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Abstract

The purpose of this work is to introduce a strategy for determining the nodes
and weights of a low-cardinality positive cubature formula nearly exact for poly-
nomials of a given degree over spherical polygons. In the numerical section we
report the results about numerical cubature over a spherical polygon P approx-
imating Australia and reconstruction of functions over such P , also affected by
perturbations, via hyperinterpolation and some of its variants. The open-source
Matlab software used in the numerical tests is available at the author’s homepage.

2010 AMS subject classification: Primary 41A10, 42A10, 65D05, 65D32.
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1 Introduction
In [20] the authors introduced a numerical code for the computation of cubature for-
mula on spherical triangles of the unit-sphere S2, nearly exact for polynomials pn ∈
Pn(S2), i.e. numerically achieving a given total polynomial degree n. The algorithm
was based on subperiodic trigonometric gaussian quadrature for planar elliptical sec-
tors and on Caratheodory-Tchakaloff quadrature compression via NNLS. The final rule
had internal nodes, positive weights and cardinality at most equal to (n+ 1)2, that is
the dimension of the vector space Pn(S2).

Later in [21], they move their attention to the computation of an orthogonal poly-
nomial basis on spherical triangles, via the formula described above, and to the con-
struction of the corresponding weighted orthogonal projection (hyperinterpolation) of
a function sampled at the cubature nodes.
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Having in mind the studies of real world problems, e.g. coming from geo-mathematics,
we move here to the more general setting of spherical polygons P of S2.

We first show how to implement such a cubature rule nearly exact for polynomi-
als in Pn(S2), with internal nodes, positive weights and cardinality at most equal to
(n+1)2. Next we investigate its qualities when applied to certain spherical polygons,
reporting cardinalities, cputimes as well as cubature errors relatively to certain inte-
grands with different regularity.

Later we give a brief introduction to the classical hyperinterpolation and to some
of its variants useful in case of noisy data, finally testing the numerical reconstruction
of functions also in the case of perturbations given by impulsive and gaussian noise.

2 Numerical cubature on spherical polygons
We start our study introducing some definitions that are useful in the paper.

A great circle is the intersection of the unit-sphere S2 = {(x,y,z) : x2+y2+ z2 = 1}
with a plane passing through the origin.

Let V1, . . . ,VL be distinct points of S2 and set V0 = VL. A spherical polygon with
vertices {Vk}k=1,...,L is the region P ⊂ S2 whose boundary δP is determined by the
geodesic arcs {γk}k=0,...,L, where each edge γk is the portion of the great circle joining
Vk with Vk+1, and is oriented counterclockwise.

In this paper we suppose that the spherical polygon P is contained in a cap whose
polar angle is strictly inferior than π . We notice that, for the purpose of determining a
cubature rule over P , if the spherical polygon has not this feature then it can always be
subdivided in spherical polygonal regions Pk, each one contained in a cap whose polar
angle is strictly inferior than π , whose interior do not overlap and whose union is P .
Next, one can apply the procedure that we will explain below on each Pk, obtaining a
composite rule on P .

In this section we show how to obtain a cubature rule of PI-type over such a spheri-
cal polygon P , i.e. a formula that has positive weights {wk}k=1,...,M and internal nodes
{Qk}k=1,...,M , and that is nearly exact in the space Pn(S2) of polynomials on S2 of total
degree at most n.

It can be proven that if P ⊂ S2 is a spherical polygon, each of whose edges have
length strictly less than π , and P does not contain a great circle, then P has a spherical
triangulation [13]. Consequently, since P is contained in a cap whose polar angle is
strictly inferior than π , we can conclude that there is a spherical triangulation of P .

The latter can be obtained as follows:

1. denoting by CP the centroid of P , we determine the gnomonic projection P̃ of
P on the plane πCP

tangent in CP to the unit-sphere;

2. compute a triangulation over the planar polygon P̃ (e.g. by Matlab built-in
environment polyshape that determines a minimal triangulation), i.e. P̃ =
∪m

i=1T̃i where T̃i ⊂ πCP
are planar triangles whose interiors do not overlap, i.e.

if j ̸= k then int(T̃ j)∩ int(T̃k) = /0;
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3. map back to the sphere, by means of the inverse of the gnomonic projection, each
planar triangle T̃k into a spherical triangle Tk, obtaining the required spherical
triangulation.

Since {Tk}k=1,...,m is a spherical triangulation of P , if we determine a cubature rule
of PI-type with ADE equal to n over each spherical triangle Tk then by the addivity of
integration we have immediatly a rule with the same features also on P .

Figure 1: cubature nodes (and weights) on a spherical triangle lifted from the projected
elliptical triangle.

For this reason, we concentrate our efforts in determining a rule over a spherical
triangle T contained in a cap whose polar angle is strictly inferior than π . To this
purpose, we recall the technique that the authors have used in [20].

With no loss of generality, up to a suitable rotation, we can suppose that the spher-
ical triangle T = ABC has the centroid CT = (A+B+C)/∥A+B+C∥2 cohincid-
ing with the North Pole (0,0,1) and furthermore is strictly contained in the northern-
hemisphere, i.e. it does not contain any point of the equator.

Then, if f ∈C(T ), g(x,y) =
√

1− x2 − y2,

IT :=
∫

T
f (x,y,z)dσ =

∫
T ⊥

f (x,y,g(x,y))
1

g(x,y)
dxdy,

where T ⊥ is the projection of T onto the xy-plane, that is the curvilinear triangle
whose vertices, say Â, B̂, Ĉ, are the xy-coordinates of A, B, C, respectively (see Figure
1).

The sides of T ⊥ are arcs of ellipses centered at the origin, being the projections
of great circle arcs. Then we can split the planar integral into the sum of the integrals
on three elliptical sectors Si with i = 1,2,3, obtained by joining the origin with the
vertices Â, B̂, Ĉ, namely

IT =
∫

T ⊥
f (x,y,g(x,y))

1
g(x,y)

dxdy =
3

∑
i=1

∫
Si

f (x,y,g(x,y))
1

g(x,y)
dxdy
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If the purpose is to compute an algebraic rule over T , with algebraic degree of
exactness ADE = n, positive weights and internal nodes (i.e. rules of PI-type) we
face the problem that while f is a polynomial of total degree n then being g(x,y) =√

1− x2 − y2, we have that in general f (x,y,g(x,y)) 1
g(x,y) may not be a polynomial.

To see this properly, let

• f (x,y,z) = xα yβ zγ , 0 ≤ α +β + γ ≤ n, α,β ,γ ∈ N;

• g(x,y) =
√

1− x2 − y2.

Thus
f (x,y,g(x,y))

1
g(x,y)

= xα yβ (1− x2 − y2)(γ−1)/2.

In particular, if γ is

• odd then f (x,y,g(x,y)) 1
g(x,y) is a polynomial of degree at most n,

• even then f (x,y,g(x,y)) 1
g(x,y) is 1/g multiplied for a polynomial of degree at

most n.

To overcome this problem, having in mind to produce a formula that is numerically
exact over bivariate polynomials of a certain total degree, we proceed as follows.

First, we approximate 1/g by a polynomial pε of degree m = mε such that |pε −
1/g| ≤ ε ·1/|g|. Next, since f/g ≈ f · pε ∈ Pn+m, we integrate f · pε instead of f/g on
the elliptical sectors Si, i = 1,2,3.

Finally, as observed before, determining a rule of algebraic degree of exactness
n+m over each elliptical sector Si, i= 1,2,3, with internal nodes, and positive weights
then we have a rule on T ⊥ := ∪3

i=1Si with nodes (xk,yk)k=1,...,M , weights wk=1,...,M of
PI-type.

Mapping back the nodes on the sphere, we have a rule over the spherical triangle
that is near algebraic with ADE n since

∫
T

f (x,y,z)dσ ≈
M

∑
j=1

wi√
1− x2

j − y2
j

f (x j,y j,
√

1− x2
j − y2

j). (1)

At this point, there are some aspects of this procedure that require some further
explanation (for details, see also [20]).

About the computation of a cubature formula with prescribed degree of exactness
over each elliptical sector Si, since each Si is an affine transformation of a circular
sector S ∗

i of the unit-disk, it is sufficient to obtain a formula on S ∗
i as described in [9]

and map it to Si (some care on the weights that must be multiplied by absolute value
of the transformation matrix determinant).

Another issue is the computation of m = mε . To this purpose, setting ε = 10−15,
it turns out that it is sufficient to find what is a (small) degree mε for which there exist
pmε

∈ Pm that approximates 1/
√

1− t where t ∈ [0,max{∥Â∥2
2,∥B̂∥2

2,∥Ĉ∥2
2}], with a

relative error at most ε in ∞-norm. Such m = mε can be quickly estimated by Chebfun
[7] and stored in tables.
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Figure 2: The 380544 nodes of a rule of PI-type with ADE=8, on a spherical polygon
approximating South and North America, before Caratheodory-Tchakaloff compres-
sion. The computation of this formula requires about 10 seconds.

Figure 3: Triangulation of a spherical polygon (967 spherical triangles) and cubature
rule of PI-type with ADE=8, 81 points, after Caratheodory-Tchakaloff compression
(magenta). The compression cputime requires approximatively 3.5 seconds.

We end this section by recalling some basics on the Caratheodory-Tchakaloff rule
compression. From the nodes {Pk}k=1,...,M and weights {wk}k=1,...,M of the PI-type
rule on P , with M ≥ (n+ 1)2, we can extract one with the same features but with
cardinality at most (n+ 1)2, see [18]. This is guaranteed by Tchakaloff theorem on
positive cubature, that in the framework of discrete measures can be demonstrated via
the Caratheodory theorem on conical linear combinations of finite-dimensional vectors
(applied to the columns of the Vandermonde-like matrix of a moment matching system)
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and one of these solutions can be obtained numerically by means of Lawson-Hanson
algorithm [11]. We observe that there are several Matlab implementations of the latter
procedure, as the Matlab built-in routine lsqnonneg or that proposed by Slawski in
[14]. A new recent fast variant has been introduced in [8], and view of its performance,
we will use it in our cubature routines to obtain one of these so called Caratheodory-
Tchakaloff formula.

In order to show our approach to a real world problem, in Figure 2, we consider the
spherical polygon P that is an approximation of South and North America (without
considering minor islands, rivers and lakes), we plot the 380544 cubature rule nodes
of a formula with a numerical ADE equal to 8, and then in Figure 3 we exhibit the
spherical triangulation and the extracted Caratheodory-Tchakaloff rule with 81 points
(exactly the dimension of the polynomial space of total degree 8 on S2) and again
numerical ADE equal to 8.

2.1 Numerical experiments
We have implemented the procedure described above in Matlab, so determining the
nodes and the weights of a cubature rule over the spherical polygon P that approxi-
matively integrates all the polynomials p ∈ P3

n(S2), for a fixed n ∈ N. The codes are
freely available at [17].

A first problem is that there is no known way to achieve IP( f ) =
∫
P f (x,y,z)dσ ,

when P has such a complicate geometry. To overcome this problem we have also
implemented a basic adaptive code, that computes IP( f ) with a relative error of 10−14.

As region, we consider Australia (without Tasmania as well as minor islands),
whose boundary is provided by the Matlab Mapping toolbox, via longitude-latitude
coordinates. Though our software can manage domains that are not simply connected,
we did not consider, for sake of simplicity, lakes and rivers. This complex spheri-
cal polygon consists of 169 vertices and is the union of 167 spherical triangles whose
interiors do not overlap.

Though the Earth radius is not unitary, in our battery of tests we suppose that P ⊂
S2. We observe that it is not restrictive, since an integral on a sphere of radius r can be
easily reformulated as one on S2.

As for the integrands, setting (x0,y0,z0)≈ (−0.6325,0.6668,−0.3908) ∈ S2 as an
approximation of australian centroid, and

h(x,y,z) = (x− x0)
2 +(y− y0)

2 +(z− z0)
2

we consider the test functions

1. f1(x,y,z) = 1+x+y2+x2 y+x4+y5+x2 y2 z2, i.e. a polynomial, of total degree
6;

2. f2(x,y,z) = cos(10 · (x+ y+ z)), a function with some oscillations;

3. f3(x,y,z) = sin(−h(x,y,z)), i.e. an analytic function;

4. f4(x,y,z) = exp(−h(x,y,z)), i.e. an analytic function;
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Figure 4: cubature nodes of a formula of PI-type having ADE equal to 10, on a coarse
approximation of Australia using 169 points of S2. To this purpose, we determine a
triangulation of such a spherical polygon in 167 spherical triangles, obtained a first
rule of PI-type with 82413 nodes, and then a compressed one with 121, with moments
error of ≈ 5 · 10−15. The computation of the Caratheodory-Tchakaloff formula took
takes 6 seconds.

5. f5(x,y,z) = ((x− x0)
2 +(y− y0)

2 +(z− z0)
2)3/2, i.e. a C1(P) function;

6. f6(x,y,z) = ((x− x0)
2 +(y− y0)

2 +(z− z0)
2)5/2, i.e. a C2(P) function.

Due to their properties, we expect that the integration of f2, f5 and f6 by (numer-
ically) algebraic rules will provide inferior results w.r.t. f1, f3 and f4. Furthermore,
IP( f1) will be approximated with a relative error for formulas with degree of exact-
ness at least 6 of about 10−14 or less. The numerical results of this battery of tests are
described in Figure 5, and as expected the better results are obtained by f1, f3 and f4
while the convergence is slower for f2, f5 and f6.

Finally, in Table 1, we have listed the cardinalities of the rules before and after the
Caratheodory-Tchakaloff compression, their ratios, and the cputime required by the
numerical procedure to determine the Caratheodory-Tchakaloff rule.

These tests show that the rule compression is remarkable and that for mild ADE the
cputime necessary to produce a formula of PI type with low cardinality is acceptable,
especially in view of the complicated geometry of the integration domain.

All our tests have been performed on a 2.7 GHz Intel Core i5 with 16 GB of RAM,
using Matlab 2022a, in which is available the polyshape environment.

3 Hyperinterpolation on spherical polygons
Hyperinterpolation has been introduced in the seminal paper by I.H. Sloan in 1995 (see
[15]), in the framework of approximation of multivariate functions, and is essentially
equivalent to a truncated Fourier expansion in a series of orthogonal polynomials for
some discrete or continuous measure.

From then, many aspects has been deepened, either theoretically either from the
implementative point of view, proposing hyperinterpolation as a valuable alternative to
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Figure 5: cubature relative errors, in semilogarithmic scale, obtained by approximating
IP( fk), for k = 1,2, . . . ,6, by rules with ADE equal to 1,2, . . . ,16.

n # basic # comp Cratio CPU n # basic # comp Cratio CPU
1 20613 4 5153:1 0.6s 9 72441 100 724:1 3.9s
2 25965 9 2885:1 0.6s 10 82413 121 681:1 6.1s
3 30564 16 1910:1 0.7s 11 90408 144 627:1 14s
4 37071 25 1482:1 0.8s 12 101535 169 600:1 17s
5 42519 36 1181:1 1.1s 13 110379 196 563:1 22s
6 50181 49 1024:1 1.3s 14 122661 225 545:1 33s
7 56478 64 882:1 1.8s 15 132354 256 517:1 48s
8 65295 81 806:1 2.6s 16 145791 289 504:1 62s

Table 1: Cardinalities of the rule before and after the compression, respectively #basic and
#comp, compression ratio Cratio and CPU time in seconds.
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interpolation, without the issue of determining for the latter a good set of points, e.g.
with low Lebesgue constant. In particular, the application to many 2D and 3D domains
has been explored, such as balls, cubes, unit sphere, but also less standard ones as
polygons, circular sections [19], spherical rectangles [10] and spherical triangles [21].

Denoting by Pd
n(Ω) the subspace of d-variate polynomials of total-degree not ex-

ceeding n, restricted to a compact set or manifold Ω ⊂ Rd w.r.t. a given measure dµ on
Ω, given

• an orthonormal basis of Pd
n(Ω), say {p j}, 1 ≤ j ≤ Nn = dim(Pd

n(Ω)),

• a cubature formula exact for Pd
2n(Ω) with nodes X = {xi} ⊂ Ω and positive

weights w = {wi}, 1 ≤ i ≤ M with M ≥ Nn,

• the scalar product ⟨ f ,g⟩M = ∑i=1,...,M wi f (xi)g(xi),

the hyperinterpolation of f ∈C(Ω) is

(Ln f )(x) =
Nn

∑
j=1

⟨ f , p j⟩M p j(x) =
Nn

∑
i=1

wi f (xi)
Nn

∑
j=1

p j(xi)p j(x).

Applying this notion to our spherical setting, if Ω ≡P is spherical polygon strictly
contained in a hemisphere, dµ = dσ is the surface measure on the sphere, then

1. by means of the routines in our Matlab package dCATCH, freely available at [22],
we determine the required orthonormal basis {p j},

2. next we compute a cubature rule of degree 2n on Ω as previously shown,

3. finally we get the hyperinterpolant of degree n.

Items one and three require some explanation. Since the cubature formula with
nodes {xi}i=1,...,M and weights {wi}i=1,...,M has ADE equal to 2n, if {p j} j=1,...,Nn is
orthonormal w.r.t. this discrete measure, being exact for all the polynomials of total
degree at most 2n, it turns out that it is orthonormal also w.r.t. dσ . Next, denoting
by Vn ∈ RM×Nn the Vandermonde matrix of the spherical harmonics basis {φi}i=1,...,Nn

evaluated at {xi}i=1,...,M , we first determine the QR factorization of
√

WVn, i.e. a uni-
tary matrix Q ∈ RM×Nn and a upper triangular one R ∈ RNn×Nn such that

√
WVn = QR

and then set
(p1, . . . , pNn) = (φ1, . . . ,φNn)R

−1.

Since Un =VnR−1 = (p j(xi)) is the Vandermonde matrix w.r.t. the basis {pk}k=1,...,Nn ,
it can be easily checked that the latter is actually orthonormal w.r.t. the scalar product
defined by the discrete measure generated by the cubature formula. Observe that R
is non singular since Vn is full rank in view of the fact that the set X = {xi} ⊂ Ω is
Pn(Ω)-determining.

Furthermore, the vector of hyperinterpolation coefficients c∗ = (c∗j) j=1,...,Nn , such
that (Ln f )(x) = ∑

Nn
j=1 c∗j p j(x), that can be regarded as Fourier coefficients, can be

conveniently computed in matrix form, being

c∗ =UT
n W f = (

√
WUn)

T
√

W f = QT
√

W f , f = ( f (xi))i=1,...,M.
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Concerning the quality of the approximation, there are many theoretical aspects
that deserve to be cited, and in particular that if f is a continuous function in Ω then

∥ f −Ln f∥L2(Ω) ≤ 2
√

σ(Ω)En( f ,Ω), En( f ,Ω) = min
p∈Pn(Ω)

∥ f − p∥∞, (2)

so implying that if p ∈ Pd
n(Ω) then Ln p = p, as well as

∥ f −Ln∥L∞(Ω) ≤ (1+∥Ln∥)En( f ,Ω) (3)

where

∥Ln∥= sup
f ̸=0

∥Ln f∥L∞(Ω)

∥ f∥L∞(Ω)
.

For additional more technical details, see [19], [21].

Recently some hyperinterpolation variants have been studied, having in mind be-
tween various scopes also to improve the approximation quality in case of noisy data.
We make a brief glance on some of them, as the filtered, Lasso and hybrid variants,
useful later to comprehend the comparisons made in the numerical section.

In filtered hyperinterpolation [16], one introduces a filter function h ∈ C ([0,+∞))
that satisfies

h(x) =

{
1, for x ∈ [0,1/2],
0, for x ∈ [1,∞).

It is straightforward to notice that depending on the behaviour in [1/2,1], one can define
many filters, e.g. as used in [2]

h(x) =

 1, x ∈ [0, 1
2 ],

sin2(πx), x ∈ [ 1
2 ,1]

0, for x ∈ [1,∞).
(4)

Denoting by ⌊·⌋ the floor function, by h the choosen filter and by ⟨ f ,g⟩M a discrete
scalar product defined by an M-point cubature rule of PI-type in Ω with algebraic
degree of exactness L− 1+ ⌊L/2⌋, the filtered hyperinterpolant Fn f ∈ Pn−1(Ω) of f
consists in

Fn f :=
Nn

∑
j=1

h
(

deg p j

n

)
⟨ f , p j⟩M p j. (5)

It can be easily seen, in view of the definition of the filter, that if p ∈ Pd
⌊n/2⌋(Ω) then

Fn p = p. Next, in [12] the authors show that (distributed) filtered hyperinterpolation
can reduce weak noise.

One of the potential difficulties in (5) is the evaluation of deg p j, j = 1, . . . ,Nn.
This is straightforward for the classical spherical harmonics basis on S2, since it is a
triangular basis, i.e. for k = 0, . . . ,d, j = k2 +1, . . . ,(k+1)2, we have deg p j = k.

In the case of the orthonormal basis {p j} j=1,...,Nn on a spherical polygon P , one
has to take into account that it is computed numerically as specified above, by means
of QR factorisation, starting from the Vandermonde matrix defined by spherical har-
monics. Anyway, since R−1 is an upper triangular non-singular matrix, then the so
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determined orthonormal basis (p1, . . . , pNn) of P3
n(P) is also triangular and again for

k = 0, . . . ,d, j = k2 +1, . . . ,(k+1)2, we have that deg p j = k.
An alternative approach consists in Lasso hyperinterpolation [1] that denoises per-

turbed data and attempts to dismiss less relevant discrete Fourier coefficients.
To this purpose, let us define the soft thresholding operator as

Sk (a) := max(0,a− k)+min(0,a+ k),

where k ≥ 0, that is

Sk (a) =

 a+ k, if a <−k,
0, if − k ≤ a ≤ k,

a− k, if a > k.

and suppose that a discrete scalar product ⟨ f ,g⟩M is given by an M-point cubature rule
of PI-type in Ω with algebraic degree of exactness 2n.

Then the Lasso hyperinterpolation of f onto PL(Ω) is defined as

L λ
L f :=

Nn

∑
j=1

Sλ µ j(⟨ f , p j⟩M) p j. (6)

where λ > 0 is the regularization parameter and {µk}Nn
k=1 is a set of positive penalty

parameters.
By the definition of Sk (a), if |⟨ f , pk⟩M| ≤ λ µk then Sλ µk

⟨ f , pk⟩M = 0, so explain-
ing how it tries to dismiss less relevant discrete Fourier coefficients, slightly modify-
ing the remaining ones. Differently from the classical hyperinterpolation and filtered
hyperinterinterpolation, the Lasso operator is not in general a projection to a certain
polynomial space and is not invariant under a change of basis.

In [1] the authors have shown theoretically and numerically the effectiveness L λ
n in

the case of noisy data, taking advantage of the connection between L λ
n f and a certain

ℓ1−regularized least squares problem.
In order to combine the features of filtered and Lasso hyperinterpolation, in [2] the

authors introduced the so called hybrid hyperinterpolation.
Suppose that the discrete scalar product ⟨ f ,g⟩M is determined as above by an M-

points quadrature rule of PI-type in Ω with algebraic degree of exactness 2n. The
hybrid hyperinterpolation of f onto Pd

n(Ω) is defined as

Hλ
n f :=

Nn

∑
j=1

h
(

deg p j

n

)
Sλ µ j(

〈
f , p j

〉
M)p j, λ > 0, (7)

where h(·) is a filter function, {Sλ µ j(·)}
Nn
j=1 are soft thresholding operators in which

µk > 0, k = 1, . . . ,Nn.
Similarly to the case of the Lasso hyperinterpolation, by means of a connection

between Hλ
n f and a certain ℓ2

2 − ℓ1regularized least squares problem, in [2, Thm. 4.2]
it is shown how hybrid hyperinterpolation acts on noisy data, with advantages in term
of sparsity of its polynomial coefficients.
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In the numerical section we report some examples, in which we show the perfor-
mance of the classical hyperinterpolation as well as a comparison in problems dealing
with noisy data.

Remark 1 In this section we have not mentioned for sake of brevity some relevant
hyperinterpolation variants as Hard Thresholding [5] or Tikhonov regularized least
squares approximation that continuously shrinks all hyperinterpolation coefficients
without dismissing less relevant ones.

Remark 2 We observe that, though Ln requires the availability of on algebraic cuba-
ture rule with degree of precision ADE = 2n, some recent papers are considering the
case when instead we have that ADE < 2n and how this choice affects the approxima-
tion quality (see, e.g., [3],[4]).

3.1 Numerical experiments
In our first numerical examples, we consider as spherical polygon P that obtained
as course map of Australia (without taking into account its smaller islands, lakes and
rivers), scaled in S2 and as functions those fk, k = 1, . . . ,6 defined above.

In Figure 6 we report an approximation of the relative error

∥ fk(X)− (Ln fk)(X)∥∞

∥ fk(X)∥∞

≈ ∥ fk −Ln fk∥∞

∥ fk∥∞

where n = 1, . . . ,10 and X is the set of 82413 nodes of the rule on P , with ADE equal
to 10.

As somehow expected, the quality of the approximation of f2, f5 and f6 via hyper-
interpolation is inferior to that of f1, f3 and f4. Furthermore, since f1 ∈ P6, in exact
arithmetic we have Ln f1 ≡ f1 for n ≥ 6, so explaining why we get in this case relative
errors close to 10−15.

Next we plot in Figure 7 an approximation in semilogarithmic scale of ∥Ln∥∞ for
n = 1, . . . ,10, a quantity that as seen above is fundamental to determine, in view of
(3), an upper bound of ∥ f −Ln∥∞ w.r.t. the best approximation error En( f ,P), where
f ∈C(P).

To this purpose, defining the reproducing kernel Kn(x,y) = ∑
Nn
i=1 pi(x)pi(y) and

gi(x) = wiKn(xi,x), it can be proven that

∥Ln∥∞ = max
x∈P

M

∑
i=1

|gi(x)| ≈ max
x∈X

M

∑
i=1

|gi(x)|

where X is a sufficiently dense set of points. In our tests, we have choosen again
as X the set of 82413 nodes of the rule on P , with ADE equal to 10. The results
show that for n ≤ 10, the operator norm ∥Ln∥ is relatively small and thus, by (3), the
approximation error is not too large w.r.t. that of the best approximant En( f ,P).

We report that, when the cubature formula is available, the computation of the
hyperinterpolation coefficients c∗ = (ck)k=1,...,Nn , for n ≤ 10, requires from 5 ·10−4 to
10−2 seconds.
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Figure 6: Inf-Norm hyperinterpolation relative error of several test functions over a
coarse approximation of Australia.
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Figure 7: Approximation of the hyperinterpolation operator norm ∥Ln∥ when P is a
coarse approximation of Australia.

Next we intend to compare the proposed forms of hyperinterpolation, i.e. the clas-
sical one as well the filtered, the Lasso and the hybrid one on the case of noisy data in
the spherical polygon P adopted above.

As for filtered hyperinterpolation, following [2], we choose h : [0,1]→ [0,1] defined
as

h(x) =
{

1, x ∈ [0, 1
2 ],

sin2(π x), x ∈ [ 1
2 ,1].
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λ ≈ 0.011 λ ≈ 0.0087 λ ≈ 0.0073 λ ≈ 0.0061
filtered 0.070603 0.067005 0.069905 0.068639
Lasso 0.034094 0.035766 0.037304 0.03865
hybrid 0.033333 0.033969 0.034454 0.03513

hyperint. 0.079629 0.076223 0.079625 0.078205
hybrid sparsity 19 29 39 49

Table 2: Average approximation errors in the 2-norm and sparsity of hybrid hyperinter-
polation coefficients of noisy versions of f (x) = exp((x6)cos(y+2z)), over a spherical
polygon P that approximates the Australia, scaled on the unit-sphere S2, via variants of
hyperinterpolation of degree 10. The perturbation is obtained by the sum of impulse
noise with a = 0.25 and of gaussian noise having standard deviation σ = 0.25.

In the experiments reported in Table 2, we consider noisy evaluations of

f (x,y,z) = exp(x6 · cos(y+2z))

on the nodes {Pj} j=1,...,441 of a compressed cubature rule over P with ADE equal to
20.

The perturbation is obtained by means of the sum of Gaussian noise N (0,σ2)
from a normal distribution with mean 0 and standard deviation σ , and of impulse noise
I (a) that takes uniformly distributed random values in [−a,a] with probability 1/2.
In these tests, we have set a = 0.25 and σ = 0.25.

Next, being p10 the chosen hyperinterpolant of degree 10 on the perturbed data
{(Pj, f (Pj)+ ε j)} j=1,...,441, we estimate the errors ∥ f − p10∥2 via a discretization of
the L2 scalar product by means of a cubature rule with degree of precision 30. In Table
2 we report as result the average error over 10 trials.

As for the Lasso and hybrid parameters λ , we use some of the hyperinterpolant
coefficients that are 20-th, 30-th, 40-th and 50-th in magnitude, while all µi are equal
to 1.

In these tests the performance of Lasso and hybrid hyperinterpolation is superior
to that of the classical and filtered hyperinterpolation. Observe that the latter does not
depend on the choice of λ , so explaining why their results remain almost equal varying
such parameter.

The last column shows the sparsity of the hybrid hyperinterpolation coefficients,
i.e. the number of those that are non null, varying λ . As comparison, take into account
that filtered and classical hyperinterpolation require 121 non null coefficients.

As final experiments, we report in Table 3, the results obtained as in the previous
example but fixing λ and varying a and σ , i.e. the amount of noise. In this framework
the chosen values of λ , each time obtained as the 20-th hyperinterpolation coefficient
in magnitude, vary in the interval [0.0114,0.0150].

We observe the advantage of using filtered or classic hyperinterpolation in case of
mild noise while it is clear the counterpart when the perturbation is more significative.

We conclude saying that all the Matlab codes for hyperinterpolation on spherical
polygons used in this work are available as open-source software at [17].
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a = σ = 0.025 a = σ = 0.05 a = σ = 0.1 a = σ = 0.3
filtered 0.00678 0.0137 0.0276 0.0844
Lasso 0.0124 0.0151 0.0200 0.0391
hybrid 0.0124 0.0150 0.0198 0.0376

hyperint. 0.0076 0.0157 0.0313 0.0964
hybrid sparsity 19 19 19 19

Table 3: Average approximation errors in the 2-norm and sparsity of hybrid hyperinter-
polation coefficients of noisy versions of f (x) = exp((x6)cos(y+2z)), over a spherical
polygon P that approximates the Australia, scaled on the unit-sphere S2, via variants of
hyperinterpolation of degree 10. The perturbation is obtained by the sum of impulse
noise with several values of a and of gaussian noise having standard deviation σ , tak-
ing as λ the 10-th Fourier coefficient in magnitude of hyperinterpolation.
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