

In this section we briefly describe how to construct an algebraic cubature
formula using the Chebfun system. The theorem that follows adapts a result
obtained in [15] (cf. [12]). If the boundary of the compact domain Ω ⊂ R

2 is
defined parametrically by two continuous functions x, y : [a, b] → R (such that
x(a) = x(b), y(a) = y(b)), then Chebfun provides two (globally continuous)
piecewise polynomial interpolants x̃, ỹ such that the relative errors in infinite
norm between x and x̃, y and ỹ, are close to the machine precision eps.

Consequently, first we will construct a cubature rule based on the approxi-
mation of the boundary by a piecewise polynomial parametric curve, and then
analyze the cubature error w.r.t. the integral on the original domain. The first
step is made with the following

Theorem 1 Let K ⊂ R
2 be a compact domain (the closure of a bounded and

simply connected open set), whose boundary ∂K is a Jordan piecewise polyno-
mial parametric curve, S(t), t ∈ [t1, tL], given counterclockwise by a sequence
of polynomial parametric curves Si = (Si,1, Si,2), with Si,1 ∈ Pi1 , Si,2 ∈ Pi2

defined in the interval [ti, ti+1], and “breakpoints”

Vi = Si(ti) = (Si,1(ti), Si,2(ti)) , i = 1, . . . , L (3)

with Si(ti+1) = Si+1(ti+1), i = 1, . . . , L − 1, SL(tL+1) = S1(t1) (i.e., VL+1 =
V1). Furthermore, let R = [x1, x2]× [y1, y2] be the minimal rectangle containing
K, f ∈ C(R), ξ ∈ [x1, x2], {τs

k}k=1,...,s and {ωs
k}k=1,...,s the nodes and weights

of the Gauss-Legendre rule in [−1, 1] (having degree of exactness 2s− 1).

2

The cubature rule

I2n−1(f ; S) =
L
∑

i=1

n
∑

j=1

ni
∑

k=1

wijkf(xijk, yik) (4)

with

xijk =
Si,1(qi(τ

ni

k)) − ξ

2
τn
j +

Si,1(qi(τ
ni

k)) + ξ

2
, yik = Si,2(qi(τ

ni

k)) (5)

wijk = ωn
j ωni

k

(

Si,1(qi(τ
ni

k)) − ξ

2

)

S′
i,2(qi(τ

ni

k))
∆ti
2

(6)

where, denoting by ⌈·⌉ the ceiling operator,

qi(s) =
∆ti
2

s +
ti + ti+1

2
, ∆ti = ti+1 − ti (7)

ni =

⌈

(2n − 1)max (i1, i2) + i1 + i2
2

⌉

, iν = deg(Si,ν) , ν = 1, 2 (8)

is exact on K for every bivariate polynomial f ∈ P
2
2n−1.

Proof. Denoting by Vi ⌢ Vi+1 the part of the curve between the two break-
points Vi and Vi+1, by Green’s theorem and ∂K = ∪L

i=1Vi ⌢ Vi+1 we have

IK(f) =

∫

K

f(x, y) dx dy =

∮

∂K

Ff (x, y) dy =

L
∑

i=1

∫

Vi⌢Vi+1

Ff(x, y) dy (9)

where Ff is an x-primitive of f i.e., for a fixed ξ ∈ [x1, x2]

Ff (x, y) =

∫ x

ξ

f(s, y) ds (10)

In view of the parametrization of the boundary, from (10)

L
∑

i=1

∫

Vi⌢Vi+1

Ff (x, y) dy =

L
∑

i=1

∫ ti+1

ti

Ff(Si,1(t), Si,2(t))S′
i,2(t) dt

=

L
∑

i=1

∫ ti+1

ti

(

∫ Si,1(t)

ξ

f(η, Si,2(t)) dη

)

S′
i,2(t) dt

(11)

By operating for each univariate integral an affine change of variables, η =
η(τ ; t) = (Si,1(t) − ξ)τ/2 + (Si,1(t) + ξ)/2 and t = qi(u), cf. (7), we have

IK(f) =

L
∑

i=1

∫ 1

−1

∫ 1

−1

f

(

Si,1(qi(u)) − ξ

2
τ +

Si,1(qi(u)) + ξ

2
, Si,2(qi(u))

)

·
(

Si,1(qi(u)) − ξ

2

)

S′
i,2(qi(u))

∆ti
2

dτ du (12)

3

Now, if f ∈ P
2
2n−1, it is easily checked that the integrand on the r.h.s. of

(12) is a bivariate polynomial having in the variable τ at most degree 2n − 1
and that, w.r.t. the variable u, is a polynomial of degree

(2n − 1)max (deg(Si,1), deg(Si,2)) + deg(Si,1) + deg(Si,2) − 1

As consequence the integral can be computed exactly by a tensorial Gauss-
Legendre rule having n × ni nodes where ni is the smallest integer such that

2ni − 1 ≥ (2n − 1)max (deg(Si,1), deg(Si,2)) + deg(Si,1) + deg(Si,2) − 1

i.e.,

ni =

⌈

(2n − 1)max (deg(Si,1), deg(Si,2)) + deg(Si,1) + deg(Si,2)

2

⌉

From (12) it is straightforward to determine the nodes and the weights of the cu-
bature rule. If {τs

k}k=1,...,s, {ωs
k}k=1,...,s are, respectively, the nodes and weights

of the Gauss-Legendre rule in [−1, 1] (having degree of exactness 2s − 1), then

IK(f) =

L
∑

i=1

n
∑

j=1

ni
∑

k=1

ωn
j ωni

k f

(

Si,1(qi(τ
ni

k)) − ξ

2
τn
j +

Si,1(qi(τ
ni

k)) + ξ

2
, Si,2(qi(τ

ni

k))

)

·
(

Si,1(qi(τ
ni

k)) − ξ

2

)

S′
i,2(qi(τ

ni

k))
∆ti
2

(13)

that implies

xijk =
Si,1(qi(τ

ni

k)) − ξ

2
τn
j +

Si,1(qi(τ
ni

k)) + ξ

2
yik = Si,2(qi(τ

ni

k))

wijk = ωn
j ωni

k

(

Si,1(qi(τ
ni

k)) − ξ

2

)

S′
i,2(qi(τ

ni

k))
∆ti
2

(14)

with i = 1, . . . , L, j = 1, . . . , n, k = 1, . . . , ni. �

Remark 1 In general the nodes are not contained in the cubature domain Ω
but only in the minimal rectangle R ⊇ K with sides parallel to the axes. This
fact comes directly from the definition of the cubature nodes. From (5) and (7),
being τni

k ∈ [−1, 1], we have qi(s) ∈ [ti, ti+1]. Furthermore, it is easily seen that
xijk belongs to the minimal interval containing Si,1(qi(τ

ni

k)) and ξ, implying
that (xijk ,yik) is in the segment connecting (ξ,Si,2(qi(τk

ni))) to the boundary
point (Si,1(qi(τk

ni)), Si,2(qi(τk
ni))). Since the latter are both in the rectangle R

necessarily every (xijk ,yik) is in R and of course this the reason why we require
that the integrand f is defined in R.

However, as described in [14], such assumption is not necessary in domains
in which there exists a straightline l such that

Property N (normal domain w.r.t. a line)

(A1) l ∩ K is connected;

4

(A2) every segment q orthogonal to l is such that q ∩ K is connected.

It is not difficult to show that if K is a convex set, taking as base-line l the
straightline connecting two points P1, P2 ∈ ∂K such that the segment [P1, P2]
is a diameter, the assumptions (A1) and (A2) are verified.

When Property N holds, a change of coordinates (rotation) so that l becomes
parallel to the new y-axis implies that all the cubature nodes (xijk , yik) are in
K, and that all the weights wijk are nonnegative, taking as ξ in Theorem 1 the
intersection point of l with the new x-axis.

Indeed, when the boundary point (Si,1(qi(τk
ni)), Si,2(qi(τk

ni))) is on the
right (resp. left) of the base-line, i.e., Si,1(qi(τk

ni)) ≥ ξ (resp. Si,1(qi(τk
ni)) ≤

ξ), then the tangent vector to the curve remains in the first and second (resp.
third and fourth) quadrant, and thus S′

i,2(qi(τk
ni)) is nonnegative (resp. non-

positive); see [14, 15] for more details.
To have an idea of the role of the base-line in the distribution of the cubature

nodes, we suggest to have a look at the figures in the last section.

Remark 2 From the previous theorem, the cubature formula having degree
of exactness 2n − 1 over a domain K defined parametrically by L polynomial
curves (Si,1, Si,2), has n

∑L
i=1 ni nodes where

ni =

⌈

(2n − 1)max (deg(Si,1), deg(Si,2)) + deg(Si,1) + deg(Si,2)

2

⌉

Consequently, if σ = maxi=1,...,L (max (deg(Si,1), deg(Si,2))) then

n + 1 =

⌈

2n + 1

2

⌉

≤ ni ≤
⌈

(2n + 1)σ

2

⌉

≤ (n + 1)σ

and

n(n + 1)L ≤ n

L
∑

i=1

ni ≤ n(n + 1)Lσ

It is worth noticing that if the user needs a cubature rule having even degree
of exactness M , the cubature rule will actually have degree of excatness M + 1.
This is due to the fact that the Gauss-Legendre formula has odd degree of
exactness 2n− 1.

2.1 Stability and error estimates

Let Ω be a compact domain whose boundary is a Jordan (simple and closed)
curve defined parametrically by two piecewise smooth functions x(t), y(t) that
are not piecewise polynomials

∂Ω = {P (t) = (x(t), y(t)) , t ∈ [a, b]} , P (a) = P (b) (15)

The Chebfun system provides two piecewise polynomials (piecewise interpolat-
ing at Chebyshev-Lobatto nodes) x̃, ỹ : [a, b] → R such that

‖x − x̃‖∞ ≤ ε‖x‖∞, ‖y − ỹ‖∞ ≤ ε‖y‖∞ (16)

5

ε being by default the machine precision. Denoting by Ω̃ is the domain whose
boundary is defined as

∂Ω̃ = {P̃ (t) = (x̃(t), ỹ(t)) , t ∈ [a, b]} (17)

it is natural to approximate IΩ(f) with IΩ̃(f). Observe that by interpolation

∂Ω̃ is a closed curve, P̃ (a) = P̃ (b); we shall discuss below conditions ensuring
that such a piecewise polynomial curve is still a Jordan curve. On the other
hand, stability issues of cubature rules require the boundedness of the sum of
the weights absolute values, independently of the degree of exactness. Here we
will first give such an estimate and then use it for giving an upper bound to
|IΩ(f) − I2n−1(f ; P̃)|.
Theorem 2 Under the assumptions of Theorem 1, denoting by ℓ(∂K) the length
of the boundary of the domain K, we have

L
∑

i=1

n
∑

j=1

ni
∑

k=1

|wijk | ≤ (x2 − x1) ℓn with lim
n

ℓn = ℓ(∂K)

Proof. With the notation used in Theorem 1, since (xijk ,yik) are points of
the minimal rectangle R = [x1, x2] × [y1, y2] containing K (see Remark 1) and
ξ ∈ [x1, x2], we have |xijk−ξ| ≤ x2−x1. Furthermore, since the Gauss-Legendre
weights are positive and the sum of their absolute values is 2, we have from (6)-
(8)

L
∑

i=1

n
∑

j=1

ni
∑

k=1

|wijk | =

L
∑

i=1

n
∑

j=1

ni
∑

k=1

ωn
j ωni

k

|Si,1(qi(τ
ni

k)) − ξ|
2

|S′
i,2(qi(τ

ni

k))| ∆ti
2

≤ 2
(x2 − x1)

2

L
∑

i=1

ni
∑

k=1

ωni

k |S′
i,2(qi(τ

ni

k))| ∆ti
2

≤ (x2 − x1)
L
∑

i=1

ni
∑

k=1

ωni

k

√

(S′
i,1(qi(τ

ni

k)))2 + (S′
i,2(qi(τ

ni

k)))2
∆ti
2

(18)

Now, the quantity

ℓi,n =

ni
∑

k=1

ωni

k

√

(S′
i,1(qi(τ

ni

k)))2 + (S′
i,2(qi(τ

ni

k)))2
∆ti
2

corresponds to compute the length of arc Vi ⌢ Vi+1 by the Gauss-Legendre

rule. Observe that ℓi,n depends on n through ni, cf. (8). Setting ℓn =
∑L

i=1 ℓi,n

we have
L
∑

i=1

n
∑

j=1

ni
∑

k=1

|wijk| ≤ (x2 − x1)

L
∑

i=1

ℓi,n = (x2 − x1) ℓn

The fact that limn ℓn = ℓ(∂K) is due to the convergence properties of Gauss-
Legendre quadrature. �

6

We can now bound the error made in approximating IΩ(f) with I2n−1(f ; P̃).
Setting ‖f‖J = maxx∈J |f(x)|, Em(f ; J) = minp∈P2

m
‖f − p‖J for any compact

set J and continuous function f , µ(A) = meas(A) and A∆B = (A∪B)\(A∩B)
for any couple of measurable sets, we have

Theorem 3 Let Ω and Ω̃ be as in (15)-(17). Under the assumptions of Theo-
rem 1 for K = Ω̃, if f ∈ C(Ω ∪ Ω̃) the following cubature error estimate holds

|IΩ(f) − I2n−1(f ; P̃)| ≤ (µ(Ω̃) + (x2 − x1)ℓn)E2n−1(f ;R) + ‖f‖Ω∆Ω̃ µ(Ω∆Ω̃)

where lim ℓn = ℓ(∂Ω̃) (cf. Theorem 2).

Proof. By the triangle inequality,

|IΩ(f) − I2n−1(f ; P̃)| ≤ |IΩ(f) − IΩ̃(f)| + |IΩ̃(f) − I2n−1(f ; P̃)|

First, we observe that

|IΩ(f) − IΩ̃(f)| ≤ ‖f‖Ω∆Ω̃ µ(Ω∆Ω̃)

Next, if p∗2n−1 ∈ P
2
2n−1 is such that E2n−1(f ;R) = ‖f − p∗2n−1‖R then, since

the cubature formula has degree of exactness 2n− 1 on Ω̃

|IΩ̃(f) − I2n−1(f ; P̃)| ≤ |IΩ̃(f) − IΩ̃(p∗2n−1)| + |IΩ̃(p∗2n−1) − I2n−1(p
∗
2n−1; P̃)|

+ |I2n−1(p
∗
2n−1; P̃) − I2n−1(f ; P̃)|

≤



µ(Ω̃) +

L
∑

i=1

n
∑

j=1

ni
∑

k=1

|wijk |



E2n−1(f ;R) (19)

that easily gives the error estimate by Theorem 2. �

Remark 3 In view of (16), we have that

Ω ∪ Ω̃ ⊆ Ω + B[0, r(ε)] , Ω∆Ω̃ ⊆ ∂Ω + B[0, r(ε)]

where
r(ε) = ε

√

‖x‖2
∞ + ‖y‖2

∞ (20)

and B[0, r] denotes the closed disk centered at the origin with radius r. From
these inclusions easily follows that µ(Ω∆Ω̃) = O(ε), and µ(Ω̃) = µ(Ω) + O(ε)
since Ω̃\(Ω∆Ω̃) ⊆ Ω ⊆ Ω̃∪(Ω∆Ω̃) = Ω∪Ω̃. Moreover, when Ω satisfies Property
N above, after the change of variables (rotation) all the cubature nodes fall in
Ω + B[0, r(ε)], so that the latter can substitute the rectangle R in Theorem 3.

The problem of bounding ℓn in terms of the original domain Ω is more
delicate. Indeed, by Theorem 2 we have that limn ℓn = ℓ(∂Ω̃), but to know
that ℓ(∂Ω̃) ≈ ℓ(∂Ω) we should ensure that not only the curve ∂Ω, but also its
tangent vectors are piecewise approximated, at least in the L1 norm. The theory
of Chebyshev interpolation, on which the Chebfun package is based, tells us that
we have also L1-convergence to the derivatives if x′, y′ are at least piecewise
Hölder continuous. This comes from the chain of estimates

‖u′ − (INu)′‖L1(α,β) ≤ (b − a)‖1/w‖∞‖u′ − (INu)′‖L2
w(α,β) = O

(

N1−m
)

(21)

7

valid for u ∈ Cm[α, β], m > 1, where [α, β] ⊆ [a, b] is any subinterval of smooth-
ness, INu is the interpolant of degree N at the Chebyshev-Lobatto nodes, and
w is the Chebyshev weight function for [α, β]; cf., e.g., [5]. In such a case we
can finally write an error estimate like

|IΩ(f) − I2n−1(f ; P̃)| = O (E2n−1(f ; J) + ε)

with J = R, or even J = Ω + B[0, r(ε)] when Ω satisfies Property N.

In order to apply Theorem 3, we should ensure that the approximate bound-
ary ∂Ω̃ is a Jordan curve, namely that it is a simple curve. A sufficient con-
dition is given by a general result proved in [4]. For convenience, we define
‖Q‖L∞ := max {‖q1‖L∞ , ‖q2‖L∞}, for any Q(t) = (q1(t), q2(t)) piecewise con-
tinuous in [a, b].

Theorem 4 Let P (t) = (x(t), y(t)), t ∈ [a, b], be a simple, piecewise C1, and
generalized regular curve, in the sense that it has no singular points (points where
the left or right tangent vector is the zero vector) and no cusps (breakpoints where
the left and right tangent vectors have opposite directions).

Then, any piecewise C1 closed approximating curve (with the same break-
points), P̃ (t) = (x̃(t), ỹ(t)), t ∈ [a, b], is simple itself, provided that the error

‖P − P̃‖PC1 := max
{

‖P − P̃‖L∞ , ‖P ′ − P̃ ′‖L∞

}

is sufficiently small.

Proof. For the sake of concision, we recall only a qualitative proof, in the case
that P and P̃ have no breakpoints and P is a regular curve (i.e., P ′(t+) =
P ′(t−) 6= (0, 0) for every t ∈ (a, b) and P ′(a+) = P ′(b−) 6= (0, 0)), working by
contradiction with some typical arguments of differential topology (cf., e.g., [7,
Thm. 1.7]). The general proof is quite technical and resorts to the notion of
generalized gradient of nonsmooth analysis; see [4], where also a quantitative
proof is provided, with an estimate of the radius of a sufficient approximation
neighborhood (even though not always simple to apply in practice).

Assume that the conclusion of the theorem is false. Then, there exists a
sequence of C1 curves, say {Pn}, with lim ‖Pn − P‖C1 = 0, that are not simple,
i.e., for every n there exist un, vn ∈ [a, b), or un, vn ∈ (a, b], un 6= vn, such
that Pn(un) = Pn(vn). By resorting possibly to subsequences, we may assume
that limun = u and lim vn = v exist; since lim ‖Pn − P‖∞ = 0, we have that
limPn(un) = P (u) = P (v) = limPn(vn).

Now, we may have either u = v, or u = b and v = a, or u = a and v = b.
Consider without loss of generality the case that either u = v or u = b and
v = a, and define v̂n = vn if v 6= a, v̂n = vn + 1 if u = b and v = a (i.e.,
lim v̂n = u). Extend P (and Pn) to [a, 2b − a] as P̂ (t) = P (t), t ∈ [a, b] and
P̂ (t) = P (t− (b−a)), t ∈ (b, b+(b−a)] (the extension being still C1). Applying
the Hermite-Genocchi formula to the first divided differences (cf., e.g., [2]), we
can write

(0, 0) ≡ P̂n(un) − P̂n(v̂n)

un − vn

=

∫ b

a

P̂ ′
n(tun + (1 − t)v̂n) dt

8

=

∫ b

a

P̂ ′(tun + (1 − t)v̂n) dt + En =
P̂ (un) − P̂ (v̂n)

un − v̂n

+ En

where the vector sequence En tends to zero since ‖En‖∞ ≤ (b− a)‖P ′
n −P ′‖∞.

Now, we have assumed that P (u) is not singular: taking the limit as n → ∞ we
get the contradiction P̂ ′(u) = P ′(u) = (0, 0). �

Remark 4 The kind of approximation in Theorem 4 is completely general. In-
deed, it is only required that not only the curve, but also its tangent vectors
are (piecewise) approximated. This means that the result can be applied for ex-
ample to piecewise polynomial or trigonometric approximation, under suitable
smoothness assumptions, and in general to any approximation process which
guarantees convergence in PC1 (the only constraint being that the approximat-
ing curve is closed if the original one is, a property that is guaranteed by any
interpolation method including the endpoints of the parameter interval).

We recall that piecewise Chebyshev-Lobatto interpolation of maximal degree
N guarantees convergence in PC1 for functions that are piecewise C3+α, α > 0,
with order O(N−α), in view of classical results concerning convergence of such
process in Sobolev spaces; cf., e.g., [5, §5.5.3]. This gives a reasonable confidence
that Chebfun, which approximates around machine precision, is able to produce
a Jordan curve when the original one is a piecewise C1 and generalized regular
Jordan curve.

To conclude this section, it is worth discussing the following problem: can we
give an error estimate like that of Theorem 3, in the case when the approximate
boundary is not guaranteed to be a simple curve? This happens, for example, if
the original curve has some singular point, so that Theorem 4 cannot be applied.
Some classical closed parametric curves, like the cardioid, the tricuspoid, the
nephroid, the bicorn, and many others, fall in this situation.

A partial answer can be given by the following result:

Theorem 5 Let Ω be as in (15), and let P̃ (t) = (x̃(t), ỹ(t)), t ∈ [a, b], be the
piecewise polynomial approximating curve (16). Assume that the integrand f
is Hölder-continuous with constant C and exponent 0 < α ≤ 1 on the minimal
rectangle R = [x1, x2] × [y1, y2] containing Ω ∪ Γ̃, where Γ̃ = {P̃ (t) , t ∈ [a, b]}.

Then, the following estimate holds for the error of the cubature formula (4)
with S = P̃

|IΩ(f) − I2n−1(f ; P̃)| ≤ (x2 − x1)(ℓ(Γ̃) + ℓn)E2n−1(f ;R)

+(x2 − x1)
(

ℓ(∂Ω) C εα + ‖f‖R ‖y′ − ỹ′‖L1(a,b)

)

where lim ℓn = ℓ(Γ̃).

Proof. Take p∗2n−1 ∈ P
2
2n−1, for brevity p∗, such that E2n−1(f ;R) = ‖f−p∗‖R.

Using the primitive (10) with ξ ∈ [x1, x2], we can write the following chain of
estimates

|IΩ(f) − I2n−1(f ; P̃)| ≤
∣

∣

∣

∣

∮

∂Ω

Ff dy −
∮

Γ̃

Ff dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∮

Γ̃

Ff dy −
∮

Γ̃

Fp∗ dy

∣

∣

∣

∣

9

+

∣

∣

∣

∣

∮

Γ̃

Fp∗ dy − I2n−1(p
∗; P̃)

∣

∣

∣

∣

+ |I2n−1(p
∗; P̃) − I2n−1(f ; P̃)|

≤
(

∫ b

a

∣

∣

∣Ff (P (t)) −Ff (P̃ (t))
∣

∣

∣ |y′(t)| dt +

∫ b

a

∣

∣

∣Ff (P̃ (t))
∣

∣

∣ |y′(t) − ỹ′(t)| dt

)

+

∫ b

a

∣

∣

∣Ff−p∗(P̃ (t))
∣

∣

∣ |ỹ′(t)| dt +

L
∑

i=1

n
∑

j=1

ni
∑

k=1

|wijk | |p∗(xijk, yik) − f(xijk , yik)|

where we have used the fact that
∮

Γ̃
Fp∗ dy = I2n−1(p

∗; P̃) by construction of the

cubature formula (4). Now, observing that for every Q = (q1, q2) ∈ Ω ∪ Γ̃ ⊆ R
and for every function g continuous in R

|Fg(Q)| ≤
∫ q1

ξ

|g(s, q2)| ds ≤ |q1 − ξ| ‖g‖R ≤ (x2 − x1) ‖g‖R

and using the Hölder continuity of f and Theorem 2, we get easily the final
cubature error estimate. �

3 Numerical tests

In this section we present a brief description of some relevant software fea-
tures, and several numerical tests.

The routine ChebfunGauss (cf. [17]) implements the cubature formula de-
fined above and is based on the Chebfun system (that requires at least a Matlab
version 7.4). Given the boundary ∂Ω by two univariate functions (x(t), y(t)),
t ∈ [a, b], we substitute them by the piecewise polynomials (x̃, ỹ) computed by
Chebfun. For example, by

x tilde=chebfun(’cos(t)’,[0 2*pi]);

y tilde=chebfun(’sin(t)’,[0 2*pi]);

we obtain the approximation of the boundary of the unit disk. When the func-
tions are only piecewise smooth, Chebfun is able to detect their singularities.
Next, it is necessary to compute the derivative of x̃ simply by applying the
Chebfun command diff to x tilde. Once we have achieved the endpoints
(singularities) of x̃, ỹ by

x tilde endpoints=x tilde.ends;

y tilde endpoints=y tilde.ends;

and the degrees of the piecewise polynomials by

x tilde degrees=x tilde.funs;

y tilde degrees=y tilde.funs;

we can easily get the breakpoints Vi and the local polynomials Si,1 ∈ P
2
i1

,
Si,2 ∈ P

2
i2

, and build the cubature formula as described in Theorem 1 (by a
suitable modification of the routine SplineGauss (cf. [16])).

In the numerical experiments, we have integrated five test functions over
five domains with (piecewise) smooth boundary, namely the unit disk, a lune,
the union and the intersection of two disks, a cardioid, and a deltoid, with

10

different algebraic degrees of exactness (shortened ADE). As test functions we
have chosen

f1(x, y) = (x + y)19

f2(x, y) = exp (−((x − x0)
2 + (y − y0)

2))

f3(x, y) = exp (−100((x − x0)
2 + (y − y0)

2))

f4(x, y) =
√

(x − x0)2 + (y − y0)2

f5(x, y) = cos (20(x + y)) (22)

namely a bivariate polynomial of degree 19, two gaussians with different variance
parameter, an euclidean distance function, and an oscillating function. We have
chosen an internal point (x0, y0) for all the domains of the examples below,
namely (x0, y0) = (0.5, 0.5) in Examples 3.1-3.5 and (x0, y0) = (0, 0) in Example
3.6. The reference values of the integrals have been computed by a combination
of methods, including the use of our formula at very high degree of exactness.

When the domains satisfy Property N, this is not inherited, in general, after
boundary approximation. Nevertheless, in all the corresponding tests the cuba-
ture nodes turned out to be in the domain and the weights to be positive. This
not surprising, in view of the fact that such are the nodes and weights if we use
directly x(t) and y(t) instead of the approximants Si,j(t) in (5)-(6), and that
the approximation errors are not far from machine precision.

The purpose of the numerical tests, is to show the capability of the numerical
code ChebfunGauss to find automatically singularities and approximate accu-
rately the boundaries (due to the features of Chebfun), and then to compute
the integral using, at the same error level, less points than the Matlab’s built-in
dblquad and the spline-based code SplineGauss [16]. Moreover, ChebfunGauss
turns out to be competitive also with the adaptive vectorized cubature code
TwoD (cf. [13]), especially with regular integrands. In all the examples, the
most difficult function to integrate is f4, due to the singularities appearing in
the derivatives at the internal point (x0, y0).

3.1 Disk

On the unit disk, with boundary parametrized as

P (t) = (cos (t), sin (t)) , t ∈ [0, 2π]

we have chosen as base-line l the y-axis (see Property N); the boundary is
approximated around machine precision by Chebfun with deg(x̃) = 20 and
deg(ỹ) = 21. The reference integrals are IΩ(f1) = 0, IΩ(f2) = 1.476139002266508,
IΩ(f3) = 0.03141527827120767, IΩ(f4) = 2.8540799175110, IΩ(f5) = 0.02301872
593651162.

The error assumption of Theorem 4 is satisfied using a Chebfun representa-
tion of the circle, since, as it has been shown in [4], any C1 curve approximating
the circle is simple provided that ‖P − P̃‖C1 <

√
4π2 + 8 − 2π) = 0.607... .

We observe that in the column of function f1 in Table 1 we have displayed
the absolute error (and not the relative one as in the other examples) since the
exact value of the integral is 0 (as it is trivial by symmetry). In Figure 1 we
show the cubature points for ADE = 11.

11

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1: Cubature points on the unit disk for ADE = 11 with base-line x = 0.

Of course, one can observe that taylored rules for the disk use much less
points at the same error level, but one has to keep in mind the flexibility of our
routine ChebfunGauss, which can work on quite general domains, as it will be
shown by the next examples.

Table 1: Cubature relative errors on the disk.
ADE f1 f2 f3 f4 f5

11 9.5E − 14 4.1E − 11 4.2E − 02 3.0E − 05 2.5E − 02
21 3.8E − 14 2.4E − 15 1.7E − 03 2.1E − 05 5.4E − 08
31 3.4E − 13 2.7E − 15 5.2E − 06 3.4E − 06 4.1E − 14
41 9.8E − 14 3.2E − 15 4.1E − 09 3.8E − 06 1.6E − 13

3.2 Lune

We consider a lune Ω defined as the difference of two disks with radius 0.5 cen-
tered in (0.5, 0.5) and (0, 0), respectively. The boundary ∂Ω can be represented
by the curve

P (t) =







0.5(1 + cos (t), 1 + sin (t)) , t ∈ [−π/2, π]

0.5(cos (3π/2 − t), sin (3π/2 − t)) , t ∈ [π, 3π/2]

In order to show the influence of the choice of the base-line l and of the
resulting distribution of cubature nodes, we have chosen two different base-
lines, namely x = 0 (Property N is not satisfied, some nodes lie outside the
integration domain, cf. Fig. 2 and Table 2), and x = 0.5 (Property N is
satisfied, all nodes belong to the integration domain, cf. Fig. 3 and Table
3). The boundary is approximated around machine precision by Chebfun with
deg(x̃) = deg(ỹ) = 19 on the first arc, and deg(x̃) = deg(ỹ) = 19 on the
second arc. It is worth observing that Chebfun automatically detects the break-
point of the boundary at (0, 0.5), whereas this is not necessary for (0.5, 0) since
it is used as start and end point of the parametrization. The reference inte-
grals are IΩ(f1) = 638.5574327469890, IΩ(f2) = 0.5726372043252941, IΩ(f3) =
0.03137185199245524, IΩ(f4) = 0.2064677029709676, IΩ(f5) = 0.0062895812195
65822. The curve is generalized regular, since the breakpoints (0.5, 0) and
(0, 0.5) are not cusps.

12

This example was considered also in [15]. In Table 4 we compare the number
of function evaluations needed by Matlab dblquad and by the adaptive vector-
ized code TwoD by Shampine [13], with those of SplineGauss and ChebfunGauss,
at the same level of accuracy. Such accuracies have been taken from [15, Ta-
ble 5], where the boundary of the lune is approximated by quintic splines with
128 interpolation points (65 points on each of the two circular arcs). In the
case of ChebfunGauss they were obtained by a rule having degree of exactness
13, 9, 21, 15, 17, and show the better performance of this method, which uses
about 5 percent of the number of points w.r.t. SplineGauss, and from less
than 1 to 20 percent w.r.t. dblquad depending on the regularity of the func-
tion. ChebfunGauss is also competitive with TwoD (where we have used the
‘singular’ option), except for the peaked function f3 and for f4 which has
singularities of the derivatives at the internal point (0.5, 0.5).

Table 2: Cubature relative errors on the lune, cf. Fig. 2.
ADE f1 f2 f3 f4 f5

11 5.3E − 06 8.6E − 11 3.6E − 01 3.2E − 03 1.3E − 01
21 5.0E − 14 1.4E − 15 1.2E − 02 7.5E − 04 2.2E − 06
31 5.1E − 14 1.4E − 15 8.9E − 05 1.9E − 04 6.0E − 14
41 4.5E − 14 9.7E − 16 2.0E − 07 1.1E − 04 9.0E − 14

0 0.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Cubature points on the lune for ADE = 11 with base-line x = 0.

Table 3: Cubature relative errors on the lune, cf. Fig. 3.
ADE f1 f2 f3 f4 f5

11 1.7E − 09 2.7E − 15 1.3E − 03 6.1E − 06 3.9E − 04
21 4.8E − 14 0.0E + 00 3.4E − 08 1.3E − 07 1.0E − 12
31 5.0E − 14 1.9E − 16 9.5E − 13 1.4E − 07 2.9E − 14
41 4.2E − 14 1.6E − 15 4.9E − 14 2.4E − 08 1.7E − 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: Cubature points on the lune for ADE = 11 with base-line x = 0.5.

13

Table 4: Number of cubature points used at comparable accuracies by the
Matlab standard dblquad and Shampine’s TwoD integrators, and by our formulae
SplineGauss, ChebfunGauss.

f1 f2 f3 f4 f5

accuracy 5E − 11 6E − 11 3E − 08 5E − 07 7E − 10
dblquad 282738 225950 20782 32740 1007426
TwoD 7056 1764 2744 980 46256

SplineGauss 34048 17920 81664 67840 55296
ChebfunGauss 1687 885 4059 5629 2745

3.3 Union of two disks

The domain Ω is defined as the union of two disks with radius 1 centered in
(
√

2/2, 0) and (−
√

2/2, 0), and its boundary can be represented by the curve

P (t) =







(
√

2/2 + cos (t), sin (t)) , t ∈ [−3π/4, 3π/4]

(−
√

2/2 + cos (t − π/2), sin (t − π/2)) , t ∈ [3π/4, 9π/4]

which is generalized regular (see Theorem 4), since the two breakpoints are
not cusps. The chosen base-line is the x-axis, which gives Property N to the
(nonconvex) domain; the boundary is approximated around machine precision
by Chebfun with deg(x̃) = 18, deg(ỹ) = 19 on the first arc, and deg(x̃) =
18, deg(ỹ) = 19 on the second arc. The reference integrals are IΩ(f1) =
1.48710002014055437·10−10, IΩ(f2) = 2.03976660215986882, IΩ(f3) = 0.031415
92653403229, IΩ(f4) = 6.528597310412948, IΩ(f5) = −0.01231537275802433.
See Fig. 4 and Table 5.

Table 5: Cubature relative errors on the union of two disks.
ADE f1 f2 f3 f4 f5

11 2.8E − 11 4.5E − 11 3.1E − 01 9.2E − 05 2.8E − 02
21 3.9E − 11 2.6E − 15 8.5E − 03 1.7E − 05 3.0E − 09
31 8.4E − 11 4.8E − 15 5.2E − 05 4.5E − 06 1.5E − 14
41 1.3E − 11 2.8E − 15 9.5E − 08 1.4E − 06 8.2E − 14

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4: Cubature points on the union of two disks for ADE = 11 with base-line
y = 0.

3.4 Intersection of two disks

The domain Ω is defined as the union of two disks with radius 1 centered in
((1 +

√
2)/2, 1/2) and ((1 −

√
2)/2, 1/2), and its boundary can be represented

14

by the curve

P (t) =







((1 −
√

2)/2 + cos (t), 1/2 + sin (t)) , t ∈ [−π/4, π/4]

((1 +
√

2)/2 + cos (t + π/2), 1/2 + sin (t + π/2)) , t ∈ [π/4, 3π/4]

which again is generalized regular (see Theorem 4). As base-line l we have chosen
the straighline x = 0.5 joining the breakpoints (1/2, (1−

√
2)/2) and (1/2, (1 +√

2)/2), which gives Property N to the domain; the boundary is approximated
around machine precision by Chebfun with deg(x̃) = 12, deg(ỹ) = 13 on the first
arc, and deg(x̃) = 12, deg(ỹ) = 13 on the second arc. The reference integrals
are IΩ(f1) = 457.0643824458973, IΩ(f2) = 0.506809857736930103, IΩ(f3) =
0.03141463000651704, IΩ(f4) = 0.1827876057321204, IΩ(f5) = 0.0049323361620
31037. See Fig. 5 and Table 6.

Table 6: Cubature relative errors on the intersection of two disks.
ADE f1 f2 f3 f4 f5

11 1.6E − 12 2.8E − 15 2.2E − 05 4.5E − 06 2.2E − 08
21 3.4E − 14 4.6E − 15 1.6E − 11 1.5E − 06 2.4E − 14
31 3.5E − 14 3.7E − 15 4.1E − 14 3.9E − 07 2.6E − 14
41 3.0E − 14 3.7E − 15 3.1E − 14 2.3E − 07 5.2E − 14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5: Cubature points on the intersection of two disks for ADE = 11 with
base line x = 0.5.

3.5 Cardioid

The domain Ω is a cardioid, whose boundary has parametric equations

P (t) = ((1 − cos (t)) cos (t) + 1, (1 − cos (t)) sin (t)) , t ∈ [0, 2π]

As base-line l we have chosen the straightline x = 0.25, which gives Property
N to the domain; the boundary is approximated around machine precision by
Chebfun with deg(x̃) = 26 and deg(ỹ) = 27. Notice that the point (1, 0) is
singular, so that Theorems 3-4 cannot be invoked (the curve is not generalized
regular). Nevertheless, the error estimates of Theorem 5 here apply. The ref-
erence integrals are IΩ(f1) = 22718.51704296164, IΩ(f2) = 2.080016120389035,
IΩ(f3) = 0.03141592653589625, IΩ(f4) = 4.547551380452429, IΩ(f5) = 0.007169
671894735140. See Fig. 6 and Table 7.

15

Table 7: Cubature relative errors on the cardioid.
ADE f1 f2 f3 f4 f5

11 3.7E − 07 1.8E − 10 2.2E − 01 9.5E − 05 2.1E − 03
21 4.2E − 15 3.2E − 15 1.6E − 03 1.5E − 05 5.1E − 06
31 4.8E − 16 4.7E − 15 2.7E − 06 3.0E − 07 1.2E − 12
41 1.1E − 14 6.4E − 16 5.6E − 09 2.4E − 06 3.9E − 13

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 6: Cubature points on the cardioid for ADE = 11 with base-line x = 0.25.

3.6 Deltoid

The domain Ω is a deltoid, whose boundary is a tricuspoid (also known as
Steiner’s hypocicloid) with parametric equations

P (t) = a(2 cos (t) + cos (2t), 2 sin (t) − sin (2t)) , t ∈ [0, 2π]

where we set a = 1/3 (cf. [8] for the properties of such a curve). Due to
the shape of the boundary, there is no way to satisfy Property N, so we have
chosen as base-line the straightline y = 0 (which is a symmetry axis of the
domain); the boundary is approximated around machine precision by Chebfun

with deg(x̃) = 26 and deg(ỹ) = 27 on each of the three regular arcs. Due
to the presence of three singular points, Theorems 3-4 cannot be invoked (the
curve is not generalized regular). Nevertheless, the error estimates of Theorem
5 here apply. The reference integrals are IΩ(f1) = −0.171954131235978608,
IΩ(f2) = 0.597965094725642077, IΩ(f3) = 0.0314158189238754187, IΩ(f4) =
0.254933641266777200, IΩ(f5) = 0.0167715230924418007. See Fig. 7 and Table
8.

Table 8: Cubature relative errors on the deltoid, cf. Fig. 7.
ADE f1 f2 f3 f4 f5

11 2.5E − 05 3.2E − 13 3.7E − 04 6.1E − 06 3.6E − 02
21 7.4E − 14 7.8E − 15 4.3E − 10 3.6E − 06 2.2E − 08
31 8.7E − 14 4.8E − 15 1.0E − 13 5.5E − 07 9.1E − 14
41 2.5E − 13 1.0E − 14 1.6E − 14 4.1E − 07 3.0E − 14

References

[1] T.M. Apostol, Calculus, Vol. II , Blaisdell, Toronto, 1969.

[2] K.E. Atkinson, An introduction to numerical analysis. Second edition, John
Wiley, 1989.

16

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 7: Cubature points on the deltoid for ADE = 11 with base-line y = 0.

[3] Z. Battles and L.N. Trefethen, An extension of Matlab to continuous func-
tions and operators , SIAM J. Sci. Comp. 25 (2004), 1743–1770.

[4] L. Bos and M. Vianello, On simple approximations to simple
curves , Dolomites Research Notes on Approximation 3 (2010), 1–6
(http://drna.di.univr.it).

[5] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods
(Fundamentals in Single Domains), Springer, 2006.

[6] R. Cools and A. Haegemans, Algorithm 824: CUBPACK: A Package for
Automatic Cubature; Framework Description, ACM Trans. Math. Software
29 (2003), 287–296.

[7] M.W. Hirsch, Differential Topology, Springer, 1994.

[8] E.H. Lockwood, A book of curves , paperback re-issue of the 1963 edition,
Cambridge University Press, Cambridge, 2007.

[9] The MathWorks, MATLAB Documentation Set , 2010 version
(http://www.mathworks.com).

[10] R. Pachón, R. Platte and L.N. Trefethen, Piecewise smooth chebfuns , Tech-
nical Report NA-08/07, Oxford University Computing Laboratory, May
2008.

[11] R. Platte and L.N. Trefethen, Chebfun: a new kind of numerical computing,
ECMI Proceedings, 2009
(http://www2.maths.ox.ac.uk/chebfun/publications).

[12] G. Santin, Algebraic cubature on general domains by the software system
Chebfun (italian), Laurea Thesis in Mathematics, University of Padova,
2009 (advisors: A. Sommariva and M. Vianello).

[13] L.F. Shampine, MATLAB program for quadrature in 2D , Appl. Math.
Comput. 202 (2008), 266–274.

[14] A. Sommariva and M. Vianello, Product Gauss cubature over polygons based
on Green’s integration formula, BIT Numerical Mathematics 47 (2007),
441–453.

17

[15] A. Sommariva and M. Vianello, Gauss-Green cubature and moment com-
putation over arbitrary geometries, J. Comput. Appl. Math. 231 (2009),
886–896.

[16] A. Sommariva and M. Vianello, SplineGauss: a Matlab code for Gauss-
Green cubature over spline curvilinear polygons (software available online
at http://www.math.unipd.it/marcov/∼CAAsoft.html).

[17] A. Sommariva and M. Vianello, ChebfunGauss: a Matlab code for Gauss-
Green cubature by the Chebfun package (software available online at
http://www.math.unipd.it/marcov/∼CAAsoft.html).

[18] L.N. Trefethen and others, Chebfun Version 4.0 , The Chebfun Develop-
ment Team, 2011 (http://www.maths.ox.ac.uk/chebfun).

18

