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Abstract

Survey of some recent results on the construc-
tion of numerical cubature formulas from scat-
tered samples of small/moderate size, by us-
ing interpolation with Radial Basis Functions
(RBF).

e Unit square: Error analysis and numeri-
cal tests with random points (Thin-Plate
Splines and Wendland RBF).

e Polygons: Thin-Plate Splines over arbitary
(convex as well as nonconvex and even mul-
tiply connected) polygons via Green's for-
mula.

e Sphere: Construction of the formulas and
tests some Franke functions.



The problem

Given a scattered sample of size n, say

X={F}={(z;,y:)} C2;, i=1,...,n,

and

f={f(P)}, i=1,...,n, (1)

of a given continuous function f on a multi-
variate compact set 2 C RN (the closure of an
open and bounded set), and that we need to
compute an approximate value of the integral

1(f) = [ f(P)dP. (2)



Some basics: 1

Fixed a suitable radial function ¢ : [0,4+c0) —
R, we can construct the RBF interpolant at
the points {F;}

s(P) == ) c;¢;(P) +pm(P) = f(P), (3)

J=1
with
P = (x,y) € Q. (4)
In other words:
S(PZ) :f(P”L)) 1= 17777’

where

e Wwe use the notation

¢j(P) = ¢;(P;6) := ¢(|P — F;]/6), (5)

e prn = M | bpmp(P) polynomial of degree
m ({m} basis of the corresponding multi-
variate polynomial space),



e |[P — Pj| is a suitable distance (euclidean,
geodesic, etc.),

e ) scaling parameter.



Some basics: 1II

The coefficients ¢ = {c;} are computed by
solving (!) the augmented system of dimen-
sion n + M,

Ac+ Pb =1f,
P'b = 0 where Py; = m(P))

IS @ symmetric matrix.

Key point: non-singularity of linear system,
which depends on the choice of ¢.



Some basics: III

Popular choices:
e Gaussians (G): ¢(r) = exp (—7“2)

e Duchon’s Thin-Plate Splines (TPS):
¢(r) = r?log (r)

e Hardy's MultiQuadrics (MQ):
6(r) = (1 +r2)1/2

e Inverse MultiQuadrics (IMQ):
b(r) = (1+r2)71/3

e Wendland’'s compactly supported (W2):
o(r) = (1 —r)(4r+1)



Cubature: 1

Now, it is natural to approximate the integral

I(f) as
I(f)=1(s) = ) c;I(¢5) + I(pm) ,

j=1
I(pm) = [ pm(P)dP.

1(6)) = |_#;(PYdP, j=1,....n.

where p,, = 0 in positive definite instances.



Cubature: II

Cubature formula
mn

I(f) = 1(s) = ) cj1(¢;) + I(pm)

j=1
can be rewritten in the usual form of a weighted

sum of the sample values.
The positive definite case: by symmetry of A

I(f) = I(s) (6)

= )=AD)==Fw=> wif, (7)
j=1

Aw =1 , with I = {I(¢j)}1§j§n (8)

where
e (-,-) is the scalar product in RY,

e I the vector of integrals on 2 of the radial
pbasis functions.



Error Analysis

The error of the RBF cubature formula de-
scribed above in the presence of approximate
values of the basis functions integrals, can be
estimated as

I(f) — (W, f)] < meas(2) || f — sl (9)
+ A2 Ifll2]I-T2  (10)
= O(a(h)) +0B@)|II-1|2,

where

a(h) — 0 as h — O,
and

B(q) — 400 as ¢ — O,
h denoting the fill distance and g the separation
distance

n{lp-Ply<2n. (1)

q = mir
17=]



Cubature on unit square: Gaussian basis

By separation of variables

/ e_|p_pj\2/52 AP —
[0,1]°

1 1
—(a—2))/? ~(y-y)?/5
/O e J dx /O e J dy

7 (or(157) () i
(152 -w(2).

P x
erf(z) = NG /0 et dt |

where
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Cubature on unit square: other popular ba-
sis, reduction to a right triangle, 1

Fixing the interpolation point Pj, we

1. split the unit square with vertices A = (0, 0),
B = (1,0), ¢ = (1,1), D = (0,1), into
four triangles 71 = P;AB, T, = P;BC,
T3 = P,CD, T4 = P;DA,

2. split further for convenience each 7, into
two right triangles T,gl), T,(f), each one
with a vertex in Pj.
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Cubature on unit square: other popular ba-
sis, reduction to a right triangle, 11

Geometric explanation of the previous slide
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Cubature on unit square: other popular ba-
sis, reduction to a right triangle, III

At this point, we have only to compute in-
tegrals of the form [r¢,;(P)dP where 7 is a
certain right triangle, say 7 = PjHM, with the
right angle at H.
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Cubature on unit square: other popular ba-
sis, reduction to a right triangle, 1V

Set
L TO=|Pj—H|, T1=|Pj—M|.
e 0* the angle HP,; M.

Integrating in polar coordinates,

/7 $;(P)dP =

0* rrg/cosé
/o /o ¢;(rcosf,rsind)rdrdo

0* rrg/cosé
/O /O o(r/d)r dr do

52/9*w( 0 )d@,
0 d Cos b
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where 6* = arccos (rg/r1) and W is the follow-
ing primitive

w(p) = ["oIrdr. (13)

and

ro/8 < rg/(8cosh) < rg/(5cosh*) =r1/8 < V2/6.



Cubature on unit square: other popular ba-
sis, reduction to a right triangle, V

The primitive W is immediately derived ana-
lytically

e Duchon’s Thin-Plate Splines (TPS):

W(p) = é <l09 p— %)

e Hardy's MultiQuadrics (MQ):

Wip) = (1 +,2%7 - 1)

e Inverse MultiQuadrics (IMQ):
W(p) =1 +p>) 2 -1

e Wendland’'s compactly supported (W2):

TN - N ST DUNE A 3
Wip) = -1 =p)34p"+5p+ )+

15



Cubature on unit square: a summary, step
I

1. The cubature problem on the unit square
of some popular RBF, is reduced to the
cubature of the same RBF on 8 right tri-
angles.

2. The cubature of any RBF in one of those
triangles is obtained by a double integral.

3. The first double integral is known explicitly.
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Cubature on unit square: a summary, step
I1

For Thin-Plate splines and Wendland functions,
also the second double integral can be com-
puted explicitly!

See details in

A. Sommariva and M. Vianello, Numerical cu-

bature on scattered data by radial basis func-
tions, Computing 76 (2005), 295-310.
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Cubature on unit square: numerical results

RBF cubature with sets of n = 50 and n = 100
random points generated with a uniform prob-
ability distribution in [0, 1]%: Spectral norm of
the inverses of the collocation matrices and
1-norm of the computed weights vectors (av-
erage values on 50 independent trials).

50 ) MQ IMQ G W2 TPS
0.1 4E+03 1E403 1E+03 2E+01 9E+02
1A7L]|2 1 2E+12 3E+11 5E+4+15 5E+03 6E403
10 >E+4+17 >E+17 >E+17 7E+406 6E+05
0.1 2E+00 1EH00 1E+00 2E-0I 2E+00
IKAlE 1 7TE+4+01 9E401 3E402 2E400 1E400
10 6E4+05 6E+04 3E402 2E+4+00 1E400
100 scaling MQ IMQ G W?2 TPS
0.1 IE+04 BE+03 1E+04 2E+02 9E+02
|A7L|2 1 2E+16 6E+15 >E+417 5E+4+04 8E403
10 >E+4+17 >E+17 >E+417 3E+407 1E+406
0.1 2E+00 2E+00 2E+00 3E-01 1EF00
W (|1 1 8E+02 5E+402 1E403 2E+400 1E400
10 4E4+06 1E405 6E+02 2E4+00 1E+400
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Cubature on unit square: numerical results
I1

Errors of RBF interpolation (I,) and cubature
(Cyn) for the test function f(x,y) = e*~Y, with
n = 50 and n = 100 random points generated
with a uniform probability distribution in [0, 1]?2
(average values on 50 samples of size n).

5 MQ IMQ G w2 TPS
0.1 8E-02 3E-01 B8E-0I OE-01 5E-02
Iso 1  4E-03 8E-03 3E-04 2E-01 6E-02
10 1E-03 5E-04 1E-03 3E-02 7E-02
0.1 2E-03 3E-02 3E-01 B8E-01 9E-04
Cso 1 6E-05 1E-04 6E-06 1E-02 2E-03
10 7E-01 3E-02 7E-04 4E-04 2E-03
0.1 6E-02 3E-01 BHE-0I OE-01 4E-02
lioo 1 3E-04 8E-04 8E-04 1E-01 2E-02
10 2E-03 7E-04 2E-03 2E-02 3E-02
0.1 6E-04 1E-02 8E-02 T7E-01 5E-04
Cioo 1 2E-06 5E-06 1E-05 4E-03 2E-04
10 4E+00 6E-02 1E-03 1E-04 G5E-04
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Cubature on polygons: Green’s formula
approach and TPS, 1

The core of the Green's formula approach is
given by computing

[oaP-Qndae=[ ([é(P-Qhds) dy
(14)
(with P = (z,y). Q = (u,v)), as a function of
the point Q.
We have put the scaling parameter 6 = 1 for
notation simplicity, but with TPS this is not
really restrictive.
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Cubature on polygons: Green’s formula
approach and TPS, II

In the case of TPS the z-primitive above is
(since ¢(r) = r2logr)

Po(P) = [¢(P - QI de

_ 1 3, 2 2
= §(u—fL’) -l-g(u—iv)(’v—y)

P —
— Z(v-—y)3arctan (u x)
3 vV —y

(= ) (= 2)% +3(0 ~ )?)
l0g ((u —2)? + (v~ 9)?).
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Cubature on polygons: Green’s formula
approach and TPS, III

Suppose that the domain 2 is a polygon (con-
vex or nonconvex, but simply connected), whose
boundary is described counterclockwise by a

sequence of vertices V; = (§;,v), 3= 1,...,p
with p > 3,
= [V1, Va]ulVo, V3]u- - -U[Vp, V1], Vg1 = V1
(15)
Then
P—Q|)dQ =
| e(P—QDdQ
p
= o (P) dy
= /[Vj>Vj+1] ¢
Av;: & Av;
= > J/‘H_lch(ar:,lar:—l—z/J) dx
A ¢, AL

Sj#gj-l—l
+ ) /‘7+1¢Q(£],y)dy

§i=&j+1
22



where A denotes the forward difference oper-
ator.



Cubature on polygons: Green’s formula
approach and TPS, 1V

Assume that the side [V}, V;4 1] is not paral-
lel to the y-axis. By putting v —x = t, so that
v—y = at+b along the side for a = —Av;/A¢;
and b =v; —v+ (u—§;)Av;/AE;, the problem
IS eventually reduced to computing explicitly a
second level primitive like

/CDQ(u —t,v—at—b)dt = A1)+ B@)+C(t) ,
(16)

The functions A, B, C are known explicitly.
See details in

A. Sommariva and M. Vianello, Meshless cu-
bature by Green’s formula, 2006, submitted
(preprint UNSW AMRO06/10, available online
at
http://www.maths.unsw.edu.au/applied/apphome.html).
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Cubature on polygons: Some numerical
results, I

We have considered the following test func-
tions

fl(xay) = €Xp ($ o y) ) f2($7y> = €Xp (5(33 o y)) )

fa(z,y) = V(z —0.5)2 4+ (y — 0.5)2, (17)

and the two nonconvex polygons. Observe
that fi; and fo are C'°°, whereas f3 has a sin-
gularity of the gradient in (0.5,0.5).
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Cubature on polygons: Some numerical
results, II

First non-convex polygon and scattered data

04t
0.3} s AT L
LY - . -
0.2}
01f
0 |
0 01 02 03 04 05 06 07 08 09 1
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Second non-convex polygon and scattered data

0.9
08F=..%
07f.x

06F, .- '

osf"™
o .
A PR o o r W s " ) -
0.4:_'_ . . 1.:'._. " _._--_... . .,_ . .

03f+ ="
o2fp=:"" -

o1F
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Cubature on polygons: Some numerical
results, III

Errors of TPS interpolation and TPS-Green
compared to Monte Carlo cubature with n =
100, 800 wuniform random points on the 1st
nonconvex polygon (average values on 50 in-
dependent trials, rounded to the 1st significant
digit).

function formula 100 pts 800 pts

f1 TPS intp 5E-02 1E-02
TPS_Green 1E-04 SE-06

MC 1E-02 5E-03

fo TPS intp 8E4+00 1E400
TPS_Green 2E-02 OE-04

MC 2E-01 7TE-02

f3 TPS intp 4E-02  8E-03

TPS Green 2E-04 6E-06
MC 4E-03 2E-03
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Cubature on polygons: Some numerical
results, IV

Examples on the 2nd nonconvex polygon.

function formula 100 pts 800 pts

f1 TPS intp 1E-01 2E-02
TPS _Green 3E-04 1E-05

MC 2E-02 6E-03

fo TPS intp 2E4+01 2E+401
TPS_Green 2E-02 8E-04

MC 4E-01 2E-01

f3 TPS intp 5E-02 OE-03

TPS Green 2E-04 OE-06
MC 6E-03 2E-03
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Cubature on the sphere: a note, 1
As we have previously seen, the key-point is
the integration of the RBF functions, i.e.

RS DES:

where P; is the center of the RBF. In the case
of the sphere, the symmetry makes the inte-
gral independent of the point P;. Again, the
integrals of the more popular RBF

| #UP = P a2

are known explicitly. For their representation
and some numerical examples, consider

A. Sommariva, R. Womersley, Integration by
RBF over the Sphere.
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