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Purpose

In this note we intend to give a very short introduction to Monte
Carlo and quasi Monte Carlo, in which we just outline its ideas,
problems and the basic theory.

There are many books, primers and videos that one may find in its
huge literature and on the web.

Between them, some good resources are surely

R.E. Caflisch, Monte Carlo and quasi-Monte Carlo methods, Acta
Numerica, 1998, pp. 1–48.

J.Dick, F.Y. Kuo, I.H. Sloan, J. High dimensional integration – the
Quasi-Monte Carlo way, Acta Numerica, 2014, pp. 1–157.

P.J. Davis and P.Rabinowitz, Methods of Numerical Integration, Dover
1984.

I.M. Sobol, A Primer For The Monte Carlo Method, CRC press 1994.
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https://www.math.ucla.edu/~caflisch/Pubs/Pubs1995-1999/actaNumerica1998.pdf 
http://web.maths.unsw.edu.au/~josefdick/preprints/DKS2013_Acta_Num_Version.pdf
http://web.maths.unsw.edu.au/~josefdick/preprints/DKS2013_Acta_Num_Version.pdf
https://dn790003.ca.archive.org/0/items/in.ernet.dli.2015.147827/2015.147827.Methods-Of-Numerical-Integration.pdf
https://archive.org/download/APrimerForTheMonteCarloMethod/APrimerForTheMonteCarloMethod1994-Sobol.pdf


History

The task of Monte Carlo type methods is to approximate numerical
integrals on the hypercube [0, 1]s of the form

Is(f ) =
∫
[0,1]s

f (x)dx, f ∈ C([0, 1]s)

via n-point integration rule of the form

Qn,s =
1
n

n∑
i=1

f (ti)

in which one uses prescribed samples ti ∈ [0, 1]s, i = 1, . . . , n.
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History

Following [5],

The generally accepted birth date of the Monte Carlo method
is 1949, when an article entitled ’The Monte Carlo method” by
Metropolis and Ulam appeared.

The American mathematicians John von Neumann and
Stanislav Ulam are considered its main originators. In the
Soviet Union, the first papers on the Monte Carlo method
were published in 1955 and 1956 by V. V. Chavchanidze, Yu. A.
Shreider and V. S. Vladimirov.

Curiously enough, the theoretical foundation of the method
had been known long before the von Neumann-Ulam article
was published.
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Usage

As we will see, these techniques are useful in several instances. Here we
will focus our attention on the following topics.

1 Integration domains of R2 or R3 with difficult geometry.

2 High dimensional integration. About the latter, following [3], p.4:

Applications have also played an important role in the development
of QMC methods suitable for high dimensional problems. In finan-
cial mathematics, the numerical experiments of Paskov and Traub
(1995), which used low-discrepancy QMC methods in 360 dimen-
sions to value parcels of mortgage-backed obligations, were suc-
cessful to a degree that caused universal surprise. ...
Option pricing problems have spurred many developments. ...
The problem of evaluating high dimensional expected values arising
from partial differential equations with random coefficients, typified
by the flow of a liquid (oil or water) through a porous material, with
the permeability treated as a random field, is the newest driver of
innovation.
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Main problem

We start with the first problem previously mentioned and intend to
numerically approximate

∫
Ω
f (x)dΩ ≈

N∑
i=1

wif (Pi).

where
Ω ⊆ [0, 1]s, where s = 2, 3 (e.g. a sphere, a polygon, a
polyhedron, etc.),
f ∈ C(Ω),
are available the samplings f (Pi), i = 1, . . . ,N at the scattered
data P1, . . . , PN ∈ Ω.

6/56



Monte Carlo type methods

In the case the set of nodes {Pi}i=1,...,N is a subset of sequence of
points that is uniformly distributed in Ω, the classical approach of
Monte Carlo-type methods gives∫

Ω
f (x)dΩ ≈ µ(Ω)

N

N∑
i=1

f (Pi).

where µ(Ω) is the measure of the domain Ω (or an approximation).

Notice that the weights are all equal to µ(Ω)
N .
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Monte Carlo type methods: basic implementation

A typical case is that Ω is defined by set operations over

Ω1, . . . ,ΩM ,

e.g. ∩Mi=1Ωi or ∪Mi=1Ωi (see figures in the next page).

A basic approach is to
determine a hyper-rectangle R containing Ω;
define an uniformly distributed sequence X∗

R on R;
take the first N∗ points XR of X∗

R (usually N∗ is very large);

determine the sequence of points of X (i)
R ⊆ XR belonging to

Ωi , i = 1, . . . ,M (in-domain functions on each Ωi must be
available, it may not be a trivial task!);
determine from these X (i)

R , i = 1, . . . ,M the required sequence
XΩ on Ω as well as an approximation of µ(Ω);
choose N points {Pi}i=1,...,N in XΩ and from samplings of f
compute

∫
Ω f (x)dΩ ≈ µ(Ω)

N
∑N

i=1 f (Pi).
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Monte Carlo type methods: example
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Figure: Intersection Ω of a polygonal minion with a disk. N∗ = 10000 points in
the bounding box R ≈ [−0.5000, 0.5000]× [−0.6741, 0.7077] of which N = 4741
are in Ω. Thus µ(Ω) ≈ µ(R) · 4741/10000 ≈ 0.6551.

9/56



Monte Carlo type methods in low dimension

One immediately notices how relevant are indomains routines. If
they are available, these methods may provide results even in
complicated geometries without tracking the boundaries.

Unfortunately, it is noticed that the convergence may be really slow,
depending on the point-set. We will explore this problem in general,
providing estimates and some ideas to mitigate this problem.

In particular we will consider the
convergence of the classical Monte Carlo method based on
random points,
basic results on Quasi-Monte Carlo methods, that in general
provide a better convergence rate.
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Monte Carlo type methods probabilistic estimates

Suppose that Qn,s = 1
n
∑n

i=1 f (ti) in which t1, . . . , tn are i.i.d.
(independent and identically distrubuted) uniform random samples
from [0, 1]s.

Theorem (Monte Carlo probabilistic estimates, [3] p.6)
For all continuous and square integrable functions f , denoting by

E the expectation w.r.t. the uniform random samples t1, . . . , tn,
σ2(f ) := Is(f 2)− (Is(f ))2 the variance of f ,

we have that
1 E[Qn,s(f )] = Is(f );

2
√
E[|Is(f )− Qn,s(f )|2] = σ(f)√

n ;

Furthermore, by the central limit theorem, if 0 < σ(f ) < +∞ then

lim
n
P
(
|Is(f )− Qn,s(f )| ≤ c

σ(f )√
n

)
=

1√
2π

∫ c

−c
exp(−x2/2)dx.
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Monte Carlo type methods probabilistic estimates

From

lim
n
P
(
|Is(f )− Qn,s(f )| ≤ c

σ(f )√
n

)
=

1√
2π

∫ c

−c
exp(−x2/2)dx.

just to make some examples (see [4], p. 387), denoting by

En = |Is(f )− Qn,s(f )|,

we have that

Error En at 50% level of probability ≤ .6745σ(f)√
n ;

Error En at 90% level of probability ≤ 1.645σ(f)√
n ;

Error En at 95% level of probability ≤ 1.960σ(f)√
n ;

Error En at 99.99% level of probability ≤ 3.891σ(f)√
n .
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Monte Carlo type methods probabilistic estimates

In view of these results
we have a probabilistic error bound with a convergence rate of
O(n−1/2;
pros: it is independent on s (dimension of the domain);
cons: the convergence of the method is slow;
variance reduction techniques as

importance sampling,
stratified sampling,
correlated sampling,

can be used to improve the efficiency of MC, but in practice
MC methods often remain distressingly slow [3].
Bakhvalov (1959) proved that the O(n−1/2) rate of convergence
cannot be improved for general square-integrable or
continuous functions f .

Thus for functions with more smoothness, this slow convergence
rate is the main motivation for switching to Quasi-Monte Carlo
methods where specific pointsets are choosen.
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Monte Carlo type methods probabilistic estimates

As numerical test, we intend to compute

I1(exp(−x2)) =
∫ 1

0
exp(−x2)dx =

√
2
π

erf(x) ≈ 0.7468241328124270.

Having in mind to see the behaviour of MC approximation, we
perform 1000 tests, for n = 2, 4, 8, 16, 32, . . . , 262144.
For each n, we consider the average error

En = E(|I1(exp(−x2))− Qkn,1|),

being Qkn,1 the result obtained at the k-th experiment, using n
random points.
Finally, supposing En ≈ C√

n , remembering that for successive n
we doubled the cardinality, we check that

En/E2n ≈
C√
n
C√
2n

=
√
2 ≈ 1.41.
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Monte Carlo type methods probabilistic estimates

To this purpose, we implement the following routine
demo montecarlo 1D.m
f u n c t i o n demo_montecarlo_1D

NV = 2 . ˆ ( 1 : 1 8 ) ;
f=@ ( x ) exp ( − x . ˆ 2 ) ;
I=integral ( f , 0 , 1 , ” AbsTol ” , 1 0 ˆ ( − 1 5 ) ) ;
trials=1000;
AE_mat = [ ] ;

f o r k= 1 : trials
AE = [ ] ;
f o r n=NV

P=rand ( n , 1 ) ;
fP=f e v a l ( f , P ) ;
In=sum ( fP ) / n ;
AE ( end + 1 , 1 ) =abs ( I − In ) ;

end
AE_mat ( : , k ) =AE ;

end

AE_mat_aver=abs ( sum ( AE_mat , 2 ) / trials ) ;

f o r k= 1 : l e n g t h ( NV )
f p r i n t f ( ’\n \ t n : %7.0 f ae : %1 .5 e ’ , NV ( k ) , AE_mat_aver ( k ) ) ;

end

r a t=AE_mat_aver ( 1 : end − 1 ) . / AE_mat_aver ( 2 : end )
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https://www.math.unipd.it/~alvise/PHD_2024/LEZIONI/demo_montecarlo_1D.m


Monte Carlo type methods probabilistic estimates

Figure: Numerical experiments by MC on a certain 1D test case. On the
left, MC average errors. On the right: ratio (close to

√
2, indicating an

average convergence of the order O(n−1/2))
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Monte Carlo type methods probabilistic estimates

As second numerical test, we intend to compute

I2(exp(−x2−y2)) =
∫ 1

0
exp(−x2−y2)dxdy =

2
π2erf

2(x) ≈ 0.557746285.

Having in mind to see the behaviour of MC approximation, we
perform 1000 tests, for n = 2, 4, 8, 16, 32, . . . , 262144.
For each n, we consider the average error

En = E(|I1(exp(−x2))− Qkn,2|),

being Qkn,2 the result obtained at the k-th experiment, using n
random points in [0, 1]2.
Finally, supposing En ≈ C√

n , remembering that for successive n
we doubled the cardinality, we check that

En/E2n ≈
C√
n
C√
2n

=
√
2 ≈ 1.41.
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Monte Carlo type methods probabilistic estimates

We implement the following routine for the 2D case, very similar to
the 1D version, that is demo montecarlo 2D.m
f u n c t i o n demo_montecarlo_2D

NV = 2 . ˆ ( 1 : 1 4 ) ;
f=@ ( x , y ) exp ( − x . ˆ 2 − y . ˆ 2 ) ;
I=( sq r t ( p i ) * e r f ( 1 ) / 2 ) ˆ 2 ;
trials=1000;
AE_mat = [ ] ;

f o r k= 1 : trials
AE = [ ] ;
f o r n=NV

P=rand ( n , 2 ) ;
fP=f e v a l ( f , P ( : , 1 ) , P ( : , 2 ) ) ;
In=sum ( fP ) / n ;
AE ( end + 1 , 1 ) =abs ( I − In ) ;

end
AE_mat ( : , k ) =AE ;

end

AE_mat_aver=abs ( sum ( AE_mat , 2 ) / trials ) ;

f o r k= 1 : l e n g t h ( NV )
f p r i n t f ( ’\n \ t n : %7.0 f ae : %1 .5 e ’ , NV ( k ) , AE_mat_aver ( k ) ) ;

end

AE_mat_aver ( 1 : end − 1 ) . / AE_mat_aver ( 2 : end )
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https://www.math.unipd.it/~alvise/PHD_2024/LEZIONI/demo_montecarlo_2D.m


Monte Carlo type methods probabilistic estimates

Figure: Numerical experiments by MC on a certain 2D test case. On the
left, MC average errors. On the right: ratio (close to

√
2, indicating an

average convergence of the order O(n−1/2))
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Quasi-Monte Carlo methods

Following Sobol [5], p. 97,

In 1916, H. Weyl found that infinite sequences of non-random points
Q1,Q2, . . . ,Qn . . . exist, which have a property similar to MC: for an
arbitrary Riemann-integrable function f (x1, . . . , xs)∫ 1

0
. . .

∫ 1

0
f (x1, . . . , xs)dx1 . . . dxs = lim

n

1
n

n∑
j=1

f (Qj)

Such sequences are said to be uniformly distributed in the number-
theoretical sense.

Next Sobol says

1. The uniformity of distribution should be optimal as n→ +∞,
2. the uniformity of distribution of initial points Q1,Q2, . . . ,Qn
should be observed for very small n;
3. formulas for computing these points should be simple.
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Quasi-Monte Carlo methods

Referring to [3]:

The key idea is that t1, . . . , tn ∈ [0, 1]s are chosen so that cho-
sen deterministically to be better than random, in the sense
that the deterministic nature of QMC leads to guaranteed er-
ror bounds, and that the convergence rate may be faster than
the MC rate of O(n−1/2) for sufficiently smooth functions.

There are two types of QMC methods:
The “open” type: this uses the first n points of an
infinite sequence. Thus to increase n one only needs to
evaluate the integrand at the additional cubature points.
The “closed” type: this uses a finite point set which
depends on n. Thus a new value of n means a
completely new set of cubature points.
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Quasi-Monte Carlo methods

In literature there are many examples of QMC methods, e.g.
Van der Corput sequence;
Halton sequence (1960);
Hammersley point set;
Kronecker sequence;
Sobol sequence;

Lately many efforts have been done to discover the properties of
Lattice rules;
Digital nets and sequences (example: Sobol sequence (1967)).

and it is not possible to describe in short all their interesting
properties, in view of the massive research on the field.
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https://en.wikipedia.org/wiki/Van_der_Corput_sequence
https://en.wikipedia.org/wiki/Halton_sequence
https://mathworld.wolfram.com/HammersleyPointSet.html
https://www.jcgt.org/published/0011/01/04/paper.pdf
https://en.wikipedia.org/wiki/Sobol_sequence
https://link.springer.com/book/10.1007/978-3-031-09951-9
https://web.maths.unsw.edu.au/~josefdick/preprints/DP_book_preprint.pdf
https://en.wikipedia.org/wiki/Sobol_sequence


Quasi-Monte Carlo methods
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Figure: From top left to bottom right, 1000 random, Halton, Sobol and
Hammersley points.
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Quasi-Monte Carlo methods

In the following, being

x = (xi)i=1,...,d ∈ [0, 1]d ,

we define the hyperrectangle

[0, x] := [0, x1]× . . . [0, xd].

Definition (Star-discrepancy)
The local discrepancy function ∆P is defined as

∆P(x) =
1
n

n∑
i=1

1[0,x](ti)−
∫
[0,x]

1[0,x](y)dy =
1
n

n∑
i=1

1[0,x](ti)−
d∏
i=1

xi .

The star-discrepancy of a set P = {t1, . . . , tn} is defined as

D∗
N(P) = sup

x∈[0,1]d
|∆P(x)|
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Quasi-Monte Carlo methods

Intuitively, in 1D, the star discrepancy is the proportion of points of
P = {ti}i=1,...,N lying in the interval [0, x] minus the length of the
interval, representing somehow as written in [3], p.42:

.. the departure of this proportion from the “ideal ”proportion,
which is the length of the interval.

The star-discrepancy can therefore be understood as a mea-
sure for how uniformly the point set P is distributed, i.e., it
measures the discrepancy between the empirical distribution
of the point set P and the uniform distribution.
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Quasi-Monte Carlo methods

In order to give the idea of what happens we write the Matlab code
figure demo discrepancy.m, getting the following results
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The local discrepancy ∆(P) for P = [0.67874,0− 75774] is the
absolute error of computing the area of the square with vertices
the origin and P by the quadrature method.

The worst of these errors, varying P in [0, 1]2, is the
star-discrepancy.
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https://www.math.unipd.it/~alvise/PHD_2024/LEZIONI/demo_discrepancy.m


Quasi-Monte Carlo methods

Definition (variation in the Hardy-Krause sense)

The variation in the Hardy-Krause sense of f : [0, 1] → R is

V [f ] =
∫ 1

0

∣∣∣∣dfdt
∣∣∣∣ dt

The variation in the Hardy-Krause sense of f : [0, 1]d → R is

V [f ] =
∫
[0,1]d

∣∣∣∣ ∂df
∂t1 . . . ∂td

∣∣∣∣ dt1 . . . dtd + d∑
i=1

V [f (i)1 ]

where f (i)1 is the restriction of the function to the boundary xi = 1.

Observe that in the definition above, since f (i)1 are restrictions
involving d − 1 variables, the definition is recursive.
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Quasi-Monte Carlo methods

Theorem (Koksma-Hlawka, 1961)
For

any pointset {ti},
any function f with bounded variation in the Hardy-Krause sense,

the integration error is such that∣∣∣∣∣ 1N
N∑
i=1

f (ti)−
∫
[0,1]d

f (y)dy

∣∣∣∣∣ ≤ D∗
N V [f ].
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Quasi-Monte Carlo methods

We make some remarks on the previous inequality.

1 The error bound

EN(f ) =

∣∣∣∣∣ 1N
N∑
i=1

f (ti)−
∫
[0,1]d

f (y)dy

∣∣∣∣∣ ≤ D∗
N V [f ].

depends on D∗
N concerning the sequence and V [f ] on the function;

2 one can prove that it is a worst case bound;

3 in [1] the authors point out

The assumptions required in the 1-dimensional Koksma inequality are
satisfied by many familiar functions and are usually easy to verify.
On the contrary, the Hardy–Krause condition in the Koksma–Hlawka
inequality seems to be rather strict. It works well for smooth func-
tions, but it cannot be applied to most functions with simple discon-
tinuities.
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Quasi-Monte Carlo methods

An effect of Koksma-Hlawka inequality, knowing some inequalities
about star-discrepancy, is that we have that

for Hammersley pointset

EN(f ) ≤ C ′ (log(N))
d−1

N
V [f ],

with C ′ depending only on the dimension d;
for Halton sequence

EN(f ) ≤ C
(log(N))d

N
V [f ],

with C depending only on the dimension d.
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Quasi-Monte Carlo methods
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Quasi-Monte Carlo methods

Remark
It is known that for pointsets with N points

dimension 1: D∗
N ≥ 0.5/N;

dimension 2: D∗
N ≥ 0.023 log(N)/N;

dimension d ≥ 3: open problem.
Conjecture for dimension d for sequences:

D∗
N ≥ cd(log(N))d/N

for some cd > 0.

Those achieving this order are named low-discrepancy sequences.
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Quasi-Monte Carlo methods

As numerical comparison in 1D, we run some tests of some QMC
methods w.r.t. MC (using Matlab built-in rand).

We made our test in the less regular case of the integrand

f (x, y) = exp (−x2)

over the unit interval [0, 1].

The reference value is I =
√
π erf(1)/2 ≈ 0.7468241328124270.

The QMC methods are
Hammersley pointset,
Halton sequence,
Sobol sequence.

with the same meaning of the previous tables, that is averaging
results over 1000 tests.
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Quasi-Monte Carlo methods

In our 1D tests we propose just one table, since for
N = 2, 4, 8, . . . , 262144 the pointsets produced by Halton sequence,
Sobol sequence and Hammersley pointset are actually the same.
>> Pset = haltonset ( 1 ) ;
>> PHL=Pset ( 1 : 2 ˆ 6 , : ) ;
>> Pset = sobolset ( 1 ) ;
>> PSB=Pset ( 1 : 2 ˆ 6 , : ) ;
>> P = Hammersley ( 2 ˆ 6 , 1 ) ; PHM=P ’ ;
>> norm ( PHL − PSB )
ans =

0
>> norm ( PHL − PHM )
ans =

3 .0272
>> norm ( s o r t ( PHL ) − s o r t ( PHM ) )
ans =

0
>>

Notice that in the case of Hammersley pointset, for N = 26, the
pointset is the same but the order of the points is different.
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Quasi-Monte Carlo methods

We implement the following demo demo QMC 1D.m, to perform
univariate tests.
f u n c t i o n demo_QMC_1D

NV = 2 . ˆ ( 1 : 1 8 ) ;
f=@ ( x ) exp ( − x . ˆ 2 ) ;
I=sq r t ( p i ) * e r f ( 1 ) / 2 ;
trials=1000;
AE_mat = [ ] ;

QMC_type=2;

f o r k= 1 : trials
AE = [ ] ;
f o r n=NV

P=QMC_pointset ( QMC_type , n ) ;
fP=f e v a l ( f , P ) ;
In=sum ( fP ) / n ;
AE ( end + 1 , 1 ) =abs ( I − In ) ;

end
AE_mat ( : , k ) =AE ;

end

AE_mat_aver=abs ( sum ( AE_mat , 2 ) / trials ) ;

f p r i n t f ( ’\n \n \ t \ t * AVERAGE ABSOLUTE ERRORS \n \n ’ ) ;
f o r k= 1 : l e n g t h ( NV )

f p r i n t f ( ’\n \ t n : %7.0 f ae : %1 .5 e ’ , NV ( k ) , AE_mat_aver ( k ) ) ;
end

f p r i n t f ( ’\n \n \ t \ t \ t * AVERAGE RATIOS \n \n ’ ) ;
r a t=AE_mat_aver ( 1 : end − 1 ) . / AE_mat_aver ( 2 : end ) ;
f o r k= 1 : l e n g t h ( NV ) − 1

f p r i n t f ( ’\n \ t n 1 : %7.0 f n2 : %7.0 f r a t : %1 .5 e ’ , NV ( k ) , NV ( k + 1 ) , r a t ( k ) ) ;
end
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https://www.math.unipd.it/~alvise/PHD_2024/LEZIONI/demo_QMC_1D.m


Quasi-Monte Carlo methods

The routine QMC pointset is described as follows.

f u n c t i o n P=QMC_pointset ( QMC_type , n )

switch QMC_type

case 0
P=rand ( n , 1 ) ;

case 1

Pset = sobolset ( 1 ) ;
P=Pset ( 1 : n , : ) ;

case 2
Pset = haltonset ( 1 ) ;
P=Pset ( 1 : n , : ) ;

case 3
P = Hammersley ( n , 1 ) ; P=P ’ ;

end

The routines sobolset and haltonset are Matlab built-in, while
Hammersley must be downloaded.
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https://www.math.unipd.it/~alvise/PHD_2024/LEZIONI/QMC_pointset.m
https://it.mathworks.com/matlabcentral/fileexchange/86578-hammersley-sampling-for-design-of-experiments-doe-for-matlab


Quasi-Monte Carlo methods

Figure: Numerical integration of
∫ 1
0 exp (−x

2)dx by means of QMC based
on Halton sequence, Sobol sequence and Hammersley pointsets (one
column since they cohincide!).
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Quasi-Monte Carlo methods

As first numerical comparison in 2D, we run some tests of some
QMC methods w.r.t. MC (using Matlab built-in rand), considering
the numerical approximation of∫

[0,1]2
exp(−x2 − y2)dxdy = π erf2(1)/4 ≈ 0.5577462853510335.

The QMC methods are
Hammersley pointset,
Halton sequence,
Sobol sequence.

averaging the results obtained over 1000 tests.
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Quasi-Monte Carlo methods

Figure: Plot of the function f (x, y) = exp (−x2 − y2) over the unit square
[0, 1]× [0, 1].
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2 exp (−x

2 − y2)dxdy by means of MC.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2 exp (−x

2 − y2)dxdy by means of
QMC based on Hammersley pointsets.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2 exp (−x

2 − y2)dxdy by means of
QMC based on Halton sequence.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2 exp (−x

2 − y2)dxdy by means of
QMC based on Sobol sequence.
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Quasi-Monte Carlo methods

As second numerical comparison in 2D, we considered the less
regular case of the integrand

f (x, y) =
√
x2 + y2

over the unit square [0, 1]× [0, 1].

The reference value is I ≈ 0.765195713941172.

Figure: Plot of the function f (x, y) =
√
x2 + y2 over the unit square

[0, 1]× [0, 1].
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2

√
x2 + y2dxdy by means of MC.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2

√
x2 + y2dxdy by means of QMC

based on Hammersley pointsets.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2

√
x2 + y2dxdy by means of QMC

based on Halton sequence.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2

√
x2 + y2dxdy by means of QMC

based on Sobol sequence.
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Quasi-Monte Carlo methods

Finally, we made our test in the case of the integrand

f (x, y) =
√

(x − 0.5)2 + (y − 0.5)2

over the unit square [0, 1]× [0, 1].

One immediately observes the singularity in [0.5, 0.5]. The
environment Chebfun 2 is not able to detect an approximation of
the integral with many digits (absolute error of ≈ 6.1 · 10−8),
proposing

I ≈ 3.825979145203977e− 01,

while Matlab built-in integral2 gives for absolute tolerance of
10−15

I ≈ 3.825978534775538e− 01.

As we shall see, the absolute errors reach orders of the magnitude
of 10−7, 10−9, but are much less predictable for QMC.
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Quasi-Monte Carlo methods

To this purpose,having installed the Chebfun environment, we have:
>> f=@ ( x , y ) ( ( x − 0 . 5 ) . ˆ 2 + ( y − 0 . 5 ) . ˆ 2 ) . ˆ ( 1 / 2 ) ;
>> F=chebfun2 ( f , [ 0 1 0 1 ] ) ;
Warning : Unresolved with maximum CHEBFUN l e n g t h : 65537 .
> In chebfun2 / constructor ( l i n e 2 0 1 )
In chebfun2 ( l i n e 82 )
In compute_integrals ( l i n e 5 )
>> I=sum2 ( F ) ;
>> Q = integral2 ( f , 0 , 1 , 0 , 1 , ’ AbsTo l ’ , 1 0 ˆ ( − 1 5 ) ) ;
>> format long e

>> I

I =
3.825979145203977e −0 1

>> Q

Q =
3.825978534775538e −0 1

>> I −Q
ans =

6. 104284394625736e −08
>>
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Quasi-Monte Carlo methods

Figure: Plot of the function f (x, y) =
√
(x − 0.5)2 + (y − 0.5)2 over the

unit square [0, 1]× [0, 1].
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2

√
(x − 0.5)2 + (y − 0.5)2dxdy by

means of MC.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2

√
(x − 0.5)2 + (y − 0.5)2dxdy by

means of QMC based on Hammersley pointsets.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2

√
(x − 0.5)2 + (y − 0.5)2dxdy by

means of QMC based on Halton sequence.
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Quasi-Monte Carlo methods

Figure: Numerical integration of
∫
[0,1]2

√
(x − 0.5)2 + (y − 0.5)2dxdy by

means of QMC based on Sobol sequence.
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