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This paper is a contemporary review of QMC (“Quasi-Monte Carlo”) meth-
ods, i.e., equal-weight rules for the approximate evaluation of high dimensional
integrals over the unit cube [0, 1]s, where s may be large, or even infinite. Af-
ter a general introduction, the paper surveys recent developments in lattice
methods, digital nets, and related themes. Among those recent developments
are methods of construction of both lattices and digital nets, to yield QMC
rules that have a prescribed rate of convergence for sufficiently smooth func-
tions, and ideally also guaranteed slow growth (or no growth) of the worst case
error as s increases. A crucial role is played by parameters called “weights”,
since a careful use of the weight parameters is needed to ensure that the worst
case errors in an appropriately weighted function space are bounded, or grow
only slowly, as the dimension s increases. Important tools for the analysis are
weighted function spaces, reproducing kernel Hilbert spaces, and discrepancy,
all of which are discussed with an appropriate level of detail.
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1. Introduction

Numerical integration in more than one dimension has for a century been a
topic that presents many challenges, as witnessed by the classical monograph
by Stroud (1971). Among the challenges are those posed by the rich choice
of multidimensional geometries, whether the cube, ball, sphere, simplex, or
something more elaborate. Another challenge is the common occurrence of
singularities of the integrand at special points or sub-manifolds of the region.
But of all the challenges the one that stands above all others is the difficulty
of doing anything effective when the number of integration variables (the
“dimension”) passes beyond the number of fingers on two hands. Certainly
the simple strategy of using a “product” of 1-dimensional rules becomes
infeasible, since even a mere 10-fold product of say 2-point Gauss rules
requires 210 points. Yet these days problems arise, and are tackled, in which
the number of dimensions is in the hundreds, or even the thousands or tens
of thousands.

The aim of this survey is to describe and analyze effective methods for
numerical integration, with a special emphasis on a high number of dimen-
sions. The price that has to be paid is that we consider only the simplest
geometry (namely the unit cube in an arbitrary number s of dimensions),
somewhat smooth functions, and only equal-weight integration rules.

Thus the task is to approximate the integral

Is(f) =

∫

[0,1]s
f(x) dx, (1.1)

where s is greater than 1 and possibly large, for some integrable function f ,
by an n-point integration rule of the form

Qn,s(f) =
1

n

n−1∑

i=0

f(ti), (1.2)

thus a rule that uses the prescribed sample points t0, . . . , tn−1 ∈ [0, 1]s. Of
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course we shall have much to say about the choice of these sample points.
A rule of this equal-weight form is called a Quasi-Monte Carlo (or QMC)
rule.

The name Quasi-Monte Carlo comes from a certain analogy with the
Monte Carlo (MC) method: in its simplest form the MC approximation
to the integral (1.1) takes exactly the same form as (1.2), but with one
crucial difference, that the sample points are chosen randomly (and inde-
pendently), from a uniform distribution on the cube [0, 1]s. The MC method
(Hammersley and Hanscomb 1964, Lemieux 2009, Woźniakowski 2013) has
some very attractive features, most notably that there exists a probabilistic
(root-mean-square) error estimate of the form

σ(f)√
n
,

where σ2(f) is the variance of f ,

σ2(f) := Is(f
2)− (Is(f))

2,

which is finite whenever f is square integrable. Moreover, σ(f) can be
estimated by the same MC rule used to estimate Is(f). But for all the virtues
of the MC method, its O(1/

√
n) rate of convergence is often considered to

be impossibly slow, especially when f is smooth. For example, one needs
four times as many points to reduce the error by a factor of 2, or 100 times
as many points to reduce the error by an order of magnitude.

The QMC methods were born in the 1950s and 1960s from the (successful)
desire to achieve faster convergence than the MC rate of O(1/

√
n). In the

next sections we shall meet QMC methods that depend on constructing
points sets with small “discrepancy”. These methods were indeed successful
in improving upon the MC convergence rate, achieving a convergence rate
of order O((log n)s/n) or better if sufficient smoothness of f is assumed.
In particular, we will meet the so-called “lattice rules”, which for certain
periodic functions (periodic with respect to each component of x) could
achieve convergence rates of O((log n)s/n2) or faster , and so-called “higher
order digital nets”, which could achieve convergence rates of O((log n)2s/n2)
or faster even for non-periodic functions.

In the early days of QMC research, the emphasis was mainly on the rate
of convergence as n increases, and less attention was paid to what hap-
pens as the dimensionality s increases – those early QMC researchers surely
never envisaged QMC methods being applied to integrands in hundreds of
dimensions. For lattice methods there was much interest in the 1960s in pe-
riodization strategies (for converting non-periodic integrands into periodic
ones), which then can achieve fast convergence for appropriate QMC rules,
but regrettably those periodization strategies often turn easy high dimen-
sional problems into ones that are impossibly hard. In any case, the rate of
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convergence is only part of the story: the size of the implied constant is also
important.

In the last two decades there has been great research interest in developing
QMC methods and theory that can cope with arbitrarily high dimensions,
if the circumstances are right. (Note that we do not say that all high di-
mensional problems can be successfully tackled by QMC methods. Rather,
the interest is in recognizing and analyzing mathematically the particular
features that make some high dimensional problems manageable.)

Applications have also played an important role in the development of
QMC methods suitable for high dimensional problems. In financial math-
ematics, the numerical experiments of Paskov and Traub (1995), which
used low-discrepancy QMC methods in 360 dimensions to value parcels of
mortgage-backed obligations, were successful to a degree that caused univer-
sal surprise. This led to many theoretical developments, as researchers strug-
gled to understand how such high dimensionality could be handled success-
fully (Caflisch, Morokoff and Owen 1997, Wang and Fang 2003, e.g.). Option
pricing problems have spurred many developments (Acworth, Broadie and
Glasserman 1998, L’Ecuyer 2004, Giles, Kuo, Sloan and Waterhouse 2008,
Wang and Sloan 2011, Griebel, Kuo and Sloan 2013, e.g.). A challenging
class of problems in multivariate statistics led Kuo, Dunsmuir, Sloan, Wand
and Womersley (2008) to a new understanding of the importance of proper
handling of the transformation process from Rs into [0, 1]s for problems over
unbounded regions. The problem of evaluating high dimensional expected
values arising from partial differential equations with random coefficients,
typified by the flow of a liquid (oil or water) through a porous material, with
the permeability treated as a random field, is the newest driver of innova-
tion (Graham, Kuo, Nuyens, Scheichl and Sloan 2011, Kuo, Schwab and
Sloan 2012). However, in this survey the focus will be on the theoretical
innovations rather than on the applications themselves.

The structure of the survey is as follows. In Section 2 we introduce QMC
methods, and develop basic definitions and concepts without much theory.
In Section 3 we begin to develop key tools (such as reproducing kernel Hilbert
spaces) needed for error analysis of QMC methods. In Section 4 we introduce
the modern theory of weighted function spaces, in which certain parameters
(“weights”) are introduced to describe the circumstance that some variables
(or groups of variables) are more important than others. In Sections 5
and 6 we introduce more sophisticated material on lattice rules and digital
nets. Then in Section 7 we introduce a setting which is currently attracting
great interest, namely that of numerical integration in an infinite number of
dimensions. Finally in Section 8 we give concluding remarks. At the end of
each section we provide notes with references to further related material.
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2. Introducing Quasi-Monte Carlo methods

2.1. Multivariate numerical integration

Recall from (1.1) that our goal is to approximate a multiple integral over
the s-dimensional unit cube [0, 1]s

Is(f) =

∫

[0,1]s
f(x) dx :=

∫ 1

0
· · ·
∫ 1

0
f(x1, . . . , xs) dx1 · · · dxs,

where s is large, possibly in the hundreds or thousands. In practice most
integrals over bounded or unbounded regions can be transformed into this
desired form with a suitable change of variables. The transformation plays
an important role as it determines the behavior of the transformed integrand
f . We shall defer the choice and strategy of transformation to be discussed
later in Subsection 2.11.

For our analysis in this survey, we will generally assume that f is contin-
uous and has a certain level of smoothness, as will be made precise in the
next section.

In the classical theory of numerical integration (Davis and Rabinowitz
1984), an integral in one dimension can be approximated by a quadrature
rule, as follows

∫ 1

0
f(x) dx ≈

n−1∑

i=0

wif(ti),

where t0, . . . , tn−1 ∈ [0, 1] are the quadrature points, and w0, . . . , wn−1 ∈ R
are the quadrature weights satisfying

∑n−1
i=0 wi = 1. Well known examples

include the (left) rectangle rule which uses equally-spaced points ti = i/n
and equal weights wi = 1/n and has the error f ′(ξ)/(2n) for some ξ ∈
(0, 1); the trapezoidal rule (which has second order convergence); Simpson’s
rule (with fourth order convergence); and the Gauss rules (which integrate
polynomials of degree 2n − 1 exactly).

For integration in s dimensions with s ≥ 2, we have cubature rules (Stroud
1971)

∫

[0,1]s
f(x) dx ≈

n−1∑

i=0

wif(ti),

where t0, . . . , tn−1 ∈ [0, 1]s are the cubature points, ti = (ti,1, . . . , ti,s), and

w0, . . . , wn−1 ∈ R are the cubature weights satisfying
∑n−1

i=0 wi = 1. Explicit
cubature rules are available in low dimensions (Cools 1997). An obvious
way to approximate a high dimensional integral is to use a product rule

∫ 1

0
· · ·
∫ 1

0
f(x1, . . . , xs) dx1 · · · dxs ≈

m−1∑

i1=0

· · ·
m−1∑

is=0

ui1 · · · uisf(vi1 , . . . , vis),
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in effect applying a one-dimensional quadrature rule
∑m−1

i=0 uif(vi) to each
of the s integrals. The cubature points ti are given by the s-fold product of
the quadrature points vi, and the cubature weights wi are the corresponding
products of the quadrature weights ui. The total number of points is n = ms,
which is enormous when s is large, while (since f could be a function of only
one component, such as f(x1, . . . , xs) = x21) the error is only the sth root of
the error of the one-dimensional quadrature rule: for example, the product
rectangle rule has error of order O(n−1/s).

As the title suggests, this survey will focus on Quasi-Monte Carlo methods
for high dimensional integration. This section is devoted to introducing the
basic principles behind these methods. We begin in the next subsection
with a brief introduction to the related and widely used classical Monte
Carlo method.

Another competing technique for high dimensional integration is based on
sparse grid methods (Bungartz and Griebel 2004), but we will not discuss
these methods in this survey.

2.2. Monte Carlo method

The classical Monte Carlo (MC ) method is an equal-weight cubature rule
of the form

Qn,s(f) =
1

n

n−1∑

i=0

f(ti),

where t0, . . . , tn−1 are i.i.d. (independent and identically distributed) uni-
form random samples from [0, 1]s.

Theorem 2.1. (Monte Carlo root-mean-square error) For all square-
integrable functions f , we have

√
E[|Is(f)−Qn,s(f)|2] =

σ(f)√
n
,

where the expectation is with respect to the uniform random samples t0, . . . , tn−1,
and

σ2(f) := Is(f
2)− (Is(f))

2

is the variance of f .

Though this result is well known, we give a proof since it will serve as a
model for later arguments.

Proof. We have

E[|Qn,s(f)− Is(f)|2] = E[(Qn,s(f))
2]− 2E[Qn,s(f)]Is(f) + (Is(f))

2,
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where

E[Qn,s(f)] =

∫

[0,1]s
· · ·
∫

[0,1]s

(
1

n

n−1∑

i=0

f(ti)

)
dt0 . . . dtn−1

=
1

n

n−1∑

i=0

∫

[0,1]s
f(ti) dti

= Is(f)

and

E[(Qn,s(f))
2] =

∫

[0,1]s
· · ·
∫

[0,1]s

(
1

n

n−1∑

i=0

f(ti)

)2

dt0 . . . dtn−1

=

∫

[0,1]s
· · ·
∫

[0,1]s

(
1

n2

n−1∑

i=0

n−1∑

k=0

f(ti)f(tk)

)
dt0 . . . dtn−1

=

∫

[0,1]s
· · ·
∫

[0,1]s

(
1

n2

n−1∑

i=0

f2(ti) +
1

n2

n−1∑

i=0

n−1∑

k=0
k 6=i

f(ti)f(tk)

)
dt0 . . . dtn−1

=
1

n2

n−1∑

i=0

∫

[0,1]s
f2(ti) dti +

1

n2

n−1∑

i=0

n−1∑

k=0
k 6=i

∫

[0,1]s
f(ti) dti

∫

[0,1]s
f(tk) dtk

=
1

n
Is(f

2) +
n− 1

n
(Is(f))

2.

Hence

E[|Qn,s(f)− Is(f)|2] =
Is(f

2)− (Is(f))
2

n
,

as claimed.

Treating Qn,s(f) as a random variable, we see from the above proof that
its mean is

E[Qn,s(f)] = Is(f)

(that is to say, the MC method is unbiased), and its variance is

Var[Qn,s(f)] = E[|Qn,s(f)− Is(f)|2] =
σ2(f)

n
.

By the central limit theorem, if 0 < σ(f) <∞ then

lim
n→∞

P
(
|Is(f)−Qn,s(f)| ≤ c

σ(f)√
n

)
=

1√
2π

∫ c

−c
e−x2/2 dx.
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In other words, we have a “probabilistic” error bound with a convergence
rate of O(n−1/2). The convergence rate is independent of the dimension.
Comparing this with, for example, the product-rectangle rule whose conver-
gence rate is O(n−1/s), we see that the MC method has the faster conver-
gence when s ≥ 3 even for smooth functions.

Another advantage of the MC method is that it is easy to obtain a practi-
cal error estimation. Indeed, an unbiased estimator for Var[Qn,s(f)] is given
by

1

n(n− 1)

n−1∑

i=0

(f(ti)−Qn,s(f))
2 =

1

n(n− 1)

(
n−1∑

i=0

f2(ti)− n[Qn,s(f)]
2

)
.

(2.1)

The square root of this quantity provides an estimate for the root-mean
square MC error.

Although widely applicable, MC methods suffer from the slow O(n−1/2)
convergence rate. Variance reduction techniques (e.g. importance sam-
pling, stratified sampling, correlated sampling) can be used to improve the
efficiency of MC, but in practice MC methods often remain distressingly
slow. Bakhvalov (1959) proved that the O(n−1/2) rate of convergence can-
not be improved for general square-integrable or continuous functions f .
For functions with more smoothness, this slow convergence rate is the main
motivation for switching to Quasi-Monte Carlo methods.

2.3. Quasi-Monte Carlo methods

Quasi-Monte Carlo (QMC ) methods are equal-weight cubature rules of the
form

Qn,s(f) =
1

n

n−1∑

i=0

f(ti),

just like MC methods, but now the points t0, . . . , tn−1 ∈ [0, 1]s are chosen
deterministically to be better than random, in the sense that the deterministic
nature of QMC leads to guaranteed error bounds, and that the convergence
rate may be faster than the MC rate of O(n−1/2) for sufficiently smooth
functions.

There are two types of QMC methods:

• The “open” type: this uses the first n points of an infinite sequence.
Thus to increase n one only needs to evaluate the integrand at the
additional cubature points.

• The “closed” type: this uses a finite point set which depends on n.
Thus a new value of n means a completely new set of cubature points.
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(Here and in the following, a point set is understood to be a multiset, i.e.,
we count points according to their multiplicity.)

The following definition is needed before we give examples of QMC meth-
ods.

Definition 2.2. (Radical inverse function) For integers i ≥ 0 and b ≥
2, we define the radical inverse function φb(i) as follows:

if i =

∞∑

a=1

iab
a−1 where ia ∈ {0, 1, . . . , b− 1}, then φb(i) :=

∞∑

a=1

ia
ba
.

In other words, if i = (· · · i2i1)b denotes the base b representation of i, then
φb(i) := (0.i1i2 · · · )b.

Example 2.3. (Van der Corput sequence) The van der Corput sequence
in base b is the one-dimensional sequence

φb(0), φb(1), φb(2), . . . .

For example, take b = 2. First we write down the natural numbers 0, 1, 2, . . .
in base 2

0, 12, 102, 112, 1002, 1012, 1102, . . . .

Then we apply the radical inverse function φ2 to each number, to obtain the
sequence

0, 0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, . . . ,

which in decimal form is the sequence

0, 0.5, 0.25, 0.75, 0.125, 0.625, 0.375, . . . .

Example 2.4. (Halton sequence) Let p1, p2, . . . , ps be the first s prime
numbers. The Halton sequence t0, t1, . . . in s dimensions is given by

ti = (φp1(i), φp2(i), . . . , φps(i)) , i = 0, 1, . . . ,

that is, the jth components of points in the Halton sequence form the van
der Corput sequence in base pj, where pj is the jth prime. The Halton
sequence leads to an “open” QMC method. We have explicitly

t0 = (0, 0, 0, . . . , 0)

t1 = (0.12, 0.13, 0.15, . . . , 0.1ps)

t2 = (0.012, 0.23, 0.25, . . . , 0.2ps)

t3 = (0.112, 0.013, 0.35, . . . , 0.3ps)

...
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The Halton sequence satisfies the error bound

|Is(f)−Qn,s(f)| ≤ Cs
(log n)s

n
V (f) for all n ≥ 2,

where Cs depends only on s, and V (f) is the variation of f in the sense of
Hardy and Krause, see for instance (Kuipers and Niederreiter 1974, p. 147,
Definition 5.2). For now we simply observe that, although the convergence
rate appears to beat the MC rate of O(n−1/2), the MC rate is independent
of s, whereas for fixed s, the function (log n)s/n increases with increasing n
for all n < exp(s).

Example 2.5. (Hammersley point set) Let p1, p2, . . . , ps−1 be the first
s − 1 prime numbers. The Hammersley point set {t0, t1, . . . , tn−1} with n
points in s dimensions is given by

ti =

(
i

n
, φp1(i), φp2(i), . . . , φps−1(i)

)
, i = 0, 1, . . . , n− 1.

The Hammersley point set leads to a “closed” QMC method. We have
explicitly

t0 = (0, 0, . . . , 0)

t1 =
(
1
n , 0.12, 0.13, . . . , 0.1ps−1

)

t2 =
(
2
n , 0.012, 0.23, . . . , 0.2ps−1

)

...

tn−1 =
(
n−1
n , . . .

)

The QMC method based on the Hammersley point set satisfies the error
bound

|Is(f)−Qn,s(f)| ≤ C ′
s

(log n)s−1

n
V (f) for all n ≥ 2,

where C ′
s depends only on s. Note that there is one less power of log n

compared to the error bound for the Halton sequence. Typically the error
bounds for QMC methods based on “closed” point sets are better than those
based on “open” sequences.

Example 2.6. (Kronecker sequence) Let 1, α1, α2, . . . , αs ∈ R be lin-
early independent over Q. The Kronecker sequence t0, t1, . . . in s dimensions
is given by

ti = ({iα1}, {iα2}, . . . , {iαs}) , i = 0, 1, . . . ,

where the braces indicate that we take the fractional part of a real number,
that is,

{x} := x− ⌊x⌋. (2.2)
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For example, a good choice of parameters is αj =
√
pj where pj is the

jth prime number. The error bound for the Kronecker sequence takes the
same form as that of the Halton sequence, but with a different multiplying
constant, again depending on s.

There are two main families of QMC methods currently under investiga-
tion:

• digital nets (“closed”) and digital sequences (“open”),
• lattice rules (“closed” and “open”).

We will introduce these two families in the next few subsections.

2.4. Lattice rules

A lattice in Rs is a discrete subset of Rs which is closed under addition and
subtraction. An integration lattice in Rs is a lattice which contains Zs as
a subset. A lattice rule is an equal-weight cubature rule whose cubature
points are those points of an integration lattice that lie in the half-open unit
cube [0, 1)s.

Every lattice point set includes the origin 0. The projection of the lattice
points onto each axis gives equally spaced points. In a sense the integral in
each dimension is approximated by a rectangle rule (or a trapezoidal rule if
the integrand is periodic). Every lattice rule can be written as a multiple
sum involving one or more generating vectors. The minimal number of
generating vectors required to generate a lattice rule is known as the rank
of the rule. Besides rank-1 lattice rules involving just one generating vector,
there exist lattice rules having rank up to s. Lattice rules were introduced
by Korobov (1959). They were originally designed for periodic integrands.

Definition 2.7. (Rank-1 lattice rule) An n-point rank-1 lattice rule in
s dimensions, also known as the method of good lattice points, is a QMC
method with cubature points

ti =

{
iz

n

}
, i = 0, 1, . . . , n− 1, (2.3)

where z ∈ Zs, known as the generating vector, is an s-dimensional integer
vector having no factor in common with n, and the braces around the vector
indicate, as in (2.2), that we take the fractional part of each component in
the vector.

Example 2.8. (Fibonacci lattice) Let z = (1, Fk) and n = Fk+1, where
Fk and Fk+1 are consecutive Fibonacci numbers. Then the resulting two-
dimensional lattice point set is called a Fibonacci lattice, see Figure 2.1 for
two examples. Fibonacci lattices in two dimensions have a certain optimality
property, but there is no obvious generalization to higher dimensions that
retains the optimality property.
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Figure 2.1. The Fibonacci lattices with 5 points and 55 points. The corresponding
generating vectors are (1, 3) and (1, 34), respectively.

Since we are only interested in the fractional part of iz/n, the components
of z can be restricted to the set

Zn := {0, 1, 2, . . . , n− 1}.
Moreover, since we would prefer that every one-dimensional projection of
the lattice rule has n distinct values, the components of z can be further
restricted to the set

Un := {z ∈ Z : 1 ≤ z ≤ n− 1 and gcd(z, n) = 1}.
The number of elements in the set Un is ϕ(n) := |Un|, the Euler totient
function. If n = pa11 p

a2
2 · · · pakk is the prime factorization of n, then

ϕ(n) = (pa11 − pa1−1
1 )(pa22 − pa2−1

2 ) · · · (pakk − pak−1
k ).

Asymptotically, ϕ(n) grows at a rate close to n. We have 1/ϕ(n) = O((log log n)/n).
For simplicity, we often assume that n is prime and thus ϕ(n) = n − 1.

This implies that

• there are n− 1 choices for each component of z;
• there are (n− 1)s choices for the generating vector z.

For large n and s, an exhaustive search to find a generating vector that
minimizes some desired error criterion is practically impossible. We now
present two approaches for constructing lattice generating vectors in high
dimensions.

Example 2.9. (Korobov construction) Given an integer a satisfying
1 ≤ a ≤ n− 1 and gcd(a, n) = 1, we define

z = z(a) := (1, a, a2, . . . , as−1) mod n.

There are (at most) n − 1 choices for the Korobov parameter a, leading to
(at most) n − 1 choices for the generating vector z, thus it is feasible in
practice to search through the (at most) n−1 choices and take the one that
minimizes the desired error criterion.
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Example 2.10. (Component-by-component (CBC) construction)
Given n, we construct a generating vector z = (z1, z2, . . .) as follows:

1 Set z1 = 1.
2 With z1 held fixed, choose z2 from Un to minimize a desired error

criterion in 2 dimensions.
3 With z1, z2 held fixed, choose z3 from Un to minimize a desired error

criterion in 3 dimensions.
4 With z1, z2, z3 held fixed, choose z4 from Un to minimize a desired error

criterion in 4 dimensions.
5 . . .

The generating vector obtained by the CBC construction is extensible in s.
In Section 5 we will consider two important aspects of the CBC construction:
error analysis and computational cost. We will also discuss how to obtain
extensible lattice sequences that are extensible in both s and n.

2.5. (t,m, s)-nets and (t, s)-sequences

Nets and sequences provide another method for obtaining well distributed
point sets in the unit cube [0, 1)s that are useful for QMC integration. The
concept of (t,m, s)-net is based on subdividing the unit cube into intervals
and placing points in the cube such that each interval of a certain size and
shape contains the “correct” number of points.

Definition 2.11. ((t,m, s)-net) Let t ≥ 0, m ≥ 1, s ≥ 1, and b ≥ 2 be
integers with t ≤ m. A (t,m, s)-net in base b is a point set P consisting of
bm points in [0, 1)s such that every elementary interval of the form

s∏

j=1

[
aj
bdj

,
aj + 1

bdj

)
(2.4)

with each dj ≥ 0, 0 ≤ aj < bdj , and d1 + d2 + · · · + ds = m − t, contains
exactly bt points of P .

An elementary interval (2.4) has volume b−(d1+d2+···+ds) = bt−m, which
is precisely the proportion of the points from P that lie in this elementary
interval. One would expect such a property to hold if the point set is uni-
formly distributed. Figure 2.2 provides an illustration of a two-dimensional
net with 16 points.

Note that any point set consisting of bm points in [0, 1)s is trivially an
(m,m, s)-net in base b, indicating that the concept of (t,m, s)-net is only
useful when t < m. For fixed b and m, the (t,m, s)-net condition gets
stronger as t gets smaller. Hence the aim is to find (t,m, s)-nets in base
b where t is small. A (t,m, s)-net is said to be a strict (t,m, s)-net if it
is not a (t − 1,m, s)-net. The “t-value” is often referred to as the quality
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Figure 2.2. Illustration of a (0, 4, 2)-net in base 2: every elementary interval of
volume 1/16 contains exactly one of the 16 points. A point that lies on the

dividing line counts toward the interval above or to the right.

parameter. It is also not useful to choose the base b too large, noting that in
the extreme case in which b = n we have m = 1, so that even when t = 0 the
only elementary intervals are the “boxes” of side length 1 and thickness 1/n,
in which case even the set of points k(1/n, 1/n, . . . , 1/n) for k = 0, . . . , n−1
lying on the main diagonal is a (0,m, s)-net. The relevant quantity for fixed
n is the strength k = m− t of the (t,m, s)-net. The aim is then to find nets
with large strength k.

There is an analogous concept for infinite sequences:

Definition 2.12. ((t, s)-sequences) Let t ≥ 0 and s ≥ 1 be integers. A
(t, s)-sequence in base b is a sequence of points S = (t0, t1, . . .) in [0, 1)s such
that for any integers m > t and ℓ ≥ 0, every block of bm points

tℓbm , . . . , t(ℓ+1)bm−1

in the sequence S forms a (t,m, s)-net in base b.

The van der Corput sequence in base b is a (0, 1)-sequence in base b.
Higher dimensional examples include the Sobol′ sequence (Sobol′ 1967) which
is a (t, s)-sequence in base 2, where t is a non-decreasing function of s;
Faure sequence (Faure 1982); Niederreiter sequence (Niederreiter 1987);
and Niederreiter-Xing sequence (Niederreiter and Xing 1995). More de-
tails about these sequences will be given in Subsection 2.7. These sequences
are also commonly referred to as “low-discrepancy sequences” due to their
high uniformity. We will explain the term “discrepancy” in Section 3.
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2.6. Digital construction scheme

We now introduce a method for constructing (t,m, s)-nets and (t, s)-sequences.
This method is based on linear algebra over finite fields.

Let b be prime and let Zb := {0, 1, . . . , b−1} denote the equivalence classes
of integers modulo b. Using addition + and multiplication ∗ of elements in
Zb modulo the prime b, we obtain a finite field of order b. In the following
we identify the element k in the finite field Zb with the integer 0 ≤ k < b.

Let C1, . . . , Cs be m-by-m matrices with entries in Zb. Then ti,j, the jth
component of the ith point in P = {t0, . . . , tbm−1}, can be constructed as
follows:

1 Write i in its base b representation:

i = (im · · · i2i1)b = i1 + i2b+ · · ·+ imb
m−1.

2 Compute 


y1
y2
...
ym


 = Cj




i1
i2
...
im


 ,

where all additions and multiplications are done in the finite field Zb,
i.e., modulo b.

3 Set

ti,j = (0.y1y2 · · · ym)b =
y1
b

+
y2
b2

+ · · ·+ ym
bm
.

The resulting point set P = {t0, . . . , tbm−1} is called a digital net over Zb

and the matrices C1, . . . , Cs are called the generating matrices of the digital
net. The following definition connects (t,m, s)-nets in base b with digital
nets.

Definition 2.13. (Digital (t,m, s)-net) Let b be prime, t ≥ 0, m ≥ 1,
and s ≥ 1 be integers. If a digital net P constructed over Zb is a (t,m, s)-net
in base b, then P is called a digital (t,m, s)-net over Zb.

The following lemma provides the connection between the generating ma-
trices of a digital net and the (t,m, s)-net property.

Lemma 2.14. (t-value for a digital net) A digital net over Zb with gen-
erating matrices C1, . . . , Cs is a digital (t,m, s)-net over Zb if and only if for
all d1, . . . , ds ≥ 0 with d1 + · · · + ds = m− t, the set of vectors

c1,1, c1,2, . . . , c1,d1 , c2,1, c2,2, . . . , c2,d2 , . . . , cs,1, cs,2, . . . , cs,ds ,

is linearly independent over Zb, where cj,ℓ denotes the ℓth row vector of the
matrix Cj.
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Proof. Let d1, . . . , ds ≥ 0 such that d1 + · · ·+ ds = m− t, let

J =
s∏

j=1

[
aj

bdj
,
aj + 1

bdj

)

be an elementary interval, and let

aj

bdj
=
uj,1
b

+
uj,2
b2

+ · · ·+ uj,dj
bdj

.

Thus, for given d1, . . . , ds, we can uniquely associate the vector

~u = (u1,1, . . . , u1,d1 , . . . , us,1, . . . , us,ds)
⊤

to the elementary interval J . Let {t0, t1, . . . , tbm−1} be a digital net with
generating matrices C1, . . . , Cs ∈ Zm×m

b . Let ti = (ti,1, ti,2, . . . , ti,s) with
ti,j = τi,j,1b

−1 + τi,j,2b
−2 + · · · + τi,j,mb

−m. Then ti ∈ J if and only if
uj,ℓ = τi,j,ℓ for 1 ≤ ℓ ≤ dj and 1 ≤ j ≤ s. Let Cj = (c⊤j,1, . . . , c

⊤
j,m)⊤, i.e.

cj,ℓ is the ℓth row vector of Cj. Let A = (c⊤1,1, . . . , c
⊤
1,d1

, . . . , c⊤s,1, . . . , c
⊤
s,ds

)⊤.
Then the number of points of the digital net which lie in J is given by the
number of solutions (i1, . . . , im) of the equation over Zb

A




i1
i2
...
im


 = ~u. (2.5)

For each vector ~u the number of solutions of (2.5) is bm−t if and only if the
rows of A are linearly independent. Thus the result follows.

Constructions of good generating matrices for digital nets yielding digital
(t,m, s)-nets with small t-value will be discussed in Subsection 2.7. In the
following we give a two-dimensional example of digital (0,m, 2)-nets over Zb

for arbitrary prime b.

Example 2.15. Let b be a prime and let m ≥ 1 be an integer. Let

C1 =




1 0 · · · · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1




∈ Zm×m
b



High dimensional integration – the Quasi-Monte Carlo way 17

and

C2 =




0 · · · · · · 0 1
0 · · · 0 1 0
... . .

.
. .
.

. .
. ...

0 1 0 · · · 0
1 0 · · · · · · 0




∈ Zm×m
b .

Then Lemma 2.14 implies that C1 and C2 are generating matrices of a digital
(0,m, 2)-net over Zb.

The concept of digital nets can be extended to infinite sequences S =
(t0, t1, . . .) in [0, 1)s. To do so, we need infinite matrices C1, . . . , Cs ∈ ZN×N,
with Cj = (cj,k,ℓ)k,ℓ∈N and cj,k,ℓ ∈ Zb, such that for every ℓ there is a kℓ such
that cj,k,ℓ = 0 for all k > kℓ. Then ti,j, the jth component of the ith point
in the sequence S is constructed in the following way:

1 Write i in its base b representation:

i = (· · · i2i1)b = i1 + i2b+ · · · .
(Note that only finitely many digits ik are different from 0.)

2 Compute 

y1
y2
...


 = Cj



i1
i2
...


 ,

where all additions and multiplications are done in the finite field Zb.
3 Set

ti,j = (0.y1y2 · · · )b =
y1
b

+
y2
b2

+ · · · .

The resulting sequence S = (t0, t1, . . .) is called a digital sequence over Zb

and the matrices C1, . . . , Cs are called the generating matrices of the digital
sequence. The following definition connects (t, s)-sequences in base b with
digital sequences.

Definition 2.16. (Digital (t, s)-sequences) Let b be prime, and let t ≥
0 and s ≥ 1 be integers. If a digital sequence S constructed over Zb is a
(t, s)-sequence in base b, then S is called a digital (t, s)-sequence over Zb.

Constructions of good generating matrices for digital sequences yielding
digital (t, s)-sequences with small t-value will be discussed in Subsection 2.7.
In the following we give a one-dimensional example of a (0, 1)-sequence over
Zb for arbitrary prime b.

Example 2.17. Let b be a prime. Let C ∈ ZN×N
b be the matrix with ones

along the main diagonal and zeros everywhere else (cf. identity matrix).
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Then C generates a digital (0, 1)-sequence over Zb. In fact, C generates the
van der Corput sequence in base b.

2.7. Constructions of digital nets and sequences

In this subsection we discuss explicit constructions of digital nets and se-
quences with small t value.

In the previous subsection we introduced (digital) (t,m, s)-nets and (digi-
tal) (t, s)-sequences and we gave explicit constructions for small dimensions.
The first constructions in arbitrary dimensions are due to Sobol′ (1967) and
Faure (1982), before the general concept of (digital) (t, s)-sequence was in-
troduced in Niederreiter (1987). In the following we discuss these explicit
constructions in detail.

We use the following notation. Let Zb[x] denote the set of polynomials
over the finite field Zb. The polynomial p(x) = a0 + a1x+ · · ·+ amx

m with
am 6= 0 is said to have degree deg(p) = m. For p = 0 we set deg(p) = −∞.
A polynomial p ∈ Zb[x] is irreducible if it cannot be written as a product of
two non-constant polynomials, that is, there are no q, q′ ∈ Zb[x] such that
p(x) = q(x)q′(x) with deg(q),deg(q′) > 0. A polynomial p(x) = a0 + a1x+
· · ·+amxm ∈ Zb[x] of degree m ≥ 1 is primitive if and only if am = 1, a0 6= 0
and the smallest integer k such that there is a polynomial q ∈ Zb[x] with
p(x)q(x) = xk−1 ∈ Zb[x] is k = bm−1. It can be shown that every primitive
polynomial is irreducible. Further, if p is primitive, then the polynomial x is
a primitive element in Zb[x]/p, that is, {xk mod p : k = 0, 1, . . . , bm − 2} =
(Zb[x]/p) \ {0}.
Example 2.18. (Sobol′ sequence) Sobol′ (1967) was the first to intro-
duce a construction of (t, s)-sequences over Z2, which are nowadays referred
to as Sobol′ sequences. These are digital sequences over the finite field Z2.

1 Let p1, . . . , ps ∈ Z2[x] be distinct primitive polynomials ordered accord-
ing to their degree and let

pj(x) = xej + a1,jx
ej−1 + a2,jx

ej−2 + · · ·+ aej−1,jx+ 1 for 1 ≤ j ≤ s,

where aj,k ∈ Zb. Note that ej denotes the degree of the polynomial pj.

2 Choose odd natural numbers 1 ≤ m1,j, . . . ,mej ,j such that mk,j < 2k

for 1 ≤ k ≤ ej , and for all k > ej define mk,j recursively by

mk,j = 2a1,jmk−1,j⊕· · ·⊕2ej−1aej−1,jmk−ej+1,j⊕2ejmk−ej,j⊕mk−ej,j,

where ⊕ is the bit-by-bit exclusive-or operator.

3 The so-called direction numbers are defined by

vk,j :=
mk,j

2k
for k ≥ 1.
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4 Then for i ∈ N0 with dyadic expansion i = i0 +2i1 + · · ·+2r−1ir−1 we
define

ti,j = i0v1,j ⊕ i1v2,j ⊕ · · · ⊕ ir−1vr,j.

The Sobol′ sequence is then the sequence of points t0, t1, . . ., where
ti = (ti,1, . . . , ti,s).

Sobol′ sequences are digital (t, s)-sequences with

t =
s∑

j=1

(ej − 1).

This result holds for all choices of direction numbers, and therefore the
direction numbers do not influence the overall quality of Sobol′ sequences.
Note, however, that the t-value for a Sobol′ net of bm points for different m
can be smaller than the t-value of the full sequence, and hence the choice of
direction numbers can affect the quality of a Sobol′ net.

Example 2.19. (Faure sequence) Faure (1982) introduced a construc-
tion of (0, s)-sequences over prime fields Zb with s ≤ b, which are nowadays
called Faure sequences. The generating matrices C1, . . . , Cs are given by

Cj = (P⊤)j−1 (mod b) for 1 ≤ j ≤ s,

where P is the Pascal matrix given by

P =




(0
0

) (0
1

) (0
2

)
. . .(

1
0

) (
1
1

) (
1
2

)
. . .(2

0

) (2
1

) (2
2

)
. . .

...
...

...
. . .


 ,

where we set
(k
ℓ

)
= 0 for ℓ > k. A Faure sequence is a digital (0, s)-sequence.

Example 2.20. (Niederreiter sequence) Niederreiter (1987) introduced
the general concept of digital (t, s)-sequences which includes both the Sobol′

and Faure constructions as special cases. We describe a special case of this
sequence in the following.

Let Zb = {0, 1, . . . , b− 1} denote the finite field of prime order b with ad-
dition and multiplication modulo b. Let Zb[x] denote the set of polynomials
with coefficients in Zb. Addition and multiplication of polynomials in Zb is
defined by using arithmetic in Zb (i.e. modulo b). This can also be extended
to division of polynomials in Zb, which gives rise to the set of formal series
Zb((x

−1)), which are series of the form

∞∑

ℓ=w

aℓx
−ℓ
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for some integer w and coefficients aℓ ∈ Zb. Note that this set contains
the set of polynomials Zb[x]. This set now permits addition, subtraction,
multiplication and division (except dividing by 0 of course) of formal series
where the coefficients are added, subtracted, multiplied and divided modulo
b. Thus Zb((x

−1)) is a field, which is called the field of formal Laurent series.
The construction of the generating matrices is based on arithmetic in this
field.

1 Let p1, p2, . . . , ps ∈ Zb[x] be distinct monic irreducible polynomials over
Zb (monic means that the coefficient of the monomial in pj with the
highest degree is 1). Let ej = deg(pj) for 1 ≤ j ≤ s. The best results
are obtained by choosing the degree of the polynomials p1, p2, . . . , ps as
small as possible.

2 For integers 1 ≤ j ≤ s, u ≥ 1 and 0 ≤ k < ej , consider the expansions

xej−k−1

pj(x)u
=

∞∑

ℓ=0

a(j)(u, k, ℓ)x−ℓ−1 (2.6)

over the field of formal Laurent series Zb((x
−1)).

3 Then we define the entries in the matrix Cj = (cj,i,ℓ)i,ℓ∈N in the follow-
ing way:

cj,i,ℓ = a(j)(Q+ 1, k, ℓ) ∈ Zb for 1 ≤ j ≤ s, i ≥ 1, ℓ ≥ 0,

where i − 1 = Qej + k with integers Q = Q(i, j) and k = k(i, j), with
k satisfying 0 ≤ k < ej .

We briefly describe how to compute the coefficients a(j)(u, k, ℓ) recursively.
Let u, j be fixed and let vℓ = a(j)(u, ej−1, ℓ) for all ℓ ≥ 0. Then a(j)(u, k, ℓ) =
vℓ+ej−1−k for 0 ≤ k < ej . Let pj(x)

u = xuej − buej−1x
uej−1− · · · − b0, where

we assume without loss of generality that pj(x) is monic (i.e., the coefficient
of xej is 1). Then (2.6) can be written as

1 = (v0x
−1 + v1x

−2 + · · · )(xuej − buej−1x
uej−1 − · · · − b0).

By comparing coefficients we obtain v0 = · · · = viej−2 = 0, vuej−1 = 1 and

vuej+ℓ = buej−1vuej+ℓ−1 + · · ·+ b0vℓ ∈ Zb,

for all ℓ ≥ 0.
The Niederreiter sequence is a digital (t, s)-sequence with

t =

s∑

j=1

(ej − 1).

The Faure sequence can be obtained as a special case of the Niederreiter
sequence, which correspond to the case where the base b is a prime num-
ber such that b ≥ s and pj(x) = x − j + 1 for 1 ≤ j ≤ s. The Sobol′
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sequence is obtained by choosing p1(x) = x and p2, p3, . . . , ps as primitive
polynomials. This yields a Sobol′ sequence with a special choice of direction
numbers. The Niederreiter sequence can also be generalized, where xej−k−1

is replaced by a polynomial of degree ej − k− 1. The choice of polynomials
then corresponds to choosing different direction numbers. This way one can
obtain the generating matrices for a Sobol′ sequence. On the other hand, an
algorithm similar to the one introduced above for Sobol′ sequences can also
be obtained for Niederreiter sequences, which yields a fast implementation
of Niederreiter sequences.

A practical implementation of digital nets and sequences can use a Gray
code ordering to improve efficiency.

2.8. Polynomial lattice rule construction

In this subsection we discuss polynomial lattice rules, a concept analogous
to lattice rules, but based on linear algebra over finite fields; they form a
special class of digital nets.

Let b be prime, p be a polynomial of degree m with coefficients in Zb, and
q1, . . . , qs be polynomials of degree at most m − 1 with coefficients in Zb.
Then Cj, the jth generating matrix, can be chosen as follows:

1 Let u1, u2, . . . ∈ Zb be such that

qj(x)

p(x)
=
u1
x

+
u2
x2

+ · · · .

For given qj(x) and p(x), the values of u1, u2, . . . can be obtained by
equating coefficients in qj(x) = (u1/x + u2/x

2 + · · · )p(x), noting that
all additions and multiplications are to be done in Zb.

2 Set

Cj =




u1 u2 u3 · · · um
u2 u3 . .

.
. .
.

um+1

u3 . .
.

. .
.

. .
.

um+2
... . .

.
. .
.

. .
. ...

um um+1 um+2 · · · u2m−1




∈ Zm×m
b .

The digital net with generating matrices C1, . . . , Cs as defined above is called
a polynomial lattice point set, and a QMC rule using a polynomial lattice
point set is called a polynomial lattice rule. The polynomial p is referred to
as the modulus, and the vector of polynomials (q1, . . . , qs) is referred to as
the generating vector.

There is also a faster method for generating the cubature points of a
polynomial lattice rule which does not use the generating matrices. For
the following we need to introduce some definitions and some notation. As



22 Acta Numerica

before, let Zb[x] denote the set of polynomials with coefficients in Zb and
Zb((x

−1)) denote the set of formal Laurent series

∞∑

ℓ=w

aℓx
−ℓ,

where aℓ ∈ Zb. For m ∈ N let υm be the map from Zb((x
−1)) to the interval

[0, 1) defined by

υm

(
∞∑

ℓ=w

tℓx
−ℓ

)
=

m∑

ℓ=max(1,w)

tℓb
−ℓ.

We frequently associate a nonnegative integer k, with b-adic expansion k =
κ0 + κ1b+ · · · + κab

a, with the polynomial k(x) = κ0 + κ1x+ · · · + κax
a ∈

Zb[x] and vice versa. Further, for arbitrary k = (k1, . . . , ks) ∈ Zb[x]
s and

q = (q1, . . . , qs) ∈ Zb[x]
s, we define the “inner product”

k · q =
s∑

i=1

kiqi ∈ Zb[x]

and we write q ≡ 0 (mod p) if p divides q in Zb[x].
With these definitions we can give the following equivalent but simpler

form of the construction of P(q, p).

Theorem 2.21. Let b be a prime and let m, s ∈ N. For p ∈ Zb[x] with
deg(p) = m and q = (q1, . . . , qs) ∈ Zb[x]

s, the polynomial lattice point set
P(q, p) is the point set consisting of the bm points

ti =

(
υm

(
i(x)q1(x)

p(x)

)
, . . . , υm

(
i(x)qs(x)

p(x)

))
∈ [0, 1)s,

for i ∈ Zb[x] with deg(i) < m.

The task of choosing good generating matrices is now replaced by the
task of choosing a good generating vector (q1, . . . , qs). The total number of

possible choices of generating matrices is reduced from bm
2s to bms.

Example 2.22. In this example we show the polynomial lattice rule ana-
logue of Fibonacci lattice rules; they are constructed via the continued frac-
tion expansion of the ratio q2(x)/p(x). Let b be prime and m ≥ 1 be an
integer. Set q1(x) = 1. Let p(x) be a polynomial over Zb of degree m and
q2(x) be polynomial over Zb defined by

q2(x)

p(x)
=

1

1 + x+ 1
1+x+ 1

1+x+
...

.
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The corresponding polynomial lattice point set is a digital (0,m, 2)-net over
Zb. For instance, let b = 2. Then for m = 2 we obtain

q2(x)

p(x)
=

1

1 + x+ 1
1+x

=
1 + x

(1 + x)2 + 1
=

1 + x

x2
,

thus p(x) = x2 and q2(x) = 1 + x. For m = 3 we obtain

q2(x)

p(x)
=

1

1 + x+ 1
1+x+ 1

1+x

=
x2

(1 + x)x2 + (1 + x)
=

x2

x3 + x2 + x+ 1
,

thus p(x) = x3 + x2 + x+ 1 and q2(x) = x2.

2.9. Randomization and error estimation: shifted lattice rules

We recall that the mean-square MC error can be estimated in practice using
(2.1). In comparison, a fully deterministic QMC method, although having
a faster rate of convergence, is biased and lacks a practical error estimate.
“Randomized” QMC methods combine the best of both worlds; their ad-
vantages are

• Randomization yields an unbiased estimator.
• Randomization provides a practical error estimate.
• Randomized QMC methods enjoy faster rates of convergence than the

MC method for smooth functions.
• Some randomization technique (see “scrambling” below) can further

improve the QMC rate of convergence by an additional O(n−1/2).

Here we discuss the simplest form of randomization called shifting, and
we explain how an error estimate can be obtained in practice. We begin
with a remark that shifting preserves the lattice structure, and therefore this
randomization technique typically goes with lattice rules, to yield so-called
shifted lattice rules. Having said that, shifting can be used together with
any QMC method to obtain a practical error estimate (however, it need not
preserve the original structure of the QMC point set).

The idea behind shifting is to move all the points in the same direction
by the same amount. If any point falls outside the unit cube then it is
“wrapped” back into the cube from the opposite side. More precisely, given
a vector ∆ ∈ [0, 1]s, known as the shift, the ∆-shift of the QMC points
t0, . . . , tn−1 yields points

{ti +∆}, i = 0, 1, . . . , n− 1, (2.7)

where, as in (2.2), the braces indicate taking the fractional parts. Figure 2.3
illustrates how shifting is done.

For a random shift ∆ ∈ [0, 1]s, the shifted QMC points {ti + ∆}, i =
0, 1, . . . , n − 1 are correlated. Therefore we cannot estimate the variance of
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Figure 2.3. Applying a (0.1, 0.3)-shift to a 64-point lattice rule in two dimensions:
left – original lattice rule, middle – moving all points by (0.1, 0.3), right –

wrapping the points back inside the unit cube.

the shifted QMC rule using the sample variance as in (2.1). Instead, we
need to use a number of independent random shifts as follows:

1 We generate q independent random shifts ∆0,∆1, . . . ,∆q−1 from the
uniform distribution on [0, 1]s.

2 For a given QMC rule, we form the approximations Q
(0)
n,s(f), Q

(1)
n,s(f),

. . ., Q
(q−1)
n,s (f), where

Q(k)
n,s(f) =

1

n

n−1∑

i=0

f({ti +∆k}), k = 0, 1, . . . , q − 1,

is the approximation of the integral using a ∆k-shift of the original
QMC rule.

3 We take the average

Q̄n,s,q(f) =
1

q

q−1∑

k=0

Q(k)
n,s(f)

as our final approximation to the integral.
4 An unbiased estimate for the mean-square error of Q̄n,s,q(f) is given by

1

q(q − 1)

q−1∑

k=0

(Q(k)
n,s(f)− Q̄n,s,q(f))

2.

Typically we take n in the thousands or more while keeping q small, say
around 10–50. To obtain a fair comparison between the MC method and
a randomized QMC method (e.g., for the two methods to have the same
number of function evaluations), we should take nMC = q · nQMC.

Scrambling is a popular but more complicated randomization method.
The idea is to randomly and recursively permute the points between ele-
mentary intervals so that the digital net structure is preserved. More details
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will be given in the next subsection. For now we just introduce a related
randomization technique called digital shift, which is similar to shifting: we
just need to replace (2.7) by

ti ⊕∆, i = 0, 1, . . . , n− 1,

where ⊕ denotes the digit-wise addition operator in base b defined as follows:
if x, σ ∈ [0, 1) have base b representations

x = (0.x1x2 · · · )b and σ = (0.σ1σ2 · · · )b,
then y = x⊕ σ = (0.y1y2 · · · )b, where

yi = (xi + σi) mod b.

The procedure for estimating the error is the same as for shifting.
For later use we also define digit-wise subtraction y = x⊖σ = (0.y1y2 · · · )b,

which is defined by yi = (xi − σi) mod b.

2.10. Scrambled nets and sequences

Randomization methods are designed to introduce randomness into the
point sets but at the same time should preferably keep the relevant struc-
ture intact. In case of (t,m, s)-nets this means that the net should still be
a (t,m, s)-net after the randomization (with probability 1). This can be
achieved by the following algorithm introduced by Owen (1997a).

We first introduce Owen’s scrambling algorithm, which is easiest described
for some generic point x ∈ [0, 1)s, with x = (x1, . . . , xs) and xj = xj,1b

−1 +
xj,2b

−2 + · · · . The scrambled point will be denoted by y ∈ [0, 1)s, where
y = (y1, . . . , ys) and yj = yj,1b

−1+ yj,2b
−2+ · · · . The point y is obtained by

applying permutations to each digit of each coordinate of x. The permuta-
tion applied to xj,ℓ depends on xj,k for 1 ≤ k < ℓ. Specifically, yj,1 = πj(xj,1),
yj,2 = πj,xj,1(xj,2), yj,3 = πj,xj,1,xj,2(xj,3), and in general

yj,k = πj,xj,1,...,xj,k−1
(xj,k), (2.8)

where πj,xj,1,...,xj,k−1
is a random permutation of {0, . . . , b− 1}. We assume

that permutations with different indices are chosen mutually independent
from each other and that each permutation is chosen with the same proba-
bility. In this case the scrambled point y is uniformly distributed in [0, 1)s.
We show this fact in Section 6.

We now introduce some convenient notation to describe Owen’s scram-
bling. For 1 ≤ j ≤ s let

Πj = {πj,xj,1,...xj,k−1
: k ∈ N, xj,1, . . . , xj,k−1 ∈ {0, . . . , b− 1}}

(where for k = 1 we set πj,xj,1,...xj,k−1
= πj) be a given set of permutations,

and let Π = (Π1, . . . ,Πs). Then, when applying Owen’s scrambling using
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these permutations to some point x ∈ [0, 1)s, we write y = Π(x), where
y is the point obtained by applying Owen’s scrambling to x using the per-
mutations Π1, . . . ,Πs. For x ∈ [0, 1) we drop the subscript j and just write
y = Π(x).

To scramble a (t,m, s)-net or a (t, s)-sequence, we choose the permutations
in Π for each coordinate independently from each other and then apply
these permutations to each point of the (t,m, s)-net or (t, s)-sequence as
explained above. For instance, for a given (t,m, s)-net t0, t1, . . . , tbm−1, the
Owen scrambled (t,m, s)-net is given by

Π(t0),Π(t1), . . . ,Π(tbm−1).

In practice, the number of permutations one has to choose is large, how-
ever, there are simplifications of the randomization procedure which greatly
reduce this number. This yields a fast scrambling algorithm. More details
are given in Section 6.

In Section 6 we show that scrambling also yields an unbiased estimate of
the integral, that is,

E

(
1

n

n−1∑

i=0

f(Π(ti))

)
=

∫

[0,1]s
f(x) dx.

In the same way as for random (digital) shifts, one can also obtain an un-
biased estimate of the mean-square error for scrambling. It is sufficient to
choose only one set of random permutations Π. Let

Qn1,n2,s(f) =
1

n2 − n1

n2−1∑

i=n1

f(Π(ti)).

Let 1 ≤ m′ < m. The mean-square error of the cubature rule applied to f
can now be estimated by

1

bm′(bm′ − 1)

bm
′
−1∑

i=0

(
Qibm−m′ ,(i+1)bm−m′ ,s(f)−Q0,bm,s(f)

)2
,

where m′ can be chosen such that, say, bm
′ ≈ 30.

2.11. Transformation to the unit cube

In this subsection we discuss some simple strategies for transforming an
integral over Rs to an integral over [0, 1]s. We begin with the univariate
case.

Consider an integral ∫ ∞

−∞
g(y)φ(y) dy,
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 2.4. Owen’s scrambling in base 2: (a) original; (b) swap left and right
halves; (c) swap 3rd and 4th vertical quarters; (d) swap 3rd and 4th, 7th and last
vertical eighths; (e) swap 3rd and 4th, 7th and 8th, 9th and 10th, 15th and last
sixteenths; (f) swap 1st and 2nd horizontal quarters; (g) swap 1st and 2nd, 5th
and 6th, 7th and last horizontal eighths; (h) swap 3rd and 4th, 7th and 8th, 9th

and 10th, 15th and last horizontal sixteenths.

where φ : R → R is some univariate probability density function, i.e., φ(y) ≥
0 for all y ∈ R and

∫∞
−∞ φ(y) dy = 1. Let Φ : R → [0, 1] denote the

cumulative distribution function of φ, i.e., Φ(y) :=
∫ y
−∞ φ(t) dt, and let

Φ−1 : [0, 1] → R denote the inverse of the cumulative distribution function.
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Then we can use the substitution (or change of variables)

x = Φ(y) ⇐⇒ y = Φ−1(x),

to obtain
∫ ∞

−∞
g(y)φ(y) dy =

∫ 1

0
g(Φ−1(x)) dx =

∫ 1

0
f(x) dx,

with the transformed integrand defined by f := g ◦ Φ−1.
Note that this is not the only way to obtain a transformed integrand. In-

deed, we can divide and multiply the original integrand by any other proba-
bility density function φ̃, and then map to [0, 1] using its inverse cumulative
distribution function Φ̃−1:
∫ ∞

−∞
g(y)φ(y) dy =

∫ ∞

−∞

g(y)φ(y)

φ̃(y)
φ̃(y) dy

=

∫ ∞

−∞
g̃(y) φ̃(y) dy =

∫ 1

0
g̃(Φ̃−1(x)) dx =

∫ 1

0
f̃(x) dx,

where g̃(y) := g(y)φ(y)/φ̃(y), giving a different transformed integrand f̃ :=
g̃ ◦ Φ̃−1. Ideally we would like to choose a density function φ̃ that leads
to a ‘nice’ integrand in the unit cube. This is related to the concept of
importance sampling for MC methods.

The MC approximation for the integral over R is

∫ ∞

−∞
g(y)φ(y) dy ≈ 1

n

n−1∑

i=0

g(τi),

where the MC points τ0, . . . , τn−1 are randomly sampled following the distri-
bution of φ. Depending on the choice of φ, there may exist an algorithm to
sample from the distribution directly, or it might be necessary to generate
random samples from the uniform distribution on [0, 1] and then map them
back to R using Φ−1. The latter approach is consistent with the MC method
over [0, 1]

∫ ∞

−∞
g(y)φ(y) dy =

∫ 1

0
g(Φ−1(x)) dx ≈ 1

n

n−1∑

i=0

g(Φ−1(ti)),

where t0, . . . , tn−1 are uniform random samples from [0, 1]. If we use a
different density function φ̃ to sample the points from, then we evaluate the
points for a different function g̃:

∫ ∞

−∞
g(y)φ(y) dy =

∫ ∞

−∞
g̃(y) φ̃(y) dy ≈ 1

n

n−1∑

i=0

g̃(τi).
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The idea behind importance sampling is to choose a sampling density φ̃ to
minimize the variance of the resulting function g̃.

This transformation strategy can be generalized to s dimensions as follows.
If we have a product of univariate densities, then we can apply the mapping
Φ−1 componentwise

y = Φ−1(x) := (Φ−1(x1), · · · ,Φ−1(xs)),

to obtain
∫

Rs

g(y)
s∏

j=1

φ(yj) dy =

∫

[0,1]s
g(Φ−1(x)) dx =

∫

[0,1]s
f(x) dx.

Note that we can always multiply and divide any given integrand by such a
product provided that φ(y) > 0 for all y ∈ R:

∫

Rs

h(y) dy =

∫

Rs

h(y)∏s
j=1 φ(yj)

s∏

j=1

φ(yj) dy.

Thus, this strategy always works in principle, however, the resulting trans-
formed integrand might not be ‘nice’.

Many integrals from practical models involve the multivariate normal den-
sity. If the multivariate normal density is the dominating part of the entire
integrand, then a good strategy is to factorize the covariance matrix Σ, i.e.,
find a s× s matrix A such that

Σ = AAT, (2.9)

and then use the substitutions (treating all vectors as column vectors)

y = Az followed by z = Φ−1(x),

to obtain
∫

Rs

g(y)
exp(−1

2y
TΣ−1y)√

(2π)s det(Σ)
dy =

∫

Rs

g(Az)
exp(−1

2z
Tz)√

(2π)s
dz

=

∫

Rs

g(Az)
s∏

j=1

exp(−1
2z

2
j )√

2π
dz

=

∫

[0,1]s
g(AΦ−1(x)) dx =

∫

[0,1]s
f(x) dx.

The factorization (2.9) is not unique. Two obvious choices are the Cholesky
factorization with lower triangular matrix A, and the principal components
factorization which is given by

A = [
√
λ1η1; · · · ;

√
λsηs],

where (λj ,ηj)
s
j=1 denotes the set of eigenpairs of Σ, with ordered eigenvalues
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λ1 ≥ λ2 ≥ · · · ≥ λs and unit-length column eigenvectors η1, . . . ,ηs. Other
factorizations are possible, for example, in finance applications the covari-
ance matrix arising from the time-discretized Brownian paths can also be
factorized using the “Brownian bridge” technique. In general, factorization
of Σ in very high dimensions can be very costly, and the problem can be
poorly conditioned.

In some applications the multivariate normal density is not the dominat-
ing part of the entire integrand. In those cases, other transformation steps
(such as recentering and rescaling) might be required to capture the main
feature of the integrand, see, for example, Kuo et al. (2008).

2.12. Notes

Halton (1960) introduced what is now called the Halton sequence. Discrep-
ancy bounds for Halton sequences where the constant decreases with the
dimension have been shown by Atanassov (2004b). Kronecker sequences
were studied by Niederreiter (1978). Lattice rules were introduced by Ko-
robov (1959) and have also been discovered by Hlawka (1962). For the early
history of QMC point sets and related concepts see Niederreiter (1978),
Kuipers and Niederreiter (1974), Niederreiter (1992a), and Sloan and Joe
(1994). More recent results are covered by Dick and Pillichshammer (2010).

For an efficient implementation of Sobol′ sequences see Antonov and
Saleev (1979) and Bratley and Fox (1988) and for questions concerning the
choice of primitive polynomials and direction numbers, see, for example, Joe
and Kuo (2008). The implementation of Faure sequences has been discussed
in Atanassov (2004a) and Fox (1986). Implementation of the Niederreiter
sequence has been discussed in Bratley, Fox and Niederreiter (1992). For
digital sequences with improved t-value see Niederreiter and Xing (1995),
Niederreiter and Xing (1996a), Niederreiter and Xing (1996b) and Xing and
Niederreiter (1995). For an implementation of such sequences see Pirsic
(2002).

It has been observed that usually the quality of QMC point sets decreases
as the dimension increases. This has led to the suggestion to study “mixed”
point sets, i.e., the first few coordinates are QMC point sets with remaining
coordinates filled up by, say, random numbers. This fits with the struc-
ture of integrands whose importance is concentrated in the first few coor-
dinates. The idea of combining the advantages of QMC methods and MC
methods was first proposed by Spanier who applied such mixed QMC-MC
sequences to particle transport problems. Probabilistic discrepancy bounds
for such “mixed sequences” have been provided in Ökten (1996), Ökten,
Tuffin, Burago (2006), Gnewuch (2009), Gnewuch and Roşca (2009) and
Aistleitner and Hofer (2012); in these papers it is assumed that the Monte
Carlo components of the points consist of idealized random numbers. Mixed
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point sets whose remaining coordinates are filled up by deterministic pseudo
random numbers or by the components of other deterministic point sets have
also been studied. Deterministic discrepancy bounds for such point sets can
be found in Niederreiter (2009), Niederreiter (2010a), Niederreiter (2010b),
Niederreiter and Winterhof (2011), Hofer and Kritzer (2011) and Niederre-
iter (2012). Further mixed sequences using Halton, Kronecker and digital
sequences have been studied by Hofer and Larcher (2010), Hofer and Larcher
(2012) and Hofer, Kritzer, Larcher and Pillichshammer (2009). So-called
(t,e, s)-sequences have been introduced by Tezuka (2013). This concept
captures the dependence on the dimension of digital nets more precisely and
leads to improvements of discrepancy bounds in terms of their dependence
on the dimension. Digital sequences in which the generating matrices have
only a finite number of non-zero elements in each row have been studied,
for instance, by Hofer and Pirsic (2011) and Hofer and Niederreiter (2013).
The latter paper constructs digital (t, s)-sequences with finite-row generat-
ing matrices and asymptotically optimal t-values (in the sense of fixed base
and dimension s going to ∞). Such sequences with finite-row generating
matrices may be advantageous in implementations.

More information on transformations from Rs to the unit cube [0, 1]s,
variance reduction techniques, as well as other information for the practical
use of MC and QMC can be found in Lemieux (2009). The monographs by
Devroye (1986) and Hörmann, Leydold and Derflinger (2010) are primarily
concerned with transformations. Integration of functions with singularities
has been discussed by Owen (2006). Kuo et al. (2008) considered trans-
formation strategies for applying QMC methods to maximum likelihood
integrals from statistics. Kuo, Sloan, Wasilkowski and Waterhouse (2010)
analyzed lattice rules for unbounded integrands arising from the transfor-
mation. A construction of digital nets constructed in Rs has been studied
by Dick (2011b).

Information relevant to statistical applications can be found in Fang and
Wang (1994). Control variates for QMC have been discussed by Hicker-
nell, Lemieux and Owen (2005). QMC methods have been applied to com-
puter graphics by Keller (2006) and Keller (2013), to transport problems by
Spanier, and to experimental designs by Hickernell (1999).

An introduction to lattice rules can be found in Sloan and Joe (1994), see
also Niederreiter (1992a, Chapter 5). Dick and Pillichshammer (2010) pro-
vide a comprehensive introduction to (digital) (t,m, s)-nets, (digital) (t, s)-
sequences and related point sets and sequences. A survey of QMC methods
and their randomization strategies is given by Hickernell and Hong (2002).

Sparse grids were discovered independently by Smolyak (1963) and Zenger
(1991). See also Wasilkowski and Woźniakowski (1995) and the overview
article Bungartz and Griebel (2004).
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3. Error, discrepancy, and reproducing kernel

In this section we present the necessary ingredients for the error analysis of
QMC methods. To provide an accessible entry point for readers who are
new to QMC, we begin by studying QMC in its simplest setting, namely,
equal-weight quadrature rules for integration over the unit interval [0, 1].

We will meet the useful notion of reproducing kernel Hilbert spaces, and
meet specific examples of function spaces that have proved useful for design-
ing and analyzing QMC methods. All of the spaces we deal with in this and
the next section are spaces of non-periodic functions. We follow contempo-
rary practice in referring to such spaces as “Sobolev” spaces, to distinguish
them from “Korobov” spaces of periodic functions, to be considered later in
Subsection 5.8.

3.1. Error analysis in one dimension

We consider real-valued functions f defined on the interval [0, 1]. As is
common in numerical analysis, we require that the functions have some
smoothness and that the fundamental theorem of calculus holds, so that

f(x) = f(1)−
∫ 1

x
f ′(y) dy = f(1)−

∫ 1

0
f ′(y)1[0,y](x) dy, (3.1)

where the indicator function 1[0,y] is defined by

1[0,y](x) =

{
1 if x ∈ [0, y],

0 if x /∈ [0, y].

We consider QMC rules of the form

Q(f) =
1

n

n−1∑

i=0

f(ti)

and study their integration error given by

errorn(f ;Q) =

∫ 1

0
f(x) dx− 1

n

n−1∑

i=0

f(ti).

Upon substituting (3.1) in the equation above and changing the order of
integration, we obtain

errorn(f ;Q) =

∫ 1

0

(
−
∫ 1

0
1[0,y](x) dx+

1

n

n−1∑

i=0

1[0,y](ti)

)
f ′(y) dy,

or

errorn(f ;Q) =

∫ 1

0
∆P (y)f

′(y) dy, (3.2)
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where P := {t0, . . . , tn−1} ⊂ [0, 1] denotes the set of quadrature points, and
∆P (y) is the local discrepancy of the point set P , defined by

∆P (y) :=
1

n

n−1∑

i=0

1[0,y](ti)−
∫ 1

0
1[0,y](x) dx, y ∈ [0, 1]. (3.3)

Note that the local discrepancy function ∆P is just the integration error for
the indicator function 1[0,y].

Thus from (3.2) the integration error can be viewed as the L2 inner prod-
uct of the local discrepancy function ∆P and the derivative f ′ of the inte-
grand.

Using Hölder’s inequality we obtain from (3.2)

|errorn(f ;Q)| ≤
(∫ 1

0
|∆P (y)|p dy

)1/p (∫ 1

0
|f ′(y)|q dy

)1/q

= ‖∆P ‖Lp‖f ′‖Lq ,
1

p
+

1

q
= 1, (3.4)

where ‖g‖Lp = (
∫ 1
0 |g(y)|p dy)1/p, and we make the usual modification if

p = ∞. If p = ∞ and q = 1, this is a special case of Koksma’s inequality
(Koksma’s inequality holds when one replaces ‖f ′‖L1 with the variation
of f). The quantity ‖∆P ‖Lp is referred to as the discrepancy of the point
set P , and is closely related to the so-called worst case error which we shall
introduce formally in Subsection 3.3.

Several conclusions can be drawn from this elementary inequality. First,
the upper bound (3.4) is best possible: indeed, equality holds if ∆p(y)f

′(y) ≥
0 and |f ′(y)|q is a multiple of |∆P (y)|p. Second, to minimize the integration
error for all functions for which ‖f ′‖Lq < ∞, one should choose quadrature
points P for which the discrepancy ‖∆P ‖Lp is, in some sense, small. Third,
it is enough to study the integration error of the indicator functions 1[0,y]
for y ∈ [0, 1], since the local discrepancy function ∆P evaluated at y is the
integration error of the indicator function 1[0,y].

The above analysis of the integration error rests entirely on the integral
representation of the function f given by

f(x) = f(1)−
∫ 1

0
f ′(y)1[0,y](x) dy. (3.5)

For two functions f, g that permit such a representation, we can define an
inner product

〈f, g〉 := f(1)g(1) +

∫ 1

0
f ′(y)g′(y) dy, (3.6)
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and a corresponding norm

‖f‖ =

√
|f(1)|2 +

∫ 1

0
|f ′(y)|2 dy.

Then (3.4) holds with p = q = 2 for all functions in the function space

H := {f : [0, 1] → R : f is absolutely continuous and ‖f‖ <∞}.

3.2. Reproducing kernel Hilbert spaces

We have seen above that the integration error for functions f ∈ H has the
integral representation (3.2) involving the local discrepancy function. This
rests in turn on the representation of f given by (3.5). We now express
(3.5) in the language of reproducing kernels. The idea is to find a function
K : [0, 1] × [0, 1] → R such that

〈f,K(·, x)〉 = f(x) for all f ∈ H and all x ∈ [0, 1].

For this to hold we must have, from (3.6) and (3.5),

f(1)K(1, x) +

∫ 1

0
f ′(y)

∂K

∂y
(x, y) dy = f(1)−

∫ 1

0
f ′(y)1[0,y](x) dy,

which is clearly satisfied for all f ∈ H if

K(1, x) = 1 and
∂K

∂y
(x, y) = −1[0,y](x) for all x, y ∈ [0, 1].

This can be achieved by taking

K(x, y) = 2−max(x, y). (3.7)

The function of two variables K(x, y) given by (3.7) is our first example of
a reproducing kernel, and H is our first example of a reproducing kernel
Hilbert space.

We now formally define a reproducing kernel Hilbert space of real-valued
functions defined on [0, 1]s.

Definition 3.1. (Reproducing kernel Hilbert space) The Hilbert space
H(K) with inner product 〈·, ·〉H is a reproducing kernel Hilbert space (RKHS)
with kernel K : [0, 1]s × [0, 1]s → R if

• K(·,x) ∈ H for all x ∈ [0, 1]s,
• f(x) = 〈f,K(·,x)〉H for all f ∈ H and all x ∈ [0, 1]s (the repro-

ducing property).

For a given RKHS there is a uniquely defined reproducing kernel satisfying
the above two properties. In fact, every Hilbert space where point evaluation
is a bounded linear functional has a reproducing kernel. This follows from
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the Riesz representation theorem. Reproducing kernels have the additional
properties that

• K(x,y) = K(y,x) for all x,y ∈ [0, 1]s (symmetry),

• ∑M
i=1

∑M
k=1 aiakK(ti, tk) ≥ 0 for all M ≥ 1 and all a1, . . . , aM ∈ R and

t1, . . . , tM ∈ [0, 1]s (positive semi-definiteness).

Indeed, any function K : [0, 1]s×[0, 1]s → R which is symmetric and positive
semi-definite is a reproducing kernel to which there corresponds a uniquely
defined inner product and RKHS. A comprehensive theory on reproducing
kernels can be found in Aronszajn (1950).

The thing that makes a RKHS so useful in the problem of numerical
integration is that, as we shall demonstrate in Subsection 3.3, there exists
a closed form expression for the worst case error. That expression for the
worst case error is expressed in terms of the kernel of the RKHS, and so
is particularly useful when there exists a simple closed expression for the
kernel K.

We remark that it is not always easy to find the explicit kernel of a RKHS
with a given inner product. The particular example above, where the kernel
is not only known but is of very simple piecewise linear form, has played an
important part, as we shall see, in the recent development of QMC methods.
We shall meet other reproducing kernels in Subsection 3.4.

We now show how to use a reproducing kernel for a space of functions of
a single variable as a building block for a multivariate RKHS. First we need:

Definition 3.2. (Tensor product Hilbert space) A Hilbert space Hs

of functions on [0, 1]s is a tensor product of Hilbert spacesH1,1,H1,2, · · · ,H1,s

of functions on [0, 1], written as

Hs = H1,1 ⊗H1,2 ⊗ · · · ⊗H1,s,

if it is the completion under the norm inHs of the span of products
∏s

j=1 fj(xj)

where fj ∈ H1,j. The Hs norm of the simple product
∏s

j=1 fj(xj) is just the

product of the norms ‖fj‖H1,j .

Tensor product spaces provide a popular setting for studying QMC meth-
ods, for the very good reason that the reproducing kernel for a tensor product
of reproducing kernel Hilbert spaces is just the product of the kernels.

Example 3.3. (A key tensor product RKHS) Take each 1-dimensional
RKHSH1,j to be the space of single-variable absolutely continuous functions
with reproducing kernel (3.7). Then the tensor product space Hs is the s-
variable RKHS with reproducing kernel

Ks(x,y) =

s∏

j=1

(2−max(xj , yj)).
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The inner product in this space is

〈f, g〉Hs =
∑

u⊆{1:s}

∫

[0,1]|u|

∂|u|

∂xu

f(xu;1)
∂|u|

∂xu

g(xu;1) dxu, (3.8)

and the norm is

‖f‖Hs =

( ∑

u⊆{1:s}

∫

[0,1]|u|

∣∣∣∣∣
∂|u|

∂xu

f(xu;1)

∣∣∣∣∣

2

dxu

)1/2

.

Here {1 : s} is a shorthand notation for {1, 2, · · · , s}, and the sum is over
all subsets u ⊆ {1 : s}, including the empty set, while for x ∈ [0, 1]s the
symbol xu denotes the set of components xj of x with j ∈ u, and (xu;1)
indicates that the components of x for j /∈ u are replaced by 1. The partial
derivative ∂|u|/∂xu denotes the mixed first partial derivative with respect
to the components xu. Which functions lie in this space? The answer is
all real-valued functions on [0, 1]s that have square-integrable mixed first
derivatives and that are expressible in the form

f(x) = 〈f,K(·,x)〉Hs

=
∑

u⊆{1:s}

(−1)|u|
∫

[0,1]|u|

∂|u|

∂y
u

f(y
u
;1) 1[0,y

u
](x) dyu

, x ∈ [0, 1]s.

We refer to this space as an anchored Sobolev space with the anchor point 1.

3.3. Worst case error in a RKHS

We have foreshadowed in Subsection 3.1 that the discrepancy of a point set
is closely related to the worst case error. We now give the formal definition.

Definition 3.4. (Worst case error) The worst case error of a QMC
rule Qn,s using the point set P ⊂ [0, 1]s in a normed space H (not nec-
essarily a Hilbert space) is

en,s(P ;H) := sup
‖f‖H≤1

|Is(f)−Qn,s(f)|,

that is, it is the worst error attained by Qn,s for f in the unit ball of H.
The initial error is

e0,s(H) := sup
‖f‖H≤1

|Is(f)|,

which is the error obtained with the QMC rule replaced by zero.

Due to linearity, for any function f ∈ H we have

|Is(f)−Qn,s(f)| ≤ en,s(P ;H) ‖f‖H ,
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which takes the same form as the inequality in (3.4). Later in Subsection 3.5
we shall see other inequalities of the same form.

Worst case errors are in general hard to compute, except for the case of
a RKHS. In every RKHS of functions defined on the unit cube (not just a
tensor product space), the following theorem gives a formula for the worst
case error in terms of the reproducing kernel.

Theorem 3.5. (Formula for the squared worst case error) Let K :
[0, 1]s × [0, 1]s → R be a reproducing kernel that satisfies

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy <∞.

The squared worst case error and initial error for a QMC rule in a RKHS
Hs(K) with reproducing kernel K satisfy

e2n,s(P ;Hs(K)) =

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy − 2

n

n−1∑

i=0

∫

[0,1]s
K(ti,y) dy

+
1

n2

n−1∑

i=0

n−1∑

k=0

K(ti, tk), (3.9)

and

e20,s(Hs(K)) =

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy. (3.10)

Proof. We give here the proof for s = 1. The proof for general s can be
easily obtained by replacing the unit interval [0, 1] in the argument below
by the unit cube [0, 1]s.

For an f ∈ H we write the reproducing property f(x) = 〈f,K(·, x)〉H
with successive arguments x = t1, t2, · · · and average the results to obtain,
for the quadrature sum,

1

n

n−1∑

i=0

f(ti) =
1

n

n−1∑

i=0

〈f,K(·, ti)〉H =

〈
f,

1

n

n−1∑

i=0

K(·, ti)
〉

H

.

In a similar way we find

∫ 1

0
f(x) dx =

∫ 1

0
〈f,K(·, x)〉H dx =

〈
f,

∫ 1

0
K(·, x) dx

〉

H

,

provided that integration from 0 to 1 is a bounded linear functional in H,
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or equivalently that
∫ 1
0 K(·, x) dx ∈ H. In turn this requires

∥∥∥∥
∫ 1

0
K(·, x) dx

∥∥∥∥
2

H

=

∫ 1

0

∫ 1

0
〈K(·, x),K(·, y)〉H dxdy

=

∫ 1

0

∫ 1

0
K(x, y) dxdy <∞,

which will hold for all the kernels we shall consider. Note that in the last step
we used the reproducing property. By subtraction, the integration error is

∫ 1

0
f(x) dx− 1

n

n−1∑

i=0

f(ti) =

〈
f,

∫ 1

0
K(·, x) dx− 1

n

n−1∑

i=0

K(·, ti)
〉

H

= 〈f, ξ〉H ,

where

ξ(y) :=

∫ 1

0
K(x, y) dx− 1

n

n−1∑

i=0

K(y, ti), y ∈ [0, 1]. (3.11)

We call the function ξ the representer of the integration error. Thus

en,1(P ;H) = sup
‖f‖H≤1

|〈f, ξ〉H | = ‖ξ‖H ,

since the supremum is attained by the choice f = ξ/‖ξ‖ ∈ H. Therefore

e2n,1(P ;H) = 〈ξ, ξ〉H

=

〈∫ 1

0
K(·, x) dx− 1

n

n−1∑

i=0

K(x·, ti),
∫ 1

0
K(·, x) dx− 1

n

n−1∑

i=0

K(x, ti)

〉

H

=

∫ 1

0

∫ 1

0
K(x, y) dxdy − 2

n

n−1∑

i=0

∫ 1

0
K(x, ti) dx+

1

n2

n−1∑

i=0

n−1∑

k=0

K(ti, tk),

where we again used the reproducing property of the kernel.

For the particular Hilbert space with reproducing kernel K(x, y) = 2 −
max(x, y) it is easily seen that

∫ 1

0
K(x, y) dy =

3− x2

2
and

∫ 1

0

∫ 1

0
K(x, y) dxdy =

4

3
,

so that the worst case error is

e2n,1(P ;H) =
4

3
− 2

n

n−1∑

i=0

(
3− t2i

2

)
+

1

n2

n−1∑

i=0

n−1∑

k=0

(2−max(ti, tk)).

For future purposes we note that the derivative of the error representer ξ is
ξ′ = ∆P , the local discrepancy function.
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For the corresponding tensor product RKHS the worst case error is

e2n,s(P ;Hs) (3.12)

=

(
4

3

)s

− 2

n

n−1∑

i=0

s∏

j=1

(
3− t2i,j

2

)
+

1

n2

n−1∑

i=0

n−1∑

k=0

s∏

j=1

(2−max(ti,j , tk,j)) ,

where ti,j denotes the jth component of the ith cubature point ti. This is
sometimes called the squared L2 discrepancy of the point set P , for reasons
that will soon become clear.

It proves to be very useful (and surprisingly easy) to compute the average
of the squared worst case error over all cubature points,

E2
n,s(Hs(K)) :=

∫

[0,1]s
· · ·
∫

[0,1]s
e2n,s(t0, · · · , tn−1;Hs(K)) dt0 · · · dtn−1.

We refer to the quantity En,s(K) as the QMC mean of the worst case error.
(Why this is a useful quantity will be explained after the theorem.)

Theorem 3.6. (QMC mean) Let K : [0, 1]s × [0, 1]s → R be a repro-
ducing kernel that satisfies

∫

[0,1]s
K(x,x) dx <∞.

The QMC mean of the worst case error in a reproducing kernel Hilbert space
Hs(K) of functions on [0, 1]s and with kernel K satisfies

E2
n,s(Hs(K)) =

1

n

(∫

[0,1]s
K(x,x) dx−

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy

)
.

(3.13)

Proof. Using Theorem 3.5 we have

E2
n,s(Hs(K))

=

∫

[0,1]s
· · ·
∫

[0,1]s

( ∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy − 2

n

n−1∑

i=0

∫

[0,1]s
K(ti,y) dy

+
1

n2

n−1∑

i=0

K(ti, ti) +
1

n2

n−1∑

i=0

n−1∑

k=0
k 6=i

K(ti, tk)

)
dt0 · · · dtn−1,

noting that in the double sum we separated the diagonal and off-diagonal
terms as in the proof of Theorem 2.1. The first term inside the parentheses
is independent of t0, . . . , tn−1, thus these variables can all be integrated
out to give the result 1. In the second term, after interchanging the outer
integrations and the sum all variables but ti can be integrated out. The
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situation is similar for the third term, while for the fourth term all but ti
and tk can be integrated out. We are left with

E2
n,s(K) =

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy − 2

n

n−1∑

i=0

∫

[0,1]s

∫

[0,1]s
K(ti,y) dti dy

+
1

n2

n−1∑

i=0

∫

[0,1]s
K(ti, ti) dti +

1

n2

n−1∑

i=0

n−1∑

k=0
k 6=i

∫

[0,1]s

∫

[0,1]s
K(ti, tk) dti dtk

=

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy − 2

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy

+
1

n

∫

[0,1]s
K(x,x) dx+

n− 1

n

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy

=
1

n

∫

[0,1]s
K(x,x) dx− 1

n

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy.

The importance of Theorem 3.6 is that it gives us an immediate existence
result for QMC integration: by applying the principle that there is always
at least one choice as good as the average, we conclude that there exists a
QMC point set P for which

e2n,s(P ;Hs(K)) ≤ E2
n,s(Hs(K)).

Thus, provided that both integrals on the right-hand side in Theorem 3.6
are finite (as they are in all the cases we will consider), there exists a QMC
point set with worst case error of order O(n−1/2), i.e., the same rate of
convergence as Monte Carlo. Later we will not be satisfied with this result,
for two reasons: first, we want not just the Monte Carlo rate of convergence,
but rather a rate of convergence close to O(n−1), or even better; second, we
want not just existence, but also a method of constructing the points.

3.4. Other univariate reproducing kernels

Note that (3.1) can be viewed as a Taylor series with integral remainder,
developed at 1. As such it is clear that we could choose an arbitrary anchor
point c ∈ [0, 1] instead of 1. Or we can consider function spaces whose
members have more than one derivative. Or we can depart from a Taylor
series representation of f to obtain other examples of reproducing kernels.
All of the following examples can be used as building blocks for multivariate
Sobolev spaces.

Example 3.7. (Anchored reproducing kernel of smoothness α) If the
(α−1)-th derivative of f is absolutely continuous for some natural number α
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then the Taylor series of a univariate function f anchored at 0 is

f(x) =

α−1∑

r=0

f (r)(0)

r!
xr +

∫ 1

0
f (α)(y)

(x− y)α−1
+

(α− 1)!
dy,

where f (r) denotes the rth derivative of f and

(x− y)α−1
+ =

{
(x− y)α−1 if x > y,

0 if x ≤ y.

For functions f, g permitting such a Taylor series presentation, we can define
the inner product

〈f, g〉 =
α−1∑

r=0

f (r)(0)g(r)(0) +

∫ 1

0
f (α)(y)g(α)(y) dy.

The set of functions whose norm corresponding to this inner product is finite
is another RKHS, with kernel given by

Kα(x, y) =
α−1∑

r=0

xr

r!

yr

r!
+

∫ 1

0

(x− z)α−1
+

(α− 1)!

(y − z)α−1
+

(α− 1)!
dz.

We call the corresponding RKHS the anchored Sobolev space of smoothness α
with anchor 0.

Example 3.8. (Unanchored reproducing kernel of smoothness α)
For a univariate function f belonging to the same smoothness class as in the
preceding example, consider the representation given by

f(x) =

α∑

r=0

Br(x)

r!

∫ 1

0
f (r)(y) dy − (−1)α

∫ 1

0

Bα(|x− y|)
α!

f (α)(y) dy.

Here, Br denotes the Bernoulli polynomial of degree r, see (Digital Library
of Mathematical Functions 2012, Chapter 24). In this case the inner product
is

〈f, g〉 =
α−1∑

r=0

(∫ 1

0
f (r)(y) dy

)(∫ 1

0
g(r)(y) dy

)
+

∫ 1

0
f (α)(y)g(α)(y) dy,

and the reproducing kernel is

Kα(x, y) =

α∑

r=0

Br(x)

r!

Br(y)

r!
− (−1)α

B2α(|x− y|)
(2α)!

.

The corresponding RKHS is called the unanchored Sobolev space of smooth-
ness α.
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3.5. Geometric discrepancy

We now return to the local discrepancy function

∆P (x) =
1

n

n−1∑

i=0

1[0,x](ti)−
∫ 1

0
1[0,x](y) dy,

which we encountered already in (3.3), and which we also obtained as the
derivative ξ′ of the representer ξ, where ξ is given by (3.11) with K as in
(3.7).

The local discrepancy function has a geometric interpretation: since
∑n−1

i=0 1[0,x](ti)

is the number of points of P lying in the interval [0, x], therefore 1
n

∑n−1
i=0 1[0,x](ti)

is the proportion of points of P lying in the interval [0, x]; and the local dis-
crepancy is the departure of this proportion from the “ideal” proportion,
which is the length of the interval. By taking the Lp norm of ∆P we obtain
the Lp discrepancy of the point set P , given by

‖∆P ‖p :=
(∫ 1

0
|∆P (x)|p dx

)1/p

for 1 ≤ p < ∞, with the obvious modifications for p = ∞. The Lp discrep-
ancy can therefore be understood as a measure for how uniformly the point
set P is distributed, i.e., it measures the discrepancy between the empirical
distribution of the point set P and the uniform distribution.

We consider now a generalization to dimensions s > 1. In one dimension,
the local discrepancy function can be derived as the derivative of the repre-
senter ξ based on the reproducing kernel K(x, y) = 2−max(x, y). As before
we consider the product kernel Ks(x,y) =

∏s
j=1K(xj , yj). The representer

of the error is given by

ξ(x) =

∫

[0,1]s
Ks(x,y) dy − 1

n

n−1∑

i=0

Ks(x, ti)

=

s∏

j=1

(
3− x2j

2

)
− 1

n

n−1∑

i=0

s∏

j=1

(2−max(xj , ti,j)).

The mixed first partial derivatives are then given by

∂|u|ξ

∂xu

(xu;1) = (−1)|u|


∏

j∈u

xj −
1

n

n−1∑

i=0

1[0u,xu](ti,u)


 ,

where 1[0u,xu](ti,u) =
∏

j∈u 1[0,xj ](ti,j). We define the local discrepancy func-
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tion ∆P in s dimensions by

∆P (x) :=
1

n

n−1∑

i=0

1[0,x](ti)−
s∏

j=1

xj.

Then

∂|u|ξ

∂xu

(xu;1) = (−1)|u|+1∆P (xu;1).

Analogously to the 1-dimensional case, one can show that

1

n

n−1∑

i=0

f(ti)−
∫

[0,1]s
f(x) dx =

∑

u⊆{1:s}

(−1)|u|
∫

[0,1]|u|

∂|u|f

∂xu

(xu;1)∆P (xu;1) dxu,

where the u = ∅ term is actually zero since ∆P (1) = 0. This equality is
called by different people the Hlawka identity or the Zaremba identity.

By applying Hölder’s inequality for integrals and sums, we then obtain
the following inequality.

Theorem 3.9. (Koksma-Hlawka inequality) We have
∣∣∣∣∣
1

n

n−1∑

i=0

f(ti)−
∫

[0,1]s
f(x) dx

∣∣∣∣∣ ≤ ‖∆P ‖p,p′‖f‖q,q′ , (3.14)

where 1 ≤ p, p′, q, q′ ≤ ∞, 1
p + 1

q = 1, 1
p′ +

1
q′ = 1, and

‖∆P‖p,p′ =


 ∑

u⊆{1:s}

(∫

[0,1]|u|
|∆P (xu;1)|p dxu

)p′/p



1/p′

and

‖f‖q,q′ =


 ∑

u⊆{1:s}

(∫

[0,1]|u|

∣∣∣∣∣
∂|u|f

∂xu

(xu;1)

∣∣∣∣∣

q

dxu

)q′/q



1/q′

,

with the obvious modifications if one or more of p, p′, q, q′ are infinite.

In the theorem the norm ‖f‖q,q′ can obviously be replaced by the cor-
responding seminorm |f |q,q′ , defined in exactly the same way but with the
u = ∅ term omitted. (This term can be omitted because the QMC rule is
exact for constants.)

The inequality (3.14) says that the integration error is bounded by the
product of the norm ‖f‖q,q′ or seminorm |f |q,q′ of the integrand and the
discrepancy ‖∆P ‖p,p′ of the cubature points. It is often called a Koksma-
Hlawka inequality, especially for the case p = p′ = ∞. If the integrand
is given, and cannot be changed, the inequality motivates the search for
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cubature points with small discrepancy. It also connects QMC with the area
of discrepancy theory, since it shows that point sets with low discrepancy
are attractive to use as QMC integration points.

The classical Koksma-Hlawka inequality states that
∣∣∣∣∣
1

n

n−1∑

i=0

f(ti)−
∫

[0,1]s
f(x) dx

∣∣∣∣∣ ≤ D∗
n(P )V (f), (3.15)

where D∗
n(P ) is the star discrepancy

D∗
n(P ) := sup

x∈[0,1]s
|∆P (x)|, (3.16)

and V (f) is the variation of f in the sense of Hardy and Krause. If f has
continuous mixed first partial derivatives, the variation V (f) coincides with

|f |1,1 =
∑

∅6=u⊆{1:s}

∫

[0,1]|u|

∣∣∣∣∣
∂|u|f

∂xu

(xu;1)

∣∣∣∣∣ dxu.

3.6. Notes

The classical reference for reproducing kernels is Aronszajn (1950). See also
Thomas-Agnan (1996) and Wahba (1990). In the context of QMC, repro-
ducing kernels were introduced by Hickernell (1996a), see also Hickernell
(1998a). For another elementary introduction to RKHSs in the context of
QMC integration see Dick and Pillichshammer (2010, Chapter 2). Theo-
rem 3.5 can be found in Hickernell (1998a). Mercer’s theorem implies that
each reproducing kernel has an expansion in terms of its eigenfunctions

K(x,y) =

∞∑

r=0

λrψr(x)ψr(y),

where λr > 0 are the eigenvalues and ψr the eigenfunctions of the integral
operator on [0, 1]s with kernel K. For many reproducing kernels consid-
ered in QMC theory these eigenfunctions are explicitly known, see Dick,
Nuyens and Pillichshammer (2013), Wasilkowski and Woźniakowski (1999),
and Werschulz and Woźniakowski (2009).

The one-dimensional form of (3.15) is due to Koksma (1942/43) and the
higher dimensional result is due to Hlawka (1961).

Geometric discrepancy was studied long before QMC integration. The
classical reference to uniform distribution modulo 1 is Weyl (1916). Further
monographs dealing with discrepancy theory and various aspects of it are
due to Kuipers and Niederreiter (1974), Niederreiter (1992a), Drmota and
Tichy (1997), Matoušek (1999), Chazelle (2000), and Dick and Pillichsham-
mer (2010).

Novak and Woźniakowski (2009) studied when general L2 discrepancies
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(in Euclidean spaces) are related to the worst-case error of multivariate in-
tegration on RKHS. In particular, they provided for arbitrary L2 discrepan-
cies a concrete formula for the corresponding reproducing kernel. Gnewuch
(2012) extended these results to weighted L2 discrepancies and weighted
RKHS. Here the underlying domain can be more general as in Novak and
Woźniakowski (2009). In particular, Gnewuch (2012) covers the relation
between infinite-dimensional integration on weighted Hilbert spaces and the
corresponding weighted (limiting) L2 discrepancies.

4. Weighted spaces and tractability

4.1. Meeting the high-dimensional challenge

High dimensional problems, as noted already in the Introduction, can be
very hard. Yet some problems have caused surprise in the opposite direc-
tion by turning out to be easier than might have been expected. Especially
influential in this respect were certain 360-dimensional calculations carried
out in the mid 1990s by Paskov and Traub (1995) at Columbia Univer-
sity. That paper describes a problem coming directly from Wall Street, on
the valuation of a class of financial derivatives known as mortgage backed
obligations. While the details of the model or the calculation are not im-
portant here, broadly the problem was to evaluate a parcel of mortgages
held by a bank, where each month borrowers make individual choices as to
whether or not to repay the mortgage, and are assumed to make this choice
according to some probability distribution. And of course the value of a
mortgage held by the bank is affected by whether or not the loan is repaid.
Because there are 360 months in the 30-year period of the loan, the problem
is to evaluate a 360-dimensional expected value. The standard approach to
such a problem is to model the process month by month by a Monte Carlo
method. Paskov and Traub (1995), in contrast, treated the problem as one
of 360-dimensional integration. To the surprise of most observers, they were
able to obtain satisfactory results with a QMC method, at much smaller
computational cost than with a Monte Carlo method.

Following the success of those experiments, the idea began to emerge that
perhaps problems such as the one described in the previous paragraph are
in some hidden sense not really as difficult as might be expected from their
nominal high dimensionality. In this spirit Caflisch et al. (1997) defined
two notions of “effective dimension” (namely “truncation dimension” and
“superposition dimension”), with the idea that either or both might be
be much smaller than the nominal dimension. Sloan and Woźniakowski
(1998) sought to build this notion into the mathematics, by introducing
function spaces containing ‘weights’. It is fair to say that in one or other form
‘weighted spaces’ have become a standard part of the QMC framework. We
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will define such spaces formally in the next subsection, but first we describe
the underlying idea, and indicate why it has become so popular.

Sloan and Woźniakowski speculated that perhaps the reason that QMC
calculations such as those in Paskov and Traub (1995) were successful is that
some coordinate directions are more important than others, in the sense of
being in some way more difficult. Assuming then that the coordinate direc-
tions are ordered in order of difficulty, they sought to quantify this decreasing
importance by associating with each coordinate direction a positive number
γj , where

γ1 ≥ γ2 ≥ γ3 · · · > 0.

By introducing a function space incorporating these weights, they were able
to obtain a rather precise result, namely that the worst case error (defined
already in Definition 3.4) is bounded independently of dimension if and
only if

∞∑

j=0

γj <∞.

This means that a classical choice of weights (with all weights equal) cer-
tainly fails to have worst case errors bounded independently of the dimen-
sion. So too, though only marginally, do weights γj = 1/j. On the other
hand weights of the form γj = 1/ja lead to uniformly bounded worst case
errors if (and only if) a > 1.

The weights described in the preceding paragraph are now called “prod-
uct weights”, for reasons that will soon become clear. Since that time many
other forms of weights have been studied (we shall meet “general weights’,
“finite order” weights, “order-dependent” weights, and the most recent ad-
dition, “POD” (for “product and order dependent”) weights. The driving
motivation for this flowering of possibilities has been the desire to describe
in a more precise way the influence of particular combinations of the vari-
ables. At the (unrealistic) extreme, the greatest freedom attaches to “gen-
eral weights”, which allow a different weight γu for each of the 2s subsets
u ⊆ {1 : s}.

For all these choices of weights the question of “tractability” arises: loosely,
we ask under what conditions on the weights are the worst case errors uni-
formly bounded in dimension; or if they are not bounded, then at worst grow
only slowly with dimension. We shall discuss tractability in Subsection 4.5.

4.2. Weighted reproducing kernel Hilbert spaces: anchored Sobolev spaces

In this subsection we first introduce a weighted RKHS in its simplest product
form. But we then quickly develop weighted spaces of a more general form.

Arguing as in Example 3.3, we build our first weighted s-variable space out
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of single-variable weighted spaces with simple kernels. Our 1-dimensional
space H1,γ is almost the same as before (in particular, it is always the space
of absolutely continuous functions f defined on [0, 1] whose first derivatives
are square integrable), except that we now associate with the space a weight
γ > 0, and in addition we allow the “anchor” value to be any number
c ∈ [0, 1], instead of just 1 as before. Our building block is now the 1-
dimensional kernel

K1,γ(x, y) = 1 + γ η(x, y),

where

η(x, y) =





min(x, y) − c if x, y > c,

c−max(x, y) if x, y < c,

0 otherwise.

(4.1)

If c = 1 and γ = 1 it is easily seen that this reduces to the reproducing
kernel (3.7). For general c and γ it is easy to verify, using no more than the
fundamental theorem of calculus, that K1,γ(x, y) is the reproducing kernel
associated with the inner product

〈f, g〉1,γ = f(c)g(c) +
1

γ

∫ 1

0
f ′(x) g′(x) dx,

which is a generalization of (3.6). The corresponding norm is

‖f‖1,γ = 〈f, f〉1/21,γ .

The s-dimensional tensor product RKHS corresponding to the above 1-
dimensional space is, if we allow a different weight γj for each component xj ,

Hs,γ := H1,γ1 ⊗H1,γ2 ⊗ · · · ⊗H1,γs .

It has the reproducing kernel

Ks,γ(x,y) =
s∏

j=1

(1 + γjη(xj , yj)).

The identity

s∏

j=1

(1 + aj) =
∑

u⊆{1:s}

∏

j∈u

aj = 1 +
∑

∅6=u⊆{1:s}

∏

j∈u

aj (4.2)

can now be used to rewrite the product as a sum over all subsets of {1 : s}:

Ks,γ(x,y) =
∑

u⊆{1:s}

γu
∏

j∈u

η(xj , yj), (4.3)
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where for this product weight case we have

γu =
∏

j∈u

γj ,

with the convention that the empty product has the value 1. The reason for
the “product” tag for these weights now becomes clear: the weight associated
with the subset u of the variables is the product of the weights for the
individual components. One implication of this is that the scaling of product
weights is crucially important. If, for example, all the weights γj are halved
then the weights for the subset u = {1, 3} with two elements are reduced by
a factor of 4, and those for the subset u = {2, 4, 5} by a factor of 8.

Because of the limited flexibility of product weights, other choices of
weights have been considered. In principle the formula (4.3) allows a differ-
ent weight γu to be chosen for each subset u of the variables, but the cost
of even one evaluation of the reproducing kernel would then be prohibitive
when s is large. This is the general weight case (Dick, Sloan, Wang and
Woźniakowski 2006), where we take γ∅ ≡ 1. There is much interest (Sloan,
Wang and Woźniakowski 2004, Wasilkowski and Woźniakowski 2004) (as
well as some unease (Sloan 2007)) in finite-order weights, in which γu = 0
for all |u| greater than some number q∗. Order-dependent weights, intro-
duced by Dick et al. (2006), take the form

γu = Γ|u|

for some non-negative numbers Γ1,Γ2, . . .. The most recent addition to the
menagerie of weights are the POD weights (i.e., product and order dependent
weights), in which two sequences γ1, γ2, . . . and Γ1,Γ2, . . . of non-negative
numbers are defined, and we take

γu = Γ|u|

∏

j∈u

γj. (4.4)

Weights of the POD form were found to arise naturally in a recent study of
PDE with random coefficients (Kuo et al. 2012).

For general weights γu the inner product in our anchored space is

〈f, g〉s,γ =
∑

u⊆{1:s}

γ−1
u

∫

[0,1]|u|

∂|u|

∂xu

f(xu; c)
∂|u|

∂xu

g(xu; c) dxu,

where the notation follows that in (3.8), and the term labelled by u is to be
omitted for u = ∅.

The worst case errors for spaces with reproducing kernel of the form (4.3)
and η given by (4.1) can be found from (3.9). To make use of that expression
one needs the single and double integrals of the kernel. For completeness we
give the necessary integrals here, as well as the “diagonal” integral needed
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for the QMC mean (3.13):
∫

[0,1]s
Ks,γ(x,y) dy =

∑

u⊆{1:s}

γu
∏

j∈u

(α(xj) + β) ,

∫

[0,1]s

∫

[0,1]s
Ks,γ(x,y) dxdy =

∑

u⊆{1:s}

γu β
|u|, (4.5)

∫

[0,1]s
Ks,γ(x,x) dx =

∑

u⊆{1:s}

γu
(
β + 1

6

)|u|
,

where

α(x) := max(x, c)− x2

2 − c2

2 − 1
3 and β := c2 − c+ 1

3 . (4.6)

When the weights are of the product form, these three integrals simplify (by
using the identity (4.2)) to

s∏

j=1

(1 + γj (α(xj) + β)) ,
s∏

j=1

(1 + γjβ) ,
s∏

j=1

(
1 + γj

(
β + 1

6

))
,

respectively.
For example, with product weights and c = 1 we have from (3.9) and

(3.10) that the worst case error and initial error are given by

e2n,s(P ;H(Ks,γ)) =

s∏

j=1

(
1 +

γj
3

)
− 2

n

n−1∑

i=0

s∏

j=1

(
1 +

γj
2
(1− t2i,j)

)

+
1

n2

n−1∑

i=0

n−1∑

k=0

s∏

j=1

(1 + γj [1−max(ti,j, tk,j)]) ,

which reduces to (3.12) if γj = 1 for all j, and

e20,s(H(Ks,γ)) =
s∏

j=1

(
1 +

γj
3

)
.

Moreover, we have from (3.13) that the QMC mean satisfies

E2
n,s(H(Ks,γ)) =

1

n




s∏

j=1

(
1 +

γj
2

)
−

s∏

j=1

(
1 +

γj
3

)

 .

We remark that it is also possible to use a different anchor value cj for
each coordinate direction xj , thus leading to different ηj, αj, βj for each
index j. All results can be trivially generalized to that case.
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4.3. Unanchored Sobolev spaces

The reproducing kernels considered so far in this section have been of the
so-called “anchored” variety, in which there is a special number c ∈ [0, 1],
called the “anchor”, at which the components of x that are not active (i.e.,
that are not in the active set u) are fixed. However, there are other RKHSs
with interesting properties (Sloan and Woźniakowski 2002). In particular,
the so-called “unanchored” spaces, in which the inactive variables are inte-
grated over rather than fixed, have some advantages. We give the necessary
formulas here; all can be checked by similar arguments to those given pre-
viously for the anchored spaces (or see the reference above).

In the 1-dimensional weighted case the inner product is now (cf. Exam-
ple 3.8 for α = 1)

〈f, g〉1,γ =

(∫ 1

0
f(x) dx

)(∫ 1

0
g(x) dx

)
+

1

γ

∫ 1

0
f ′(x) g′(x) dx,

and the corresponding norm is

‖f‖1,γ = 〈f, f〉1/21,γ .

The corresponding reproducing kernel is, as before,

K1,γ(x, y) = 1 + γ η(x, y),

but now η is given by

η(x, y) = 1
2B2(|x− y|) +

(
x− 1

2

) (
y − 1

2

)
, (4.7)

where B2(x) := x2 − x + 1
6 is the Bernoulli polynomial of degree 2, which

has the useful property
∫ 1

0
B2(|x− y|) dy =

∫ 1

0
B2(y) dy = 0.

The corresponding kernel for the s-dimensional general weight case is
again given by (4.3), but now with η given by (4.7). The inner product for
the s-dimensional general weight unanchored space is

〈f, g〉s,γ =
∑

u⊆{1:s}

γ−1
u

∫

[0,1]|u|

(∫

[0,1]s−|u|

∂|u|

∂xu

f(x) dx−u

)

·
(∫

[0,1]s−|u|

∂|u|

∂xu

g(x) dx−u

)
dxu,

where x−u stands for all the components of the s-dimensional vector x that
are not included in xu.

The range of choices for the weights is exactly the same as for the anchored
case.
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The worst case error is again given by (3.9). The necessary single and
double integrals of the kernel, along with the diagonal integral needed for
the QMC mean, now take the simpler forms

∫

[0,1]s
Ks,γ(x,y) dy = 1,

∫

[0,1]s

∫

[0,1]s
Ks,γ(x,y) dxdy = 1,

∫

[0,1]s
Ks,γ(x,x) dx =

∑

u⊆{1:s}

γu
(
1
6

)|u|
,

and in the case of product weights the third integral simplifies to

s∏

j=1

(
1 +

γj
6

)
.

To avoid having to treat the anchored and unanchored spaces separately,
we can write η(x, y) from (4.1) and (4.7) in the common form

η(x, y) = 1
2B2(|x− y|) + (x− 1

2)(y − 1
2) + α(x) + α(y) + β, (4.8)

where α(·) and β are defined by (4.6) for the anchored case, and α ≡ 0 and
β = 0 for the unanchored case.

4.4. Why weighted spaces are interesting

We have defined different kinds of weighted spaces for functions defined on
the s-dimensional cube, but we have not so far said why weighted spaces
are interesting. The answer is that the worst case errors in any of our
weighted reproducing kernel Hilbert spaces are bounded independently of the
dimension s if (and only if) the weights decay in a suitable way.

For the case of product weights, the following result, first obtained by
Sloan and Woźniakowski (1998) for the anchored case c = 1, is particularly
striking.

Theorem 4.1. For product weights, and for the weighted anchored or
unanchored Sobolev space of Subsections 4.2 and 4.3, there exist point sets
Pn ⊂ [0, 1]s for n = 1, 2, . . . such that the worst case error en,s(Pn;H(Ks,γ))
is bounded independently of s if and only if

∞∑

j=1

γj <∞. (4.9)

There are two parts to this theorem: one part is an existence result, stating
that “good” point sets exist if (4.9) holds, without saying how to find them;
and the other part is a negative result, saying that if the assumption (4.9)
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does not hold then, no matter how the points are chosen, the worst case
error is unbounded as s → ∞. We shall address each result separately in
the following two lemmas.

Lemma 4.2. For product weights, and for the weighted anchored or unan-
chored Sobolev space of Subsections 4.2 and 4.3, there exist point sets
Pn ⊂ [0, 1]s for n = 1, 2, . . . such that the worst case error en,s(Pn;H(Kγ,s))
satisfies

en,s(Pn;H(Ks,γ)) ≤
1√
n
exp


B

s∑

j=1

γj


 ≤ 1√

n
exp


B

∞∑

j=1

γj


 ,

whereB = (c2−c+1/2)/2 for the anchored space with anchor value c ∈ [0, 1],
and B = 1/12 for the unanchored space. (In particular, B = 1/4 for the
anchor c = 1 and B = 1/8 for the midpoint anchor c = 1/2.)

Thus the worst case error is bounded independently of s, and has the
Monte Carlo rate of convergence, if the infinite sum in (4.9) converges.

Proof. We give the proof for the anchored space with c = 1. The other cases
follow similarly. It follows from the averaging argument (there is always at
least one choice as good as the average) that there exists a QMC point set
Pn for which the worst case error is less than or equal to the QMC mean
given by (3.13). We produce an upper bound on the latter by omitting
the negative term, and then use the third equation in (4.5) to evaluate the
integral, obtaining

e2n,s(Pn;H(Ks,γ)) ≤ E2
n,s(H(Ks,γ)) ≤

1

n

s∏

j=1

(
1 +

γj
2

)

=
1

n
exp




s∑

j=1

log
(
1 +

γj
2

)

 ≤ 1

n
exp


1

2

s∑

j=1

γj


 ,

where in the last step we used the property that log(1+x) ≤ x for all x > 0.
The rest of the claim in the lemma follows immediately.

The “only if” part of Theorem 4.1 for the anchored case comes from
the following result established by Sloan and Woźniakowski (1998). The
argument there is relatively elementary, starting from (3.9) with the off-
diagonal terms of the last term dropped (which is justifiable by the non-
negativity assumption).

Lemma 4.3. If the reproducing kernel Ks of some Hilbert space H(Ks)
is non-negative, then for any point set Pn ⊂ [0, 1]s we have

e2n,s(Pn;H(Ks)) ≥ e20,s(H(Ks))(1− nκ2s),
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where

κs :=

(
sup

x∈[0,1]s

as(x)√
Ks(x,x)

)
1

‖as‖s
,

and

as(x) :=

∫

[0,1]s
Ks(x,y) dy.

Hence en,s(Pn,H(Ks)) ≤ εe0,s(H(Ks)) can happen only if

n ≥ 1− ε2

κ2s
.

This lemma applies to the anchored space of Subsection 4.2 because the
kernel Ks,γ is in this case manifestly positive. The proof of the second part
of Theorem 4.1 then follows in this case by showing that κs → 0 if the
sum in (4.9) diverges. For the unanchored case a different proof is needed,
because the kernel Ks,γ in that case is not necessarily positive. The result
for that case is proved in Sloan and Woźniakowski (2002) Theorem 1, but in
any case is superseded by the stronger result stated in Theorem 4.5 below.

In the case of our original anchored but unweighted Sobolev space dis-
cussed in Example 3.3, it can be shown (Sloan and Woźniakowski 1998)
that κs ≈ 1.055−s, thus in this case n must be exponentially large to reduce
the initial error by some fixed percentage, say 50%.

The upper bound on the worst case error in Lemma 4.2 is independent
of s under the condition (4.9), but the apparent rate of convergence in that
lemma is just the Monte Carlo rate of O(n−1/2). Fortunately, as we shall
see in Sections 5 and 6, a convergence rate arbitrarily close to O(n−1) can
be attained if the (product) weights satisfy the stronger condition

∞∑

j=1

γ
1/2
j <∞.

4.5. Tractability of multivariate integration

In this subsection we frame the earlier discussion in terms of the valuable
notion of tractability. Loosely speaking, the tractability of a problem relates
to the question of how quickly the difficulty of a problem increases as the
dimension increases. Note that it relates to the difficulty of the problem, not
to the cost of any particular algorithm.

The standard reference in this area is the recent three volume work No-
vak and Woźniakowski (2008), Novak and Woźniakowski (2010), Novak and
Woźniakowski (2012). In the present brief discussion we limit ourselves to a
very small part of the subject, touching only parts that are relevant to our
concerns with multivariate integration over the unit cube.
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Thus our problem is that of evaluating the s-dimensional integral Is(f)
defined in (1.1). We will assume that f belongs to a Banach space Fs of
real-valued functions defined on [0, 1]s. The space Fs could be one of our
reproducing kernel spaces Hs, but could also (as in the next subsection) be a
non-Hilbert space. The setting is that we are allowed to approximate Is(f)
by any deterministic algorithm An,s(f) that uses at most n function values of
Fs. (In the language of information based complexity (Traub, Wasilkowski
and Woźniakowski 1988), the algorithm is restricted to “standard informa-
tion”.) Thus An,s could be a QMC integration rule, but could also be an
integration rule that uses unequal weights, including even negative weights,
and An,s is even allowed to be a nonlinear combination of f(t0), . . . , f(tn−1).

For a given s ≥ 1 and a given ε ∈ (0, 1] we define the nth minimal number
for this problem by

n(ε, s) := min

{
n ≥ 1 : inf

An,s

sup
‖f‖Fs≤1

|Is(f)−An,s(f)| ≤ ε

}
,

where the infimum is over all algorithms An,s that use no more than n
function values of f (and no other information about f).

Definition 4.4. (Tractability) The integration problem is said to be
polynomially tractable if there is some C > 0 and some p > 0 and q ≥ 0 such
that

n(ε, s) ≤ C

(
1

ε

)p

sq

for all s ∈ N and ε ∈ (0, 1]. It is strongly polynomially tractable if this
inequality holds with q = 0, that is, if

n(ε, s) ≤ C

(
1

ε

)p

.

Many other variants of tractability are defined in the cited works, but
these two will suffice for our present purposes.

The following theorem mimics Theorem 4.1 in the preceding subsection,
but there is an important difference: whereas for the “only if” part of the
theorem we previously allowed only QMC integration rules, here all algo-
rithms An,s are allowed, making the statement considerably stronger.

Theorem 4.5. (Strong polynomial tractability) For product weights,
and for the weighted anchored or unanchored Sobolev space of Subsec-
tions 4.2 and 4.3, the integration problem is strongly polynomially tractable
if and only if

∞∑

j=1

γj <∞.
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A necessary and sufficient condition for polynomial tractability is:

Theorem 4.6. (Polynomial tractability) For product weights, and for
the weighted anchored or unanchored Sobolev space of Subsections 4.2 and 4.3,
the integration problem is polynomially tractable if and only if

lim sup
s→∞

∑s
j=1 γj

log(s + 1)
<∞.

The preceding theorem may give the impression that non-trivial weights
are needed in order to have (polynomial) tractability, but the remarkable
result discussed in the next subsection shows that, while this is true for the
Hilbert spaces we met so far, it is not true for the classical L1 version of the
anchored spaces.

But the Hilbert spaces retain one great advantage, namely that the worst
case error for a given QMC rule is computable, something that turns out (as
we shall see in the next two sections) to be helpful in construction. The star
discrepancy (whether weighted or not), on the other hand, is notoriously
difficult to compute, see Gnewuch, Srivastav and Winzen (2009).

In this subsection we have so far restricted ourselves to product weights.
Tractability results for general weights were first considered by Sloan et al.
(2004). For example, for general weights γu and the unanchored Sobolev
space it is shown that the integration problem is strongly polynomially
tractable if ∑

|u|<∞

γu
(
1
6

)|u|
<∞,

where now the sum is over all finite subsets of the natural numbers. For other
tractability results for general weights and other variants of the weights, we
refer the reader to Novak and Woźniakowski (2010).

4.6. Tractability of star discrepancy

A surprising result established in Heinrich, Novak, Wasilkowski andWoźniakowski
(2001) is that there exists a point set P in [0, 1]s consisting of n points such
that its star discrepancy, given by (3.16), satisfies

D∗
n(P ) ≤ C

√
s

n
, (4.10)

for some constant C > 0 which is independent of n and s. Aistleitner (2011)
showed that C can be chosen as 10, for instance. A lower bound by Hinrichs
(2004) states that the infimum of D∗

n(P ) over all point sets P is bounded by

inf
P⊂[0,1]s,|P |=n

D∗
n(P ) ≥ min

(
c0, c

s

n

)
,
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where the constant c > 0 is independent of s and n and c0 =
1

32e2 , as stated
in Gnewuch and Roşca (2009).

In the following we prove a slightly weaker version of (4.10). The proof is
based on Hoeffding’s inequality, a special case of which we describe in the
following. Let X0,X1, . . . ,Xn−1 be independent and identically distributed
random variables with mean µ and Xi ∈ [−1, 1] almost surely for 0 ≤ i < n.
Let X = 1

n

∑n−1
i=0 Xi. Then

P(|X − µ| ≥ δ) ≤ 2e−δ2n/2 for all δ ≥ 0.

We need an additional lemma.

Lemma 4.7. Let P = {t0, t1, . . . , tn−1} ⊂ [0, 1]s be a point set consisting
of n elements. Let δ > 0 and m = ⌈s/δ⌉. Let Γm be the equidistant grid on
[0, 1]s with mesh-size 1/m (and therefore cardinality (m+ 1)s). Then

D∗
n(P ) ≤ max

x∈Γm

|∆P (x)|+ δ.

Proof. Let η > 0. Then there is a vector x∗ = (x∗1, . . . , x
∗
s) ∈ [0, 1]s such

that

D∗
n(P ) ≤ |∆P (x

∗)|+ η.

Let y,z ∈ Γm be such that yj ≤ x∗j ≤ zj and zj − yj = m−1. Then we have

s∏

j=1

zj −
s∏

j=1

yj =
s∑

r=1

((
s∏

j=r

zj

)(
r−1∏

j=1

yj

)
−
(

s∏

j=r+1

zj

)(
r∏

j=1

yj

))

=

s∑

r=1

(
s∏

j=r+1

zj

)(
r−1∏

j=1

yj

)
(zr − yr) ≤

s

m
≤ δ,

where the empty product is set to 1. Thus we have

s∏

j=1

zj −
1

n

n−1∑

i=0

1[0,z)(ti)− δ ≤
s∏

j=1

x∗j −
1

n

n−1∑

i=0

1[0,x∗)(ti)

≤
s∏

j=1

yj −
1

n

n−1∑

i=0

1[0,y)(ti) + δ,

which implies the result.

We are now ready to prove the following slightly weaker version of (4.10),
which is Theorem 1 of Heinrich et al. (2001).

Theorem 4.8. For every n, s ∈ N there exists a point set P consisting of
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n points in [0, 1]s, whose star discrepancy satisfies

D∗
n(P ) ≤

2
√
2√
n

√
s log

(⌈
s
√
n√

4 log 2

⌉
+ 1

)
+ log 2.

Proof. Let t0, t1, . . . , tn−1 be independently and uniformly distributed ran-
dom variables in [0, 1]s. Let P = {t0, t1, . . . , tn−1}. Then for each x ∈ [0, 1]s

∆ti(x) = 1[0,x)(ti)− x1 · · · xs
is a random variable with mean 0 and |∆ti(x)| ≤ 1 for 0 ≤ i < n. Further
we have

∆P (x) =
1

n

n−1∑

i=0

∆ti(x).

Thus we can use Hoeffding’s inequality, which implies that

P (D∗
n(P )) ≤ 2δ) ≥P

(
max
x∈Γm

|∆P (x)| ≤ δ

)

≥1− 2(m+ 1)se−δ2n/2.

We now choose the parameters such that 1 − 2(m + 1)se−δ2n/2 > 0, or
equivalently

log 2 + s log(m+ 1)− δ2n

2
< 0.

Since m = ⌈s/δ⌉, this holds for all δ > δ0 = δ0(n, s), where δ0 satisfies

δ20 = 2n−1(s log(⌈s/δ0⌉+ 1) + log 2).

This implies that

1

δ0
≤
√

n

4 log 2
,

and therefore

δ20 ≤ 2n−1

(
s log

(⌈
s
√
n√

4 log 2

⌉
+ 1

)
+ log 2

)
.

Thus for any δ > δ0 there exist points t0, t1, . . . , tn−1 such that

D∗
n({t0, t1, . . . , tn−1}) ≤ 2δ.

Hence there is a point set P = {t0, t1, . . . , tn−1} such that D∗
n(P ) ≤ 2δ0.

4.7. Notes

Weighted spaces were first introduced by Sloan and Woźniakowski (1998),
and subsequently generalized by Sloan and Woźniakowski (2001), Sloan and
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Woźniakowski (2002), Dick et al. (2006), and Sloan et al. (2004). A non-
technical introduction to the weighted space setting and lattice rules is given
in Kuo and Sloan (2005). For the standard reference on tractability see
the recent three volume work Novak and Woźniakowski (2008), Novak and
Woźniakowski (2010), Novak and Woźniakowski (2012).

The “only if” parts of Theorems 4.5 and 4.6 were proved by Novak and
Woźniakowski (2001) for the anchored Sobolev space, and also for the more
general class of “decomposable” kernels. For the unanchored Sobolev space
the second parts of the theorems were proved by Sloan and Woźniakowski
(2002), using results from Hickernell and Woźniakowski (2001) and in turn
Hickernell andWoźniakowski (2000). See also Wasilkowski andWoźniakowski
(2004).

A classic paper on numerical integration and discrepancy is by Hickernell
(1998a), where discrepancies which include lower dimensional projections
are defined and the reproducing kernel machinery for numerical integra-
tion is introduced. Sufficient conditions on the weights for which Sobol′,
Halton, and Niederreiter sequences achieve strong tractability have been
studied by Wang (2002) and Wang (2003). Tractability of so-called “finite
order weights” has been shown by Sloan et al. (2004). Strong tractability
of scrambled digital nets and sequences has been studied by Yue and Hick-
ernell (2005) and Yue and Hickernell (2006). Tractability questions for the
weighted star discrepancy have been considered by Hinrichs, Pillichshammer
and Schmid (2008). A strategy for choosing the weights in finance applica-
tions has been considered in Wang and Sloan (2006) and Wang and Sloan
(2007). The concepts of “effective dimension”, “truncation dimension” and
“superposition dimension” have been introduced in Caflisch et al. (1997).
The effective dimension of problems arising from financial applications have
been studied by Wang and Fang (2003) and Wang and Sloan (2005) in the
context of QMC.

The equidistant grid Γm used in Lemma 4.7 is a special δ-cover or (es-
sentially) bracketing cover. The notion of bracketing is well established
in empirical process theory (see, e.g., van der Vart, Wellner (2009)) and
to achieve better results than in Theorem 4.8 one needs better bracket-
ing covers than Γm. In fact, the results from Aistleitner (2011),together
with the results on probabilistic discrepancy estimates from Gnewuch and
Roşca (2009), Aistleitner and Hofer (2012) and Gnewuch (2009), as well
as theoretical arguments from Doerr, Gnewuch and Wahlström (2009) and
Doerr, Gnewuch, Kritzer and Pillichshammer (2008) for constructing small
discrepancy samples all rely on the constructive bracketing covers and the
induced upper bounds on bracketing numbers from Gnewuch (2008). The
papers Aistleitner (2011) and Aistleitner and Hofer (2012) use additionally
Bernstein’s inequality.

Attempts have been made to find constructions of point sets whose star
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discrepancy grows only polynomially with the dimension, see for instance
Doerr, Gnewuch and Wahlström (2010) and Doerr et al. (2008). An imple-
mentation and numerical experiments have been reported in Doerr, Gnewuch
and Wahlström (2009). However, the construction cost of these algorithms
depends exponentially on the dimension. An essential problem in these al-
gorithms is the estimation of the star discrepancy of a given point set, which
is itself intractable as shown by Gnewuch et al. (2009). Algorithms for es-
timating the star discrepancy have been further investigated by Gnewuch,
Wahlström and Winzen (2012).

Let n(ε, d) be the smallest number necessary to reduce the d-dimensional
L2 discrepancy ‖∆P ‖2 by a factor of ε. The exponent of discrepancy is then
the smallest number p such that n(ε, d) ≤ Cε−p for all d ≥ 1. It has been
shown that 1.0669 ≤ p ≤ 1.41274 for the classical L2 discrepancy, where the
lower bound is by Matoušek (1998) and the upper bound by Wasilkowski
and Woźniakowski (2010).

5. Lattice rules

In Section 2 we gave a brief introduction to lattice rules. We defined rank-1
lattice rules and explained how randomly shifted lattice rules can be used for
practical error estimation. We also introduced the component-by-component
(CBC) construction for obtaining good lattice rule generating vectors. Here
in this section we provide the theory behind the CBC construction, including
error analysis of randomly shifted lattice rules and the fast implementation of
the CBC algorithm. We will also discuss extensible lattice sequences, which
turn lattice rules from “closed” point sets to “open” sequences, making them
more flexible for practical applications.

For most of this section, we will consider the weighted anchored or unan-
chored spaces of Section 4, which contain integrands with square-integrable
mixed first derivatives. The lattice rules constructed for these function
spaces can achieve close to O(n−1) convergence rate, with implied constants
that can be independent of the dimension s if the weights of the function
space satisfy a certain condition. We will also discuss the use of the baker’s
transformation to obtain close to O(n−2) convergence rate when the inte-
grands have square-integrable mixed second derivatives, again with implied
constants that can be independent of s. We will also outline other strategies
for obtaining even higher orders of convergence using lattice rules, but now
the so far known error bounds have exponential growth in s.
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5.1. A brief background on the classical theory of lattice rules

Lattice rules were originally designed for periodic functions. It is customary
to assume that the integrand f has an absolutely convergent Fourier series

f(x) =
∑

h∈Zs

f̂(h) e2πih·x, i2 = −1, (5.1)

with Fourier coefficients

f̂(h) =

∫

[0,1]s
f(x) e−2πih·x dx,

where h · x = h1x1 + · · · + hsxs denotes the usual vector dot product. It
follows from the absolute (and hence uniform) convergence of (5.1) that f
is necessarily continuous and also 1-periodic with respect to each variable,
i.e., f(x)|xj=0 = f(x)|xj=1 for all j = 1, . . . , s.

Theorem 5.1. (The lattice rule error) Let Qn,s denote a lattice rule
(not necessarily rank-1) and let L denote the associated integration lattice.
If f has an absolutely convergent Fourier series (5.1), then

Qn,s(f)− Is(f) =
∑

h∈L⊥\{0}

f̂(h),

where L⊥ := {h ∈ Zs : h ·x ∈ Z for all x ∈ L} is the dual lattice associated
with L.

We will prove this result for rank-1 lattice rules, see (2.3), that is for QMC
rules of the form

Qn,s(f) =
1

n

n−1∑

i=0

f

({
iz

n

})
.

In this case, L⊥ = {h ∈ Zs : h · z ≡ 0 (mod n)}. A proof for general lattice
rules is given in Sloan and Joe (1994).

Theorem 5.2. (Rank-1 lattice rule error) Let Qn,s denote a rank-1
lattice rule with generating vector z. If f has an absolutely convergent
Fourier series (5.1), then

Qn,s(f)− Is(f) =
∑

h∈Zs\{0}
h·z≡0 (mod n)

f̂(h).
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Proof. Using the Fourier series (5.1), we can write

Qn,s(f)− Is(f) =
1

n

n−1∑

k=0

f

({
kz

n

})
−
∫

[0,1]s
f(x) dx

=
∑

h∈Zs

f̂(h)

(
1

n

n−1∑

k=0

e2πikh·z/n

)
−
∑

h∈Zs

f̂(h)

∫

[0,1]s
e2πih·x dx.

The result then follows from the elementary properties

∫

[0,1]s
e2πih·x dx =

{
1 if h = 0,

0 otherwise,

and

1

n

n−1∑

k=0

e2πikh·z/n =

{
1 if h · z ≡ 0 (mod n),

0 otherwise.
(5.2)

The property (5.2) is sometimes referred to as the “character property”
of lattice rules with respect to the exponential functions. It is one of the
key properties we need for the error analysis of lattice rules.

In the classical theory of lattice rules, one considers a class Eα(c) of func-
tions whose Fourier coefficients satisfy, for α > 1 and c > 0,

|f̂(h)| ≤ c

(h1 · · · hs)α
, with h := max(1, |h|).

It follows that

|Qn,s(f)− Is(f)| ≤ c
∑

h∈Zs\{0}
h·z≡0 (mod n)

1

(h1 · · · hs)α
for f ∈ Eα(c).

This leads to the definition of a quality measure called Pα,

Pα(z, n) :=
∑

h∈Zs\{0}
h·z≡0 (mod n)

1

(h1 · · · hs)α
, α > 1, (5.3)

and the goal is to choose z so that Pα(z, n) is as small as possible. By using
the character property (5.2) (or by recognizing that Pα is the integration

error for a function f with Fourier coefficients f̂(h) = 1/(h1 · · · hs)α), one
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can express Pα as

Pα(z, n) = −1 +
1

n

n−1∑

k=0

s∏

j=1


1 +

∑

h∈Z\{0}

e2πikhzj/n

|h|α


 (5.4)

= −1 +
1

n

s∏

j=1

(1 + 2ζ(α)) +
1

n

n−1∑

k=1

s∏

j=1


1 +

∑

h∈Z\{0}

e2πikhzj/n

|h|α


 ,

where

ζ(x) :=

∞∑

h=1

1

hx
, x > 1, (5.5)

is the Riemann zeta function. For practical computation, α is often taken
to be an even integer. This is because the Bernoulli polynomial of degree α,
with α an even integer, has the Fourier series

Bα(x) =
(−1)

α
2
+1α!

(2π)α

∑

h∈Z\{0}

e2πihx

hα
for x ∈ [0, 1], (5.6)

so that in this case we can write

∑

h∈Z\{0}

e2πikhzj/n

|h|α =
(−1)

α
2
+1(2π)α

α!
Bα

({
kzj
n

})
. (5.7)

This allows Pα in (5.4) to be computed in O(n s) operations. One may
therefore use the Korobov construction in Example 2.9 to search for a lattice
generating vector z, using the criterion that Pα be as small as possible.

It is well known that the rate of decay of the Fourier coefficients of a
function is related to the smoothness of the function. For instance, if α > 1
is an integer and all partial derivatives

∂q1+···+qsf

∂xq11 · · · ∂xqss
, 0 ≤ q1, . . . , qs ≤ α,

exist and are continuous on [0, 1]s, then there exists c > 0 for which f ∈
Eα(c). Thus the class Eα(c) is essentially a class of functions with smooth-
ness determined by α, therefore the parameter α is called the smoothness pa-
rameter. It is known that a convergence rate of Pα(z, n) = O(n−α (log n)α s)
can be achieved. There are also other related quality measures for lattice
rules (Niederreiter 1992a, Sloan and Joe 1994).

We shall not discuss the classical theory further, because in the classical
error analysis all error bounds grow exponentially with dimension. In the
following, we will carry out error analysis in the weighted function space
setting of Section 4.
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5.2. Shift-averaged worst case error

In this subsection we discuss a general strategy for the error analysis of ran-
domly shifted QMC rules, as a preparation for our later analysis of randomly
shifted lattice rules.

For any QMC point set P = {t0, . . . , tn−1} and any shift ∆ ∈ [0, 1]s, let

P +∆ = {{ti +∆} : i = 0, 1, . . . , n − 1}
denote the shifted QMC point set, and let Qn,s(∆; f) denote the corre-
sponding shifted QMC rule. Then, for any integrand f belonging to some
normed space H, it follows from the definition of the worst case error (see
Definition 3.4) that

|Is(f)−Qn,s(∆, f)| ≤ en,s(P +∆;H) ‖f‖H .
We deduce a bound for the root-mean-square error

√
E |Is(f)−Qn,s(∆, f)|2 ≤ eshn,s(P ;H) ‖f‖H ,

where the expectation E is taken over the random shift ∆ which is uniformly
distributed over [0, 1]s, and where the quantity

eshn,s(P ;H) :=

√∫

[0,1]s
e2n,s(P +∆;H) d∆ (5.8)

is referred to as the shift-averaged worst case error.
The shift-averaged worst case error (5.8) will be used as our quality mea-

sure for randomly shifted QMC rules. For any given point set P , the aver-
aging argument guarantees the existence of at least one shift ∆ for which

en,s(P +∆;H) ≤ eshn,s(P ;H).

The following theorem gives an explicit formula for the shift-averaged
worst case error when the function space is a RKHS.

Theorem 5.3. (Formula for the shift-averaged worst case error) The
shift-averaged worst case error (5.8) for a QMC point set P in a RKHS
Hs(K) satisfies

[eshn,s(P ;Hs(K))]2

= −
∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy +

1

n2

n−1∑

i=0

n−1∑

k=0

Ksh(ti, tk), (5.9)

where

Ksh(x,y) :=

∫

[0,1]s
K({x+∆}, {y+∆}) d∆ for all x,y ∈ [0, 1]s. (5.10)
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Proof. Using the definition (5.8) and applying the formula (3.9) for the
worst case error en,s(P +∆;Hs(K)), we obtain

[eshn,s(P ;Hs(K))]2

=

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy − 2

n

n−1∑

i=0

∫

[0,1]s

∫

[0,1]s
K({ti +∆},y) d∆dy

+
1

n2

n−1∑

i=0

n−1∑

k=0

∫

[0,1]s
K({ti +∆}, {tk +∆}) d∆.

With a change of variables x = {ti+∆}, the double integrals in the second
term turn into the double integral in the first term. The result then follows
from the definition (5.10).

The function Ksh defined by (5.10) is actually a reproducing kernel, with
the shift-invariant property

Ksh(x,y) = Ksh({x+∆}, {y +∆}) for all x,y,∆ ∈ [0, 1]s,

or equivalently,

Ksh(x,y) = Ksh({x− y},0) for all x,y ∈ [0, 1]s.

Furthermore, it can be verified that the shift-averaged worst case error
eshn,s(P ;Hs(K)) is precisely the worst case error of the QMC point set P

in the RKHS with Ksh as the reproducing kernel, i.e.,
∫

[0,1]s
e2n,s(P +∆;Hs(K)) d∆ = e2n,s(P ;Hs(K

sh)).

In words, the average over all possible shifts of the squared worst case er-
ror for a shifted QMC rule in a Hilbert space with reproducing kernel K is
equal to the squared worst case error of the original unshifted QMC rule
in a Hilbert space with reproducing kernel Ksh. This important connection
provides a powerful tool for analyzing randomly shifted QMC rules, because
it is often easier to work with a shift-invariant kernel. We refer to the kernel
Ksh as the shift-invariant kernel associated with K.

Further, we note that for the reproducing kernels we consider below, the
reproducing kernel Ksh has the same smoothness properties as K. As the
smoothness properties of the reproducing kernel determine the convergence
rate of the worst case error, one obtains the same convergence rate of the
worst case error for Hs(K

sh) as for Hs(K).

5.3. Randomly shifted lattice rules in weighted Sobolev spaces

We are now ready to analyze randomly shifted lattice rules in the weighted
anchored or unanchored Sobolev space of Section 4. First we derive the
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associated shift-invariant kernel needed for the shift-averaged worst case
error.

Lemma 5.4. LetH(Ks,γ) be the weighted anchored or unanchored Sobolev
space of Section 4. The shift-invariant kernel associated with Ks,γ is

Ksh
s,γ(x,y) =

∑

u⊆{1:s}

γu
∏

j∈u

(B2(|xj − yj|) + β) , (5.11)

where β = c2 − c + 1/3 for the anchored variant with anchor c, and β = 0
for the unanchored variant.

Proof. From the definitions (5.10) and (4.3), we have

Ksh
s,γ(x,y) =

∑

u⊆{1:s}

γu
∏

j∈u

∫ 1

0
η({xj +∆j}, {yj +∆j}) d∆j

where the function η can be written in the common form (4.8) for both the
anchored and unanchored spaces. Using the symmetry B2(x) = B2(1 − x)

and
∫ 1
0 α(x) dx = 0, we obtain

∫ 1

0
η({x+∆}, {y +∆}) d∆

= 1
2B2(|x− y|) +

∫ 1

0

(
{x+∆} − 1

2

) (
{y +∆} − 1

2

)
d∆ + β.

Therefore it remains to show that

I(x, y) :=
∫ 1

0

(
{x+∆} − 1

2

) (
{y +∆} − 1

2

)
d∆ = 1

2B2(|x− y|).

Since I(x, y) = I(y, x), without loss of generality we assume that x ≤ y.
There are three possible arrangements of the values of x+∆ and y +∆ for
x, y,∆ ∈ [0, 1):

x+∆ ≤ y +∆ < 1 ⇒ ∆ < 1− y
x+∆ < 1 ≤ y +∆ ⇒ 1− y ≤ ∆ < 1− x
1 ≤ x+∆ ≤ y +∆ ⇒ 1− x ≤ ∆
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Thus we have

I(x, y) =
∫ 1−y

0

(
x+∆− 1

2

) (
y +∆− 1

2

)
d∆

+

∫ 1−x

1−y

(
x+∆− 1

2

) (
y +∆− 1− 1

2

)
d∆

+

∫ 1

1−x

(
x+∆− 1− 1

2

) (
y +∆− 1− 1

2

)
d∆

= 1
2 (y − x)2 − 1

2(y − x) + 1
12 = 1

2

(
|x− y|2 − |x− y|+ 1

6

)
.

This completes the proof.

For simplicity, let

eshn,s(z) := eshn,s(P ;H(Ks,γ))

denote the shift-averaged worst case error for a rank-1 lattice rule with point
set P and generating vector z in our weighted anchored or unanchored space.
The following lemma gives an explicit expression for [eshn,s(z)]

2.

Lemma 5.5. (Shift-averaged worst case error for lattice rules) The
shift-averaged worst case error for a rank-1 lattice rule in the weighted an-
chored or unanchored Sobolev space satisfies

[eshn,s(z)]
2 =

∑

∅6=u⊆{1:s}

γu


 1

n

n−1∑

k=0

∏

j∈u

[
B2

({
kzj
n

})
+ β

]
− β|u|


 , (5.12)

where β = c2 − c + 1/3 for the anchored variant with anchor c, and β = 0
for the unanchored variant. For product weights, the expression simplifies
to

[eshn,s(z)]
2 = −

s∏

j=1

(1 + γjβ) +
1

n

n−1∑

k=0

s∏

j=1

(
1 + γj

[
B2

({
kzj
n

})
+ β

])
.

(5.13)

Proof. Substituting ti = {iz/n} into (5.9) and using (4.5) and (5.11), we
obtain

[eshn,s(z)]
2

= −
∑

u⊆{1:s}

γuβ
|u| +

1

n2

n−1∑

i=0

n−1∑

k=0

∑

u⊆{1:s}

γu
∏

j∈u

[
B2

({
(i− k)zj

n

})
+ β

]
.

As i and k range from 0 to n − 1, the values of (i − k) mod n are just
0, . . . , n− 1 in some order, with each value occurring n times. Thus we can
reduce the double sum in [eshn,s(z)]

2 to a single sum. Grouping the sum over
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u and then canceling the u = ∅ term yields the formula for general weights
above. The formula for product weights follows from the identity (4.2).

5.4. Component-by-component construction

Recall that the components of the generating vector z can be restricted to
the set

Un = {z ∈ Z : 1 ≤ z ≤ n− 1 and gcd(z, n) = 1},
whose cardinality is given by the Euler totient function

ϕ(n) := |Un| = |{z ∈ Z : 1 ≤ z ≤ n− 1 and gcd(z, n) = 1}|. (5.14)

When n is prime ϕ(n) takes its largest value n−1, hence there are altogether
up to (n − 1)s possible choices for z, far too many to allow an exhaustive
search for the best one.

The CBC construction below, already foreshadowed in Example 2.10, pro-
vides a feasible way to obtain good lattice generating vectors. The first
component z1 is arbitrarily set to 1, since all choices in one dimension lead
to the same rectangle rule.

Algorithm 5.6. (CBC construction) Given n, smax, and weights γu.

1 Set z1 = 1.

2 For s = 2, 3, . . . , smax, choose zs in Un to minimize [eshn,s(z1, . . . , zs)]
2.

With general weights γu, the cost of the CBC algorithm is prohibitively
expensive, thus when discussing implementation we will always assume there
is some special structure, such as product weights, order-dependent weights,
finite-order weights, or POD weights. We will discuss the implementation
of CBC in later subsections.

In this subsection we focus on error bounds resulting from the CBC con-
struction. The CBC error bounds are proved by induction: under the induc-
tion hypothesis that the desired bound holds in s − 1 dimensions, we show
by the averaging argument that the algorithm picks a next component zs
for which the bound holds in s dimensions.

To illustrate the general argument, we first prove that in the simplest
case of product weights and prime n, a generating vector constructed by the
CBC algorithm beats the QMC mean (see (3.13) together with (4.5))

E2
n,s(Ks,γ) =

1

n




s∏

j=1

(
1 + γj

(
β +

1

6

))
−

s∏

j=1

(1 + γjβ)


 ,

which yields a convergence rate of O(n−1/2). We will prove a better, if more
complicated, result in Theorem 5.8 below.
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Theorem 5.7. (CBC error bound beats QMC mean) Consider the
weighted anchored or unanchored Sobolev space with product weights γ1 ≥
γ2 ≥ · · · > 0, and suppose that n is a prime number satisfying

n ≥ γ1
6(1 + γ1β)

, (5.15)

where β = c2 − c + 1/3 for the anchored variant with anchor c, and β = 0
for the unanchored variant. The generating vector z ∈ Us

n constructed by
the CBC algorithm, minimizing the squared shift-averaged worst case error
[eshn,s(z)]

2 in the weighted anchored or unanchored Sobolev space in each
step, satisfies

[eshn,s(z)]
2 < E2

n,s(Ks,γ). (5.16)

Proof. For the inductive step we need to show, under the assumption
[eshn,s−1(z1, · · · , zs−1)]

2 < E2
n,s−1(Ks−1,γ), that [eshn,s(z)]

2 < E2
n,s(Ks,γ) when

zs ∈ Un is chosen to minimize [eshn,s(z)]
2.

To proceed, we rewrite (5.13) as

[eshn,s(z)]
2 = (1 + γsβ) [e

sh
n,s−1(z1, . . . , zs−1)]

2 +
γs
6n

s−1∏

j=1

(
1 + γj

(
β +

1

6

))

+
γs
n

n−1∑

k=1


B2

({
kzs
n

}) s−1∏

j=1

(
1 + γj

[
B2

({
kzj
n

})
+ β

])
 ,

where we separated out the k = 0 term and used B2(0) = 1/6. Next we
average over all possible choices of zs, forming

µ(z1, . . . , zs−1) :=
1

n− 1

n−1∑

zs=1

[eshn,s(z)]
2.

Since B2(x) = (1/2π2)
∑

h∈Z\{0} e
2πihx/h2 for x ∈ [0, 1], for any integer k
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from 1 to n− 1 we can write

2π2

n− 1

n−1∑

zs=1

B2

({
kzs
n

})
=

1

n− 1

n−1∑

z=1

∑

h∈Z\{0}

e2πihkz/n

h2

=
∑

h∈Z\{0}
h≡0 (mod n)

1

h2
− 1

n− 1

∑

h∈Z\{0}
h 6≡0 (mod n)

1

h2

=
∑

h∈Z\{0}
h≡0 (mod n)

1

h2
− 1

n− 1

( ∑

h∈Z\{0}

1

h2
−

∑

h∈Z\{0}
h≡0 (mod n)

1

h2

)

=
n

n− 1

∑

h∈Z\{0}
h≡0 (mod n)

1

h2
− 1

n− 1

∑

h∈Z\{0}

1

h2
=

2π2n

6n2(n− 1)
− 2π2

6(n− 1)
= −2π2

6n
,

where we used
∑∞

h=1 1/h
2 = π2/6. Thus we conclude for any integer 1 ≤

k ≤ n− 1 that

1

n− 1

n−1∑

zs=1

B2

({
kzs
n

})
= − 1

6n
. (5.17)

Combining the expressions yields

µ(z1, . . . , zs−1) = (1 + γsβ) [e
sh
n,s−1(z1, . . . , zs−1)]

2

+
γs
6n

s−1∏

j=1

(
1 + γj

(
β +

1

6

))
− γs

6n2

n−1∑

k=1

s−1∏

j=1

(
1 + γj

[
B2

({
kzj
n

})
+ β

])
.

Rewriting the third expression in terms of e2n,s−1(z1, . . . , zs−1) and then col-
lecting similar expressions, we obtain

µ(z1, . . . , zs−1) =
(
1 + γsβ − γs

6n

)
[eshn,s−1(z1, . . . , zs−1)]

2

− γs
6n

s−1∏

j=1

(1 + γjβ) +
(γs
6

+
γs
6n

) 1

n

s−1∏

j=1

(
1 + γj

(
β +

1

6

))
.

The condition (5.15) ensures that 1 + γsβ − γs/(6n) ≥ 0. Applying the
induction hypothesis and dropping a negative term, we finally arrive at
µ(z1, . . . , zs−1) < E2

n,s(Ks,γ).

Since µ(z1, . . . , zs−1) is the average of [e
sh
n,s(z)]

2 over all zs ∈ Un, the choice

of zs that minimizes [eshn,s(z)]
2 must satisfy

[eshn,s(z)]
2 ≤ µ(z1, . . . , zs−1) < E2

n,s(Ks,γ).

To complete the proof by induction we note that the error bound (5.16)
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is easily satisfied for s = 1: indeed we may adapt (5.17) to obtain

[eshn,1(1)]
2 =

γ1
n

n−1∑

k=0

B2

(
k

n

)
=
γ1
n

(
1

6
− n− 1

6n

)
=

γ1
6n2

≤ γ1
6n
.

This completes the proof.

We now show, through a more complicated averaging argument in the
induction proof, that the CBC algorithm yields a convergence rate arbitrar-
ily close to O(n−1). The result holds for general n (not necessarily prime),
and holds for the unanchored space with general weights (including product
weights), but holds for the anchored space only with product weights. For
the anchored space with general non-product weights, the same error bound
holds, but a modification to the search criterion in the CBC construction
is needed. We therefore state the results for the unanchored and anchored
spaces separately.

In the following theorems, the choice of zs at each step is independent of
the parameter λ, and the error bound holds for all values of λ ∈ (1/2, 1].
The optimal convergence rate close to O(n−1) is obtained with λ → 1/2,
but note that λ = 1/2 is not permitted because ζ(2λ) → ∞ as λ → 1/2.
The implied constant in the big-O bound can be independent of s under an
appropriate condition on the weights. For example, in the case of product
weights, a sufficient condition to obtain close to O(n−1) convergence with

the implied constant independently of s is
∑∞

j=1 γ
1/2
j <∞.

Theorem 5.8. (Optimal CBC error bound – the unanchored case)
The generating vector z ∈ Us

n constructed by the CBC algorithm, minimiz-
ing the squared shift-averaged worst case error [eshn,s(z)]

2 for the weighted
unanchored Sobolev space in each step, satisfies

[eshn,s(z)]
2 ≤


 1

ϕ(n)

∑

∅6=u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|



1/λ

, (5.18)

for all λ ∈ (1/2, 1], where ζ(·) is the Riemann zeta function (5.5), and ϕ(n)
is the Euler totient function (5.14).

Proof. We prove this by induction on s. The base step s = 1 is straight-
forward to verify for all λ ∈ (1/2, 1]. Assume now that we have chosen the
first s− 1 components z1, . . . , zs−1 and that (5.18) holds with s replaced by
s − 1. We separate the terms in (5.12) (remembering that β = 0 for this
unanchored space), depending on whether or not the element s is included
in the set u, to obtain the recursive expression

[eshn,s(z1, . . . , zs−1, zs)]
2 = [eshn,s−1(z1, . . . , zs−1)]

2 + θ(zs), (5.19)
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with (suppressing the dependence of θ on z1, . . . , zs−1)

θ(zs) :=
∑

s∈u⊆{1:s}

γu


 1

n

n−1∑

k=0

∏

j∈u

B2

({
kzj
n

})


=
∑

s∈u⊆{1:s}

γu
(2π2)|u|

(
1

n

n−1∑

k=0

∑

hu∈(Z\{0})|u|

e2πikhu·zu/n

∏
j∈u h

2
j

)

=
∑

s∈u⊆{1:s}

γu

(2π2)|u|

( ∑

hu∈(Z\{0})|u|

hu·zu≡0 (mod n)

1∏
j∈u h

2
j

)

=
∑

s∈u⊆{1:s}

γu

(2π2)|u|

( ∑

hs∈Z\{0}

1

h2s

∑

h
u\{s}∈(Z\{0})|u|−1

h
u\{s}·zu\{s}≡−hszs (mod n)

1∏
j∈u\{s} h

2
j

)
,

where we made use of the Fourier expansion of B2 and the character property
(5.2).

If z∗s denotes the value chosen by the CBC algorithm in dimension s, then
(since the minimum is always smaller than or equal to the average) we have
for all λ ∈ (0, 1] that

[θ(z∗s)]
λ ≤ 1

ϕ(n)

∑

zs∈Un

[θ(zs)]
λ ≤ 1

ϕ(n)

∑

zs∈Un

∑

s∈u⊆{1:s}

γλ
u

(2π2)|u|λ

·
( ∑

hs∈Z\{0}

1

|hs|2λ
∑

h
u\{s}∈(Z\{0})|u|−1

h
u\{s}·zu\{s}≡−hszs (mod n)

1∏
j∈u\{s} |hj |2λ

)
,

where we used the inequality (sometimes referred to as Jensen’s inequality)

(∑

k

ak

)λ

≤
∑

k

aλk , ak ≥ 0 , λ ∈ (0, 1] . (5.20)

Next we separate the terms depending on whether or not hs is a multiple
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of n, to obtain

[θ(z∗s )]
λ ≤

∑

s∈u⊆{1:s}

γλ
u

(2π2)|u|λ
· 2ζ(2λ)
n2λ

( ∑

h
u\{s}∈(Z\{0})|u|−1

h
u\{s}·zu\{s}≡0 (mod n)

1∏
j∈u\{s} |hj |2λ

)

+
1

ϕ(n)

∑

zs∈Un

n−1∑

c=1

∑

s∈u⊆{1:s}

γλ
u

(2π2)|u|λ

·
( ∑

hs∈Z\{0}
hs≡−cz−1

s (mod n)

1

|hs|2λ
∑

h
u\{s}∈(Z\{0})|u|−1

h
u\{s}·zu\{s}≡c (mod n)

1∏
j∈u\{s} |hj |2λ

)
,

where z−1
s denotes the multiplicative inverse of zs in Un, i.e., zsz

−1
s ≡

1(mod n). For fixed c satisfying 1 ≤ c ≤ n− 1, we have {cz−1
s mod n : zs ∈

Un} = {cz mod n : z ∈ Un}. Let g = gcd(c, n). Then gcd(c/g, n/g) = 1,
and
∑

zs∈Un

∑

hs∈Z\{0}
hs≡−cz−1

s (mod n)

1

|hs|2λ
=
∑

z∈Un

∑

hs∈Z\{0}
hs≡−cz (mod n)

1

|hs|2λ

=
∑

z∈Un

∑

m∈Z

1

|mn− cz|2λ = g−2λ
∑

z∈Un

∑

m∈Z

1

|m(n/g) − (c/g)z|2λ

= g−2λ
∑

z∈Un

∑

h∈Z\{0}
h≡−(c/g)z (mod n/g)

1

|h|2λ ≤ g−2λg

n/g−1∑

a=1

∑

h∈Z\{0}
h≡a (mod n/g)

1

|h|2λ

= g1−2λ · 2ζ(2λ)
(
1− (n/g)−2λ

)
≤ 2ζ(2λ),

where the last step holds because g ≥ 1 and λ > 1/2. (The condition
λ > 1/2 is needed to ensure that ζ(2λ) <∞.) Hence

[θ(z∗s )]
λ ≤

∑

s∈u⊆{1:s}

γλ
u

(2π2)|u|λ
· 2ζ(2λ)
n2λ

( ∑

h
u\{s}∈(Z\{0})|u|−1

h
u\{s}·zu\{s}≡0 (mod n)

1∏
j∈u\{s} |hj |2λ

)

+
1

ϕ(n)

∑

s∈u⊆{1:s}

γλ
u

(2π2)|u|λ
· 2ζ(2λ)

( ∑

h
u\{s}∈(Z\{0})|u|−1

h
u\{s}·zu\{s} 6≡0 (mod n)

1∏
j∈u\{s} |hj |2λ

)

≤ 1

ϕ(n)

∑

s∈u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ

)|u|

.
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Now we use (5.19), the induction hypothesis and another use of (5.20) to
obtain (5.18).

Theorem 5.9. (Optimal CBC error bound – the anchored case) A
generating vector z ∈ Us

n can be constructed by a (modified) CBC algorithm
such that the squared shift-averaged worst case error eshn,s(z) in the weighted
anchored Sobolev space with anchor c satisfies

[eshn,s(z)]
2 ≤


 1

ϕ(n)

∑

∅6=u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ
+ βλ

)|u|



1/λ

for all λ ∈ (1/2, 1], where β = c2− c+1/3, ζ(·) is the Riemann zeta function
(5.5), and ϕ(n) is the Euler totient function (5.14). For product weights,
the algorithm minimizes [eshn,s(z)]

2 step by step as usual. For general non-

product weights, the algorithm minimizes an auxiliary quantity ẽ2n,s,d(z)
depending on s,

ẽ2n,s,d(z) :=
∑

∅6=v⊆{1:d}

γ̃s,v


 1

n

n−1∑

k=0

∏

j∈v

B2

({
kzj
n

})
 , (5.21)

step by step for each d = 2, 3, . . . , s, with auxiliary weights defined by

γ̃s,v :=
∑

v⊆u⊆{1:s}

γu β
|u|−|v| , v ⊆ {1 : s} . (5.22)

Note that the latter algorithm is not extensible in s.

Proof. In the previous proof we made use of the Fourier expansion of B2,
which has no constant term. To allow us to use essentially the same argu-
ment here, we start from (5.12), adapting the identity (4.2) and swapping
the order of sums, to obtain:

[eshn,s(z)]
2 =

1

n

n−1∑

k=0

∑

u⊆{1:s}

γu
∑

v⊆u

β|u|−|v|
∏

j∈v

B2

({
kzj
n

})
−

∑

u⊆{1:s}

γuβ
|u|

=
1

n

n−1∑

k=0

∑

v⊆{1:s}

∑

v⊆u⊆{1:s}

γuβ
|u|−|v|

∏

j∈v

B2

({
kzj
n

})
−

∑

u⊆{1:s}

γuβ
|u|

=
1

n

n−1∑

k=0

∑

v⊆{1:s}

γ̃s,v
∏

j∈v

B2

({
kzj
n

})
− γ̃s,∅

=
∑

∅6=v⊆{1:s}

γ̃s,v


 1

n

n−1∑

k=0

∏

j∈v

B2

({
kzj
n

})
 , (5.23)



74 Acta Numerica

where we introduced the auxiliary weights defined in (5.22).
This last expression takes the same form as the squared shift-averaged

worst case error in the unanchored space. However, there is a vital difference
that the auxiliary weights γ̃s,v depend on the dimension s. Consequently, a
recursive formula of the form (5.19) does not hold.

Case 1. Consider first the case of product weights γu =
∏

j∈u γj. It

follows from the definition (5.22) that, for s /∈ v, we have

γ̃s,v =
∑

v⊆u⊆{1:s−1}

γu β
|u|−|v| +

∑

v⊆u⊆{1:s−1}

γuγs β
|u|−|v|+1 = (1 + γsβ)γ̃s−1,v.

Thus, by separating the terms depending on whether or not the element s
is included in the set v, we obtain

[eshn,s(z)]
2 = (1 + γsβ)[e

sh
n,s−1(z1, . . . , zs−1)]

2 + θ(zs)

where

θ(zs) :=
∑

s∈v⊆{1:s}

γ̃s,v


 1

n

n−1∑

k=0

∏

j∈v

B2

({
kzj
n

})
 .

The induction hypothesis is now

[eshn,s−1(z1, . . . , zs−1)]
2 ≤


 1

ϕ(n)

∑

∅6=v⊆{1:s−1}

γ̃λs−1,v

(
2ζ(2λ)

(2π2)λ

)|v|



1/λ

for all λ ∈ (1/2, 1]. For the quantity θ(zs) we follow the averaging argument
in the previous proof to obtain

[θ(z∗s)]
λ ≤ 1

ϕ(n)

∑

s∈v⊆{1:s}

γ̃λs,v

(
2ζ(2λ)

(2π2)λ

)|v|

.

Combining the estimates, we obtain

[eshn,s(z)]
2 ≤ (1 + γsβ)


 1

ϕ(n)

∑

∅6=v⊆{1:s−1}

γ̃λs−1,v

(
2ζ(2λ)

(2π2)λ

)|v|



1/λ

+


 1

ϕ(n)

∑

s∈v⊆{1:s}

γ̃λs,v

(
2ζ(2λ)

(2π2)λ

)|v|



1/λ

.

Applying (5.20) then yields

[eshn,s(z)]
2 ≤


 1

ϕ(n)

∑

∅6=v⊆{1:s}

γ̃λs,v

(
2ζ(2λ)

(2π2)λ

)|v|



1/λ

. (5.24)
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Finally we express the result in terms of the original weights. Using (5.22)
and (5.20), we have

∑

∅6=v⊆{1:s}

γ̃λs,v

(
2ζ(2λ)

(2π2)λ

)|v|

≤
∑

v⊆{1:s}

∑

v⊆u⊆{1:s}

γλ
u
β(|u|−|v|)λ

(
2ζ(2λ)

(2π2)λ

)|v|

−
∑

u⊆{1:s}

γλ
u
β|u|λ

=
∑

u⊆{1:s}

γλ
u

∑

v⊆u

β(|u|−|v|)λ

(
2ζ(2λ)

(2π2)λ

)|v|

−
∑

u⊆{1:s}

γλ
u
β|u|λ

=
∑

u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ
+ βλ

)|u|

−
∑

u⊆{1:s}

γλ
u
β|u|λ

≤
∑

∅6=u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ
+ βλ

)|u|

. (5.25)

That the bound holds for s = 1 follows as before, completing the proof for
the case of product weights.

Remark: For the case of product weights, the use of auxiliary weights is
only needed in the proof and has no bearing on the actual CBC construc-
tion. It is also possible to prove the result by working directly with the
simplified worst case error expression for product weights, see (5.13), with-
out introducing auxiliary weights. We have chosen to prove the result this
way to provide valuable insights to the more complicated case of general
non-product weights.

Case 2. Now we consider the case of general non-product weights. Due
to the lack of structure in general weights, we are unable to relate [eshn,s(z)]

2

to [eshn,s−1(z1, . . . , zs−1)]
2 in a meaningful way. We therefore switch to a

modified CBC construction based on the auxiliary quantity (5.21). Note
that the auxiliary weights depend only on the final dimension s and not on
the induction index d in (5.21). This allows us to write

ẽ2n,s,d(z1, . . . , zd) = ẽ2n,s,d−1(z1, . . . , zd−1) + θ̃(zd)

where

θ̃(zd) :=
∑

d∈v⊆{1:d}

γ̃s,v


 1

n

n−1∑

k=0

∏

j∈v

B2

({
kzj
n

})
 .

Note that

ẽ2n,s,s(z) = e2n,s(z), but ẽ2n,s,d(z1, . . . , zd) 6= e2n,d(z1, . . . , zd) for d < s.
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Hence the CBC construction based on the auxiliary quantity is not the same
as the original CBC construction. We prove by induction that the CBC
construction based on the auxiliary quantity yields, for each d = 1, 2, . . . , s,

ẽ2n,s,d(z1, . . . , zd) ≤


 1

ϕ(n)

∑

∅6=v⊆{1:d}

γ̃λs,v

(
2ζ(2λ)

(2π2)λ

)|v|



1/λ

for all λ ∈ (1/2, 1]. Since the auxiliary weights do not change with the
induction index d, the proof is essentially the same as the previous proof for
the unanchored space. At the final step d = s we recover the error bound
(5.24), which can be expressed in terms of the original weights following
(5.25). This completes the proof.

The following theorem illustrates how we can apply the theory of this
section to a given integration problem.

Theorem 5.10. (CBC integration error) Suppose that a given inte-
grand f belongs to either our weighted anchored or unanchored Sobolev
space. A lattice rule generating vector z ∈ Us

n can be constructed by a CBC
algorithm such that, for all λ ∈ (1/2, 1],

√
E |Is(f)−Qn,s(·; f)|2 ≤


 1

ϕ(n)

∑

∅6=u⊆{1:s}

γλ
u

(
2ζ(2λ)

(2π2)λ
+ βλ

)|u|



1/(2λ)

‖f‖s,γ ,

where the expectation is taken with respect to the random shift which is
uniformly distributed over [0, 1]s, β = c2 − c+ 1/3 for the anchored variant
with anchor c and β = 0 for the unanchored variant, ζ(·) is the Riemann
zeta function (5.5), and ϕ(n) is the Euler totient function (5.14).

We conclude this subsection with the remark that a different analysis can
be used for the anchored Sobolev space if, roughly speaking, the auxiliary
weights (5.22) are dominated by the original weights, i.e., if

∑

|u|<∞
v⊆u⊂N

γuβ
|u|−|v| ≤ Cγv

for all finite subsets v ⊂ N, where C > 0 is independent of v. A similar
result holds if the weights are of the following special POD form:

γu = ((|u|+ ℓ)!)a
∏

j∈u

γj ,

where ℓ is a nonnegative integer and a is a positive real number. We explain
the alternative analysis for this case below.

Recall that for the anchored space the CBC algorithm must work with
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auxiliary weights (5.22) which do not preserve the POD structure of the
original weights. We can write

γ̃s,v =
∑

v⊆u⊆{1:s}

((|u| + ℓ)!)a
∏

j∈u

γj

= ((|v|+ ℓ)!)a
(∏

j∈v

γj

) ∑

v⊆u⊆{1:s}

(
(|u|+ ℓ)!

(|v|+ ℓ)!

)a ∏

j∈u\v

γj

= ((|v|+ ℓ)!)a
(∏

j∈v

γj

) ∑

w⊆{1:s}\v

(
(|v|+ |w|+ ℓ)!

(|v|+ ℓ)!

)a ∏

j∈w

γj.

Using the simple inequality

(p+ q)!

p! q!
=

(
p+ q

p

)
≤

p+q∑

k=0

(
p+ q

k

)
= 2p+q,

we obtain

γ̃s,v ≤ ((|v|+ ℓ)!)a
(∏

j∈v

γj

) ∑

w⊆{1:s}\v

(
|w|! 2|v|+|w|+ℓ

)a ∏

j∈w

γj

≤ ((|v|+ ℓ)!)a
(∏

j∈v

(2aγj)

)
2aℓ

∑

w⊆{1:s}

(|w|!)a
∏

j∈w

(2aγj) = cs,γ ˜̃γv,

where

˜̃γ
v
:= ((|v|+ ℓ)!)a

∏

j∈v

(2aγj), and cs,γ := 2aℓ
∑

w⊆{1:s}

(|w|!)a
∏

j∈w

(2aγj).

Thus from (5.23) we can write

[eshn,s(z)]
2 ≤ cs,γ

∑

∅6=v⊆{1:s}

˜̃γ
v


 1

n

n−1∑

k=0

∏

j∈v

B2

({
kzj
n

})
 . (5.26)

Hence, we can use the expression on the right-hand side of (5.26) (without
the factor cs,γ) as the search criterion for the CBC construction. The benefit

is that the new weights ˜̃γ
v
are also of the POD form, and they do not depend

on the dimension s. This means that a fast implementation is possible (see
Subsection 5.6) and that the algorithm is extensible in s. The resulting
error bound would be slightly worse (each factor in the product part of the

weights would be scaled by 2a, and there is an additional factor of c
1/2
s,γ in

the overall error bound in Theorem 5.10), but the convergence rate and the
dependence of the implied constant on the dimension s remain the same as
before.
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5.5. Fast CBC construction for product weights

In this subsection we explain how to implement the CBC construction effi-
ciently for product weights. We begin by presenting a naive implementation
of Algorithm 5.6 as a pseudocode. Then we discuss the techniques to speed
up the computation.

The reader should keep in mind that the general approach described in
this subsection applies to all shift-invariant kernels: we can replace B2(x)
by any generic function whose integral over [0, 1] is 0.

Pseudocode 1 (CBC: naive implementation)

for s from 1 to smax do
for all zs ∈ Un do

e2s(zs) = −
s∏

j=1

(1+ γjβ)+
1

n

n−1∑

k=0

s∏

j=1

(
1 + γj

[
B2

({
kzj
n

})
+ β

])

end for
zs = argminz∈Un

e2s(z)
end for

Recall that

Zn := {z ∈ Z : 0 ≤ z ≤ n− 1},
Un := {z ∈ Zn : gcd(z, n) = 1},

with ϕ(n) := |Un|. In the pseudocode we used the simplified notation

e2s(zs) := [eshn,s(z1, . . . , zs)]
2

to highlight the fact that zs is the only component to be determined at
step s; all previous components z1, . . . , zs−1 have already been fixed. To
simplify the exposition, we included z1 in the search as well, even though
all choices in the first dimension are equivalent.

The computational cost of this naive implementation is O(n2 s2max) oper-
ations. There are a number of ways to reduce this cost. Firstly, due to the
symmetry B2(x) = B2(1−x), we have e2s(zs) = e2s(n−zs) thus we only need
to search through half of the elements in Un. Secondly, at step s we can
write

e2s(zs) = (1 + γsβ) e
2
s−1

+
γs
n

n−1∑

k=0

[
B2

({
kzs
n

})

︸ ︷︷ ︸
Ωn(zs,k)

s−1∏

j=1

(
1 + γj

[
B2

({
kzj
n

})
+ β

])

︸ ︷︷ ︸
ps−1(k)

]
. (5.27)

The n values ps−1(k) do not depend on zs, and can be stored during the
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search. This reduces the construction cost to O(n2 smax) operations, at the
expense of O(n) storage.

The values of (5.27) for all zs ∈ Un can be expressed as a ϕ(n)× 1 vector

e2s = [e2s(zs)]zs∈Un ,

which can be computed in terms of a matrix-vector product, with the ϕ(n)×
n matrix

Ωn = [Ωn(z, k)]z∈Un
k∈Zn

=

[
B2

(
kz mod n

n

)]
z∈Un
k∈Zn

, (5.28)

and the n× 1 vector

ps−1 = [ps−1(k)]k∈Zn
.

This yields our second pseudocode.

Pseudocode 2 (CBC: matrix-vector form)

p0 = 1
e20 = 0
for s from 1 to smax do

e2s = (1+ γsβ)e
2
s−1 +

γs
n

Ωn ps−1 ⊲ compute

zs = argminz∈Un
e2s(z) ⊲ select

e2s = e2s(zs) ⊲ set
ps = (1+ γs(Ωn(zs, :) + β)) .∗ ps−1 ⊲ update

end for

In this second pseudocode, Ωn(zs, :) means taking a particular row of
the matrix, while .∗ means element-wise vector multiplication. Also, 1 =
(1, . . . , 1) and β = (β, . . . , β) are vectors with the appropriate length.

At the update stage, the vector ps−1 can be overwritten by the vector ps.
Thus the memory requirement is of order O(n).

The trick now is to order the indices z ∈ Un and k ∈ Zn in (5.28) in
a clever way in order to allow fast matrix-vector multiplication. Below we
explain how this is achieved for the simpler case when n is prime.

When n is prime and using the Rader factorization, the matrix Ωn can be
reordered such that it has a circulant submatrix Cn of size (n−1)× (n−1).
This is achieved by taking the indices in the order

z = gi and k = (g−1)i
′

for 0 ≤ i, i′ ≤ n− 2,

where g is a primitive root of n (i.e., g is a generator for the cyclic group
Un) and g−1 denotes its multiplicative inverse. We denote this particular

ordering of Ωn by Ω
〈g〉
n . Thus, for n prime, the element Ω

〈g〉
n (i, i′) in the
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1

5
3

Figure 5.5. (Image by Dirk Nuyens) The structure of the matrix Ω53 for the fast
CBC construction of lattice rules. Left: original ordering of indices. Right: after a

reordering of indices.

(i+ 1)th row and (i′ + 1)th column of Ω
〈g〉
n is given by

Ω〈g〉
n (i, i′) =

{
Ωn(g

i, (g−1)i
′
) if 0 ≤ i, i′ ≤ n− 2,

0 if i′ = n− 1,

where gi, (g−1)i
′ ∈ Un for 0 ≤ i, i′ ≤ n − 2. A graphical illustration of the

effect of reordering the indices is given in Figure 5.5. We present a concrete
illustration of the reordering in the example below.

Example 5.11. Take n = 11. Then we have U11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
The natural ordering of the indices z ∈ U11 and k ∈ Z11 gives the 10 × 11
matrix

Ω11 = B2




1

11




0 1 2 3 4 5 6 7 8 9 10
0 2 4 6 8 10 1 3 5 7 9
0 3 6 9 1 4 7 10 2 5 8
0 4 8 1 5 9 2 6 10 3 7
0 5 10 4 9 3 8 2 7 1 6
0 6 1 7 2 8 3 9 4 10 5
0 7 3 10 6 2 9 5 1 8 4
0 8 5 2 10 7 4 1 9 6 3
0 9 7 5 3 1 10 8 6 4 2
0 10 9 8 7 6 5 4 3 2 1







.

The generator for the group U11 can be taken to be g = 2. The ordering for
the z indices is then

[gi : 0 ≤ i ≤ 9] = [1, 2, 4, 8, 5, 10, 9, 7, 3, 6].
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For the ordering of the indices k 6= 0 we take the powers of g−1 = 6,

[(g−1)i
′
: 0 ≤ i′ ≤ 9] = [1, 6, 3, 7, 9, 10, 5, 8, 4, 2],

which, leaving aside the index 1, is the reverse order of the z indices. This
reordering, together with a column of zeros for k = 0, gives the matrix

Ω
〈2〉
11 = B2




1

11




1 6 3 7 9 10 5 8 4 2
2 1 6 3 7 9 10 5 8 4
4 2 1 6 3 7 9 10 5 8
8 4 2 1 6 3 7 9 10 5
5 8 4 2 1 6 3 7 9 10
10 5 8 4 2 1 6 3 7 9
9 10 5 8 4 2 1 6 3 7
7 9 10 5 8 4 2 1 6 3
3 7 9 10 5 8 4 2 1 6
6 3 7 9 10 5 8 4 2 1︸ ︷︷ ︸

C11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0
0
0
0
0
0
0







,

where the 10× 10 submatrix C11 is circulant.
We can halve the number of rows and the number of columns of the

circulant submatrix C11 due to the symmetry B2(x) = B2(1− x), to obtain
the reduced form (denoted by a ∼ instead of =)

Ω
〈2〉
11 ∼ B2




1

11




1 6 3 7 9
2 1 6 3 7
4 2 1 6 3
8 4 2 1 6
5 8 4 2 1︸ ︷︷ ︸

C̃11

∥∥∥∥∥∥∥∥∥∥

0
0
0
0
0







,

where we remember that the full matrix Ω
〈2〉
11 can be obtained by doubling

the 5×5 circulant submatrix C̃11 vertically and horizontally up to the double
bar. This concludes our simple example.

If we express the reordering of indices induced by g as permutations ΠT

g

and Πg−1 on the rows and columns of the matrix Ωn, then we obtain

y = Ωn ps−1 ⇐⇒ ΠT

g y = (ΠT

g ΩnΠg−1) (ΠT

g−1 ps−1) = Ω〈g〉
n p

〈g−1〉
s−1 .

Since the initialization of p0 = 1 is unaffected by any permutation, we only
need to work with the permuted vector throughout. We just need to make
sure that the correct index zs is chosen at the select stage.
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A matrix-vector multiplication with a circulant matrix Cm of size m×m,
with first column c, can be obtained by

Cm x = F−1
m diag(Fm c) Fm x

= IFFT(FFT(c).∗ FFT(x)),

where

Fm = [exp(−2πi p q/m)]0≤p,q≤m−1

is the Fourier matrix of size m×m, and

F−1
m =

1

m
[exp(2πi p q/m)]0≤p,q≤m−1 .

Using FFT and IFFT, this matrix-vector multiplication takes O(m logm)
operations instead of the usual O(m2), and uses O(m) memory.

Using permutation together with FFT, the cost for the CBC construction
can be reduced toO(n log n smax) operations, at the expense of O(n) storage.
This approach is called the fast CBC construction, and is due to Nuyens and
Cools (2006a) and Nuyens and Cools (2006b).

For composite n, the general idea is that the complete matrix Ωn can be
partitioned in blocks which have a circulant or block-circulant structure.

We summarize the fast CBC algorithm in the pseudocode below. We
stress again that the key point is to use FFT to compute the matrix-vector

product Ω
〈g〉
n ps−1, taking care to select the correct zs under the correspond-

ing permuted set of indices.

Pseudocode 3 (Fast CBC: matrix-vector form with permuted matrix)

p0 = 1
e20 = 0
for s from 1 to smax do

e2s
〈g〉

= (1+ γsβ)e
2
s−1 +

γs
n

Ω〈g〉
n ps−1 ⊲ compute – use FFT

zs = argminz∈Un
e2s(z) ⊲ select – pick the correct index

e2s = e2s(zs) ⊲ set

ps =
(
1+ γs(Ω

〈g〉
n (zs, :) + β)

)
.∗ ps−1 ⊲ update

end for

5.6. Fast CBC construction for POD weights

Here we explain how the fast CBC construction can be extended to POD
(product and order dependent) weights, see (4.4), covering order-dependent
weights as a special case. For completely general weights γu the cost for
evaluating [eshn,s(z)]

2 in (5.12) is prohibitively expensive, whereas for POD



High dimensional integration – the Quasi-Monte Carlo way 83

weights their special structure enables us to compute [eshn,s(z)]
2 using a re-

cursive argument starting from dimension one.
We restrict ourselves to the unanchored Sobolev space. (Recall that the

CBC algorithm for the anchored Sobolev space minimizes an auxiliary quan-
tity that depends on the auxiliary weights (5.22). The POD form of the orig-
inal weights is not preserved under the auxiliary weights, thus the strategy
to be described here is not applicable to the anchored space setting; see also
the remark at the end of Subsection 5.4 for cases where fast CBC for POD
weights can be used.) However, the approach can be generalized to other
shift-invariant kernels if B2 is replaced by another function that integrates
to zero.

With POD weights γu = Γ|u|

∏
j∈u| γj , we can write the shift-averaged

worst case error at step s (using again the simplified notation of the previous
subsection) as

e2s(zs) =
1

n

n−1∑

k=0

∑

∅6=u⊆{1:s}

Γ|u|

∏

j∈u

(
γj B2

({
kzj
n

}))

=
1

n

n−1∑

k=0

s∑

ℓ=1

∑

u⊆{1:s}
|u|=ℓ

Γℓ

∏

j∈u

(
γj B2

({
kzj
n

}))

︸ ︷︷ ︸
ps,ℓ(k)

. (5.29)

We split the sum over u into two depending on whether s ∈ u, to obtain

e2s(zs) =
1

n

n−1∑

k=0

s∑

ℓ=1

[ ∑

u⊆{1:s−1}
|u|=ℓ

Γℓ

∏

j∈u

(
γj B2

({
kzj
n

}))

︸ ︷︷ ︸
ps−1,ℓ(k)

+
Γℓ

Γℓ−1
γs B2

({
kzs
n

})

︸ ︷︷ ︸
Ωn(zs,k)

∑

u⊆{1:s−1}
|u|=ℓ−1

Γℓ−1

∏

j∈u

(
γj B2

({
kzj
n

}))

︸ ︷︷ ︸
ps−1,ℓ−1(k)

]

= e2s−1 +
γs
n

n−1∑

k=0

Ωn(zs, k)

(
s∑

ℓ=1

Γℓ

Γℓ−1
ps−1,ℓ−1(k)

)
. (5.30)

The computation of (5.30) for all zs ∈ Un can be expressed in matrix-
vector form

e2s = e2s−11+
γs
n
Ωn

(
s∑

ℓ=1

Γℓ

Γℓ−1
ps−1,ℓ−1

)
,
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with the update formula

ps,ℓ = ps−1,ℓ +
Γℓ

Γℓ−1
γsΩn(zs, :) .∗ ps−1,ℓ−1 for ℓ = 1, . . . , s,

starting from

ps,0 = 1 and ps,ℓ = 0 for all s ≥ 1 and ℓ > s.

We need to store the vectors ps,ℓ for ℓ = 1, . . . , s, each of length n. These
s vectors correspond to the s possible values of |u| for ∅ 6= u ⊆ {1 : s}. These
vectors can be overwritten for dimension s + 1. Thus we require O(n smax)
storage overall. The update cost for dimension s is O(n s) operations.

If we permute the rows and columns of the matrix Ωn and use FFT to
carry out the matrix-vector multiplication as in the case of product weights,
then the search cost for each dimension is O(n log n) operations. The overall
cost, combining search and update in all dimensions up to smax, is

O(n log n smax + n s2max)

operations.
If the weights are of finite order q, i.e., Γℓ = 0 for all ℓ > q, then the

update cost for every dimension is capped at O(n q) operations, with O(n q)
memory requirement, and the overall cost combining search and update in
all dimensions up to smax is reduced to

O(n log n smax + n q smax)

operations.
The reader may question why we did not leave out the factor Γℓ from

the definition of ps,ℓ(k) in (5.29). Indeed, the expression (5.30) and the
update formula would have been simpler if we had defined ps,ℓ(k) that way.
The problem is that for certain POD weights we may have Γℓ growing very
quickly with increasing ℓ and γj decaying with increasing j: for example,

γu = (|u|!)4/3
∏

j∈u

j−2.1.

For weights of this kind, the alternative approach would be numerically
unstable. The approach we outlined here works with the ratio Γℓ/Γℓ−1,
thus avoiding the potential problem of overflow when working with Γℓ.

5.7. Extensible lattice sequences

The CBC construction yields a lattice rule which is extensible in dimension,
but not extensible in the number of points. Recall that the formula for
obtaining the ith point of an n-point lattice rule with generating vector z is

ti =

{
i

n
z

}
. (5.31)
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In an extensible lattice sequence we take z to be a vector of b-adic numbers∑∞
r=0 arb

r, where ar ∈ {0, 1, . . . , b − 1}, and allow n to increase. In an
extensible lattice sequence with base b ≥ 2, the formula (5.31) is changed to

ti = {φb(i)z} , (5.32)

where φb(·) is the radical inverse function in base b (or the Gray code variant
in which the successive indices differ only in one b-ary digit). The formula
(5.32) does not require you to know n in advance, and so in practice you can
add more points to your lattice rule approximation until you are satisfied
with the error.

When n = bm for any m ≥ 1, the formulas (5.31) and (5.32) produce the
same set of points, only the ordering of the points is different. Therefore,
to obtain the points of an extensible lattice rule only at exact powers of the
base, one can avoid the radical inverse function and still use the formula
(5.31). For example, if we take b = 2 and denote by Lm the lattice point set
with 2m points, then we can illustrate the lattice sequence as follows:

t0 = 0︸ ︷︷ ︸
L0

, t1 =
1

2︸ ︷︷ ︸
∆L1︸ ︷︷ ︸

L1

, t2, t3︸ ︷︷ ︸
∆L2

︸ ︷︷ ︸
L2

, t4, t5, t6, t7︸ ︷︷ ︸
∆L3

︸ ︷︷ ︸
L3

, t8, t9, t10, t11, t12, t13, t14, t15︸ ︷︷ ︸
∆L4

︸ ︷︷ ︸
L4

, . . . .

The number of points in Lm doubles as we move along the sequence, and
the set of additional points ∆Lm = Lm\Lm−1 is generated by {iz/2m} with
i running through all the odd numbers up to 2m − 1. In Table 5.1 we show
how the points are ordered under radical inverse and the Gray code variant.

Empirical searches for extensible lattice sequences were considered in
Hickernell, Hong, L’Ecuyer and Lemieux (2000). Then it was proved by
Hickernell and Niederreiter (2003) that good generating vectors exist for
extensible lattice sequences, however the proof was non-constructive.

Cools, Kuo and Nuyens (2006) constructed embedded lattice rules that are
good for n in a large practical range bm1 ≤ n ≤ bm2 . They used a modified
CBC algorithm to construct a generating vector z, minimizing as much as
possible the search criterion

Xm1,m2,s(z) := max
m1≤m≤m2

eshbm,s(z)

eshbm,s(z
(m))

,

where eshbm,s(z
(m)) denotes the shifted-averaged worst case error for the gen-

erating vector obtained by the original CBC construction for bm points,
which is used as the reference error to provide a good normalization. The
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Table 5.1. Ordering of lattice points

i natural order radical inverse Gray code variant

L0 0 0 0 0

∆L1 1 1/2 = 0.5 (0.1)2 = 0.5 (0.1)2 = 0.5

∆L2 2 1/4 = 0.25 (0.01)2 = 0.25 (0.11)2 = 0.75
3 3/4 = 0.75 (0.11)2 = 0.75 (0.01)2 = 0.25

∆L3 4 1/8 = 0.125 (0.001)2 = 0.125 (0.011)2 = 0.375
5 3/8 = 0.375 (0.101)2 = 0.625 (0.111)2 = 0.875
6 5/8 = 0.625 (0.011)2 = 0.375 (0.101)2 = 0.625
7 7/8 = 0.875 (0.111)2 = 0.875 (0.001)2 = 0.125

∆L4 8 1/16 = 0.0625 (0.0001)2 = 0.0625 (0.0011)2 = 0.1875
9 3/16 = 0.1875 (0.1001)2 = 0.5625 (0.1011)2 = 0.6875
10 5/16 = 0.3125 (0.0101)2 = 0.3125 (0.1111)2 = 0.9375
11 7/16 = 0.4375 (0.1101)2 = 0.8125 (0.0111)2 = 0.4375
12 9/16 = 0.5625 (0.0011)2 = 0.1875 (0.0101)2 = 0.3125
13 11/16 = 0.6875 (0.1011)2 = 0.6875 (0.1101)2 = 0.8125
14 13/16 = 0.8125 (0.0111)2 = 0.4375 (0.1001)2 = 0.5625
15 15/16 = 0.9375 (0.1111)2 = 0.9375 (0.0001)2 = 0.0625

components of z can take values up to bm2 − 1. Due to many structures in
the embedding, the computational cost for the modified CBC algorithm is
only a factor of O(m2) more than the cost for constructing a lattice rule with
a fixed number of points. Figure 5.6 illustrates the embedding structure.

Numerically, it is found in Cools et al. (2006) for 210 ≤ n ≤ 220, s up
to 360, and a number of different choices of product weights and order-
dependent weights, that the quantity Xm1,m2,s(z) resulting from the modi-
fied CBC construction is at most 1.6, indicating that the embedded lattice
rules achieve the near-optimal rate of convergence of lattice rules with a
fixed number of points, but with an implied constant up to 1.6 times larger.

Dick, Pillichshammer and Waterhouse (2008) introduced a sieve algorithm
to obtain extensible lattice sequences. The general principle is to begin with
a number of generating vectors that are good for some value of n, drop those
vectors that are not good for a larger value of n, and then repeat this pro-
cess for larger and larger values of n. Some parameters need to be specified
beforehand to ensure that the sieve process leaves a nonempty set of gen-
erating vectors. Note that this sieve algorithm yields lattice sequences that
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Figure 5.6. (Image by Dirk Nuyens) The structure of the matrix Ω128 for the fast
CBC construction of lattice rules, illustrating the reordering of indices and the

reduction due to symmetry. The matrices Ωn for n = 2m with m < 7 are
embedded in Ω128.

are extensible in n but the algorithm is very expensive to implement. Dick,
Pillichshammer and Waterhouse (2008) also introduced a cheaper version
called the CBC sieve algorithm which yields embedded lattice rules that
work for a finite set of n and are extensible in s. This theory can also be
modified to provide the theoretical justification for the algorithm from Cools
et al. (2006).

5.8. Lattice rules in weighted Korobov spaces

In the previous subsections we have presented the lattice rule results for
weighted anchored or unanchored variants of Sobolev spaces containing func-
tions with square-integrable mixed first derivatives. Analogous results were
originally obtained in a different function space setting, the weighted Ko-
robov spaces of periodic functions.

We now briefly review the essential ingredients and results for weighted
Korobov spaces, with the motive of understanding how one might achieve
better than order-one convergence rate for non-periodic integrands. In the
Korobov space setting, there is a smoothness parameter α > 1/2. (The
parameter α as used here differs by a factor of two from the usage in Sloan
and Woźniakowski (2001).) The Korobov space can be viewed as an L2

version of the Korobov class Eα(c) mentioned in Subsection 5.1. It again
contains 1-periodic functions with absolutely convergent Fourier series (5.1)
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but with the inner product now given by

〈f, g〉s,α,γ =
∑

h∈Zs

∏
j∈u(h) |hj |2α
γu(h)

f̂(h) ĝ(h),

with u(h) := {j ∈ {1 : s} : hj 6= 0}. The reproducing kernel is

Ks,α,γ(x,y) =
∑

u⊆{1:s}

γu
∏

j∈u


 ∑

hj∈Z\{0}

e2πihj(xj−yj)

|hj |2α




=
∑

h∈Zs

γu(h)
∏

j∈u(h)

e2πihj(xj−yj)

|hj |2α

=
∑

h∈Zs

γu(h)∏
j∈u(h) |hj |2α

e2πih·(x−y).

From this last expression it is easy to verify the reproducing property.
The parameter α moderates the rate of decay of the Fourier coefficients,

and is related to the smoothness of the functions. To illustrate this point,
we note that when α is an integer, the norm in one dimension can be written
as

‖f‖21,α,γ =

(∫ 1

0
f(t) dt

)2

+
1

(2π)2αγ

∫ 1

0

(
f (α)(t)

)2
dt.

Thus α is precisely the number of available square-integrable derivatives.
When α is an integer, we can use the property (5.7) to rewrite the kernel

as

Ks,α,γ(x,y) =
∑

u⊆{1:s}

γu
∏

j∈u

(
(2π)2α

(−1)α+1(2α)!
B2α (|xj − yj|)

)
, (5.33)

where B2α(·) is the Bernoulli polynomial of degree 2α. Our earlier results
in the Sobolev space setting were originally obtained by observing that the
associated shift-invariant kernel, see (5.11), is in fact the kernel for a Korobov
space with α = 1 but with some redefined weights.

It is straightforward to deduce, using Theorem 3.5, that the worst case
error for a rank-1 lattice rule in a weighted Korobov space satisfies

e2n,s(z) =
1

n

n−1∑

k=0

∑

∅6=u⊆{1:s}

γu
∏

j∈u

∑

h∈Z\{0}

e2πihkzj/n

|h|2α .

For product weights, the expression simplifies to

e2n,s(z) = −1 +
1

n

n−1∑

k=0

s∏

j=1

(
1 + γj

∑

h∈Z\{0}

e2πihkzj/n

|h|2α

)
,
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which is precisely the formula for Pα when all γj = 1, see (5.4), but with α
replaced by 2α.

The following theorem summarizes the error bound for lattice rules con-
structed by the CBC algorithm in weighted Korobov space. We remark that
the result holds for unshifted lattice rules, but since the reproducing kernel
is shift-invariant, the result applies also to shifted lattice rules. The best
convergence rate is obtained by taking λ → 1/(2α), which yields close to
O(n−α) convergence.

Theorem 5.12. (Optimal CBC error bound in Korobov spaces) The
generating vector z constructed by the CBC algorithm in Korobov spaces,
minimizing e2n,s(z) in each step, satisfies

e2n,s(z) ≤


 1

ϕ(n)

∑

∅6=u⊆{1:s}

γλ
u
(2ζ(2αλ))|u|




1/λ

for all λ ∈ (1/(2α), 1], where ζ(·) is the Riemann zeta function (5.5) and
ϕ(n) is the Euler totient function (5.14).

Proof. Using the character property (5.2), we can write

e2n,s(z) =
∑

∅6=u⊆{1:s}

γu

( ∑

hu∈(Z\{0})|u|

hu·zu≡0 (mod n)

1∏
j∈u |hj |2α

)
.

The rest of the proof follows the proof of Theorem 5.8, which is essentially
the case α = 1, but with weights scaled by (2π)|u|.

The results for Korobov spaces are not often useable in practice because
integrands are typically not fully periodic. However, the analysis in Korobov
spaces provides the fundamental framework for the lattice rule analysis in
Sobolev spaces. There we achieved order-one convergence via shifting : the
shift-averaged worst case error in Sobolev spaces of smoothness one is re-
lated to the Korobov space with α = 1. Our aim now is to achieve higher
convergence rates for non-periodic functions by linking with the results in
Korobov space with α > 1.

5.9. The baker’s transformation

Extending Example 3.8 to s dimensions and introducing weights as in Sec-
tion 4, we obtain the reproducing kernel for the weighted and unanchored
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Sobolev space of smoothness α

Ks,α,γ(x,y) =
∑

u⊆{1:s}

γu
∏

j∈u

(
B2α(|xj − yj|)
(−1)α+1 (2α)!

+
α∑

r=1

Br(xj)Br(yj)

(r!)2

)
.

(5.34)
Comparing with (5.33), we see that this kernel has additional terms involving
the lower degree Bernoulli polynomials B1, . . . , Bα. We already know that in
the case of smoothness one (α = 1), the associated shift-invariant kernel does
not involve the lower degree polynomial B1; in short, shifting removes B1.
In this subsection we explain how shifting followed by folding removes B2.

The baker’s transformation makes use of the function

φ(t) := 1− |2t− 1| =
{
2t if t ≤ 1

2 ,

2− 2t if t > 1
2 .

It is called the baker’s transformation since it emulates how a baker stretches
and folds bread dough. In one dimension, if we apply the baker’s transfor-
mation to the n points of a left-rectangle rule 0, 1/n, 2/n, . . . , (n − 1)/n,
where n is even, then we obtain the points

0,
2

n
,
4

n
, . . . , 1,

n− 2

n
,
n− 4

n
, . . . ,

2

n
,

which are the points for a trapezoidal rule. A rectangle rule has quadra-
ture error O(n−1), but a trapezoidal rule has quadrature error O(n−2) if
the integrand is sufficiently smooth. This is the underlying motivation for
considering the baker’s transformation. Its application in the context of
QMC is due to Hickernell (2002). In the following, we refer to the process
of applying the baker’s transformation as folding and the resulting point set
as the folded point set.

A shifted and then folded QMC rule takes the form

Qφ
n,s(∆; f) =

1

n

n−1∑

i=0

f (φ ({ti +∆})) .

Note that this can also be viewed as applying a shifted lattice rule to a
transformed integrand g = f ◦φ. However, this interpretation is not helpful
because the transformed integrand g does not have the sufficient smoothness
to get higher order convergence.

Similar to Subsection 5.2, for a given point set P we denote by φ(P +∆)
the shifted and then folded QMC point set. Then for a given shift ∆ we
have

|Is(f)−Qφ
n,s(∆; f)| ≤ en,s(φ(P +∆);H) ‖f‖H ,
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and for a randomly shifted and folded rule we have

√
E|Is(f)−Qφ

n,s(∆; f)|2 ≤ esh,φn,s (P ;H) ‖f‖H ,

where

esh,φn,s (P ;H) :=

√∫

[0,1]s
e2n,s(φ(P +∆);H) d∆. (5.35)

Theorem 5.13. (Formula for the shift-averaged and folded worst case error)
The shift-averaged and folded worst case error (5.35) for a QMC point set
P in a RKHS Hs(K) satisfies

[esh,φn,s (P ;Hs(K))]2 = −
∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy +

1

n2

n−1∑

i=0

n−1∑

k=0

Ksh,φ(ti, tk),

where

Ksh,φ(x,y) :=

∫

[0,1]s
K(φ{x+∆}, φ{y +∆}) d∆ for all x,y ∈ [0, 1]s.

(5.36)

Proof. Using the definition (5.35) and applying the formula (3.9) for the
worst case error en,s(φ(P +∆);Hs(K)), we obtain

[esh,φn,s (P ;Hs(K))]2

=

∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy − 2

n

n−1∑

i=0

∫

[0,1]s

∫

[0,1]s
K(φ({ti +∆}),y) d∆ dy

+
1

n2

n−1∑

i=0

n−1∑

k=0

∫

[0,1]s
K(φ({ti +∆}), φ({tk +∆})) d∆.

With a change of variables w = {ti +∆}, the double integral in the second
term becomes

∫
[0,1]s

∫
[0,1]s K(φ(w),y) dw dy, which is easily seen to equal∫

[0,1]s

∫
[0,1]s K(x,y) dxdy. The result then follows from the definition (5.36).

We now demonstrate the effect of shifting followed by folding for the case
α = 2. To obtain the shifted and folded kernel Ksh,φ associated with (5.34),
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we need to evaluate the following integrals

I1(x, y) :=
∫ 1

0
B1(φ({x +∆}))B1(φ({y +∆})) d∆,

I2(x, y) :=
∫ 1

0
B2(φ({x +∆}))B2(φ({y +∆})) d∆,

J4(x, y) :=

∫ 1

0
B4(|φ({x +∆})− φ({y +∆})) d∆.

By using the Fourier series expansion (5.6) of the Bernoulli polynomials, it
can be shown (Hickernell 2002) that

I1(x, y) = −4

3
B4({x− y}) + 4

3
B4({x− y − 1

2}),

I2(x, y) = −4

3
B4({x− y})− 4

3
B4({x− y − 1

2}),

J4(x, y) =
32

3
B4({x− y})− 8

3
B4({x− y − 1

2})

+
128

15
B6({x− y})− 128

15
B6({x− y − 1

2}).

Since the lowest degree Bernoulli polynomial in the above expressions is B4,
we conclude that the shifted and folded kernel is related to the kernel of the
Korobov space with smoothness parameter α = 2. This indicates that we
get a convergence rate close to O(n−2).

Additionally, it can be shown that the CBC construction yields lattice
rules achieving a convergence rate close to O(n−2), and that the implemen-
tation can be done in a fast way for product or POD weights. We omit the
details.

It is possible to generalize the baker’s transformation to obtain even higher
rates of convergence, however, there is a seemingly inevitable dependence
on s, prohibiting the strategy for practical use in high dimensions.

5.10. Periodization

From the results for the Korobov space, we know that lattice rules can
yield higher rates of convergence for periodic integrands. This brings us to
consider strategies for transforming a non-periodic integrand to a periodic
integrand.

We now briefly explain one periodization strategy. Let ω : [0, 1] → R be
a smooth function, with

ω(0) = ω(1) = 0, ω(y) > 0 for all y ∈ (0, 1), and

∫ 1

0
ω(y) dy = 1.
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Define

ψ(y) :=

∫ y

0
ω(u) du.

Then ψ is an increasing function satisfying

ψ′(y) = ω(y), ψ(0) = 0 and ψ(1) = 1.

The periodization transformation is essentially a change of variables x =
ψ(y) = (ψ(y1), . . . , ψ(ys)) so that

Is(f) =

∫

[0,1]s
f(x) dx =

∫

[0,1]s
F (y) dy = Is(F ),

with

F (y) := f(ψ(y))
s∏

j=1

ω(yj).

The function F is periodic since ω vanishes at the end points.
Popular choices of ω include the family of polynomial transformations

of Korobov (1963) and the family of trigonometric transformations of Sidi
(1993), see also Laurie (1996). For example, the former family is given by

ω(y) = (2α + 1)

(
2α

α

)
yα(1− y)α

for a positive integer α. In particular, we have ω(r)(0) = ω(r)(1) for all r ≤
α−1. With this choice of ω, and if f is sufficiently smooth, the transformed
integrand F belongs to the Korobov space with smoothness parameter α,
and the lattice rule convergence rate is therefore close to O(n−α).

The problem with the periodization strategy is that the norm of the trans-
formed integrand F can be exponentially large in s, thus is generally only
feasible for small to moderate s.

As we explained in the previous subsection, the baker’s transformation can
also be viewed as a transformation of the integrand. The baker’s transforma-
tion makes the end points of the function take the same value by reflection.
The periodization strategy, on the other hand, makes the function value and
perhaps also some derivatives vanish at the end points.

5.11. Notes

Lattice rules date back to the works of number theorists Korobov (1959)
and Hlawka (1962). There is an extensive literature up to the late 1990s,
which we refer to as the classical results; these are reviewed in detail in the
books by Niederreiter (1992a) and Sloan and Joe (1994), see also Hickernell
(1998b). The modern consideration of lattice rules can be said to have
begun with Sloan andWoźniakowski (2001) who proved the existence of good



94 Acta Numerica

lattice rules for periodic integrands in weighted Korobov spaces, and via the
shift-invariant kernel, they showed that there exist good shifted lattice rules
for non-periodic integrands in weighted Sobolev space of smoothness one.
Although the results were non-constructive, they demonstrated that lattice
rules have a role to play for truly high dimensional integration as well as for
non-periodic integrands.

The CBC construction was first considered by Korobov (1959), see also
Korobov (1963), who proved error bounds for Pα of order n−α+δ for any
δ > 0 and for arbitrary n. The modern analysis of CBC construction for the
lattice rule generating vector began with Sloan and Reztsov (2002) for the
classical (unweighted) criterion Pα in the periodic setting. Sloan, Kuo and
Joe (2002a) then introduced the CBC algorithm to construct a determinis-
tic shift along side the generating vector for integration in the non-periodic
weighted Sobolev spaces. Subsequently, the CBC algorithm for constructing
randomly shifted lattice rules in weighted Sobolev spaces (see Algorithm 5.6)
was introduced in Sloan, Kuo and Joe (2002b). In these earlier works only
O(n−1/2) convergence rate was proved. The fact that the CBC algorithm
achieves the (optimal) convergence rate close to O(n−α) in weighted Ko-
robov and close to O(n−1) in weighted Sobolev spaces with smoothness one
was later proved by Kuo (2003). Extensions of these results from prime n
to composite n were given in Kuo and Joe (2002) with convergence rate of
O(n−1/2), and Dick (2004) with convergence rate close to O(n−1). Other
considerations include the CBC construction of intermediate-rank lattice
rules (Kuo and Joe 2003), and a modified CBC algorithm making use of
the prime factorization of n for the purpose of speeding up the construc-
tion (Dick and Kuo 2004a, Dick and Kuo 2004b). All of the above results
were originally proved in the setting of product weights. Results for general
weights in Korobov spaces were obtained in Dick et al. (2006), and the cor-
responding results for weighted Sobolev spaces were obtained in Sloan et al.
(2004), again via the shift-invariant kernel.

The fast CBC construction was first introduced for prime n in Nuyens
and Cools (2006a) and later extended to composite n in Nuyens and Cools
(2006b). The special case of n being a power of 2 is discussed in Cools et
al. (2006). Fast CBC for POD weights was first considered in Kuo, Schwab
and Sloan (2011). Some good generating vectors for lattice rules can be
downloaded from http://www.maths.unsw.edu.au/~fkuo/lattice/. Im-
plementation of fast CBC constructions for various forms of weights can be
obtained from http://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/.

Extensible lattice sequences were considered in Maize (1980), Korobov
(1982), and Hickernell et al. (2000), but the first theoretical result proving
that good extensible lattice sequences exist was proved by Hickernell and
Niederreiter (2003). Cools et al. (2006) introduced a fast CBC construc-
tion for embedded lattice rules, while Dick, Pillichshammer and Waterhouse
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(2008) analyzed a sieve algorithm and also provided the theoretical justifi-
cation for the algorithm in Cools et al. (2006). An algorithm was introduced
in Niederreiter and Pillichshammer (2009) which constructs the lattice rule
digit by digit. Hickernell, Kritzer, Kuo and Nuyens (2012) investigated
strategies for applying a lattice sequence point by point.

Joe (2004) introduced a CBC construction of lattice rules based on an
error criterion called R, which is part of an upper bound to the classical
star discrepancy. This was later extended to the weighted setting for prod-
uct weights in Joe (2006), and to composite n in Sinescu and Joe (2008).
General weights were considered by Sinescu and Joe (2007) for prime n, and
by Sinescu and L’Ecuyer (2011) for composite n. The analysis for general
weights presented difficulties. (Recall that the CBC construction for the
anchored space with general non-product weights must work with an auxil-
iary quantity. There is a similar difficulty here.) Thus, instead of working
with weighted-R, the last two papers considered a related quantity which we
shall refer to as weighted-R̃, and which forms part of a different upper bound
to the weighted star discrepancy. This argument holds under a restrictive
monotonicity assumption on the weights that

γv ≥ γu whenever v ⊆ u. (5.37)

Switching from weighted-R to weighted-R̃ does not require a redefinition
of weights. Thus any structure in the weights, such as the POD form,
would be preserved. Note, however, that the given POD weights may not
satisfy the monotonicity requirement (5.37) needed to allow for this switch

from weighted-R to weighted-R̃. (We remark that imposing the condition
(5.37) does not appear to eliminate the necessity to work with the auxiliary
quantity in the anchored space with general non-product weights.)

The baker’s transformation (which is called tent transformation in ergodic
theory) for shifted lattice rules was first introduced by Hickernell (2002) to
gain an extra order of convergence for non-periodic integrands, i.e., from
nearly O(n−1) to nearly O(n−2). The recent work by Dick, Nuyens and Pil-
lichshammer (2013) generalizes this strategy to obtain even higher rates of
convergence. There is, however, an inevitable dimension dependence. This
is similar to the issue with periodization in high dimensions, which was dis-
cussed in Kuo, Sloan and Woźniakowski (2007). An interesting discovery by
Dick, Nuyens and Pillichshammer (2013) is that the baker’s transformation
can be applied to an unshifted lattice rule, to achieve close to O(n−1) con-
vergence for non-periodic integrands, without the need to use random shifts.
This is different from most of the results discussed in this section.

Randomly shifted lattice rules for integrands over unbounded domains
(including Rs) were considered in Kuo, Wasilkowski and Waterhouse (2006)
and Kuo et al. (2010). The strategy is to transform the integrals to the unit
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cube by a change of variables, using the inverse of the cumulative distribution
function of some univariate probability density function. The transformed
integrands over the unit cube typically do not belong to the standard Sobolev
space setting, and this is why new theory is needed. It is proved that good
lattice rules can be constructed by a CBC algorithm in a similar way to the
standard theory in Sobolev spaces.

Another branch of lattice rule analysis focuses on the trigonometric degree
and similar quantities; see for example Cools and Lyness (2001), Lyness and
Sørevik (2006), Cools and Nuyens (2008), and the references therein. Recent
constructions in terms of trigonometric degrees include the works by Cools,
Kuo and Nuyens (2010), Achtsis and Nuyens (2012), and Kämmerer, Kunis
and Potts (2012).

Other search criteria for lattice rules were reviewed in L’Ecuyer and
Lemieux (2000), Lemieux and L’Ecuyer (2001), and L’Ecuyer and Munger
(2012), while L’Ecuyer, Munger and Tuffin (2010) considered the distribu-
tion of the integration error with respect to the random shift.

Lattice rules achieving exponential convergence rates in (modified) weighted
Korobov spaces were considered in Dick, Larcher, Pillichshammer andWoźniakowski
(2011).

Approximation of functions by lattice rules was considered in Li and Hick-
ernell (2003) and Zeng, Leung and Hickernell (2006). CBC constructions of
lattice rules for the approximation of functions were analyzed in Kuo, Sloan
and Woźniakowski (2006), Kuo, Sloan and Woźniakowski (2008), and Kuo,
Wasilkowski and Woźniakowski (2009).

The choice of weights in relation to the application of lattice rules were
considered in Wang and Sloan (2006), Dick (2012), and Kuo et al. (2012).

The character property (5.2) is based on the following general algebraic
structure: The set ([0, 1)s,⊕) with addition modulo 1 given by x ⊕ y :=
{x + y} forms an abelian group, and the set of lattice points Plat = {tk =
{kz/n} : 0 ≤ k < n} is a finite subgroup. The set K of functions χh :
[0, 1)s → {z ∈ C : |z| = 1}, h ∈ Z, given by

χh(x) = e2πih·x

constitute a group homomorphism of the group ([0, 1)s,⊕) called characters.
They themselves form a group via the multiplication χhχk = χh+k which
is isomorphic to the group (Zs,+). The character-theoretic dual lattice of
the lattice point set Plat is given by the set of characters L⊥ = {χh : h ∈
Zs, χh({kz/n}) = 1 for all 0 ≤ k < n}, which is a subgroup of the set of
characters. This can be used to define the quotient group P⊥

lat = K/L⊥,
which can be viewed as the dual group of characters of a lattice point set
Plat. Since the characters of ([0, 1)s,⊕) are the basis functions of Fourier
series, it is natural to study lattice rules for numerical integration of Fourier
series. We will use an analogous algebraic structure in the next section.
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6. Digital nets and sequences

In the previous section we discussed the modern theory of lattice rules. Many
of the ideas there apply also to polynomial lattice rules, or more generally,
to nets and sequences. For lattice rules we have seen that Fourier series play
an important role. For polynomial lattice rules and nets this role is played
by Walsh series, which we introduce in the following subsection.

Throughout this section we denote by N0 the set of non-negative integers
and N the set of positive integers.

6.1. A brief discussion of numerical integration of Walsh series

Walsh (1923) introduced a system of functions denoted by {walk : k ∈ N0},
which is in some way similar to the trigonometric function system {e2πikx :
k ∈ Z} that is connected to the well-known Fourier theory.

Definition 6.1. (Walsh functions in one dimension) For b ≥ 2 we
denote by ωb := e2πi/b the primitive bth root of unity. Let k ∈ N0 with
b-adic expansion k = κ0 + κ1b + · · · + κr−1b

r−1. The kth b-adic Walsh
function walk : R → C, periodic with period one, is defined as

walk(x) := ω
κ0ξ1+κ1ξ2+···+κr−1ξr
b ,

for x ∈ [0, 1) with b-adic expansion x = ξ1b
−1 + ξ2b

−2 + · · · (unique in the
sense that infinitely many of the digits ξi must be different from b− 1).

In the literature the function system defined above is often called the
generalized Walsh function system and only in the case b = 2 one speaks of
Walsh functions.

One of the main differences between Walsh functions and the trigonomet-
ric functions is that Walsh functions are only piecewise continuous. This is
clear, since Walsh functions are step functions as we show now.

Let k ∈ N with b-adic expansion k = κ0 + κ1b + · · · + κr−1b
r−1. Let

J = [a/br, (a + 1)/br), with integers r ≥ 1 and 0 ≤ a < br, be a so-called
elementary b-adic interval of order r. Let a have b-adic expansion of the
form a = α0 + α1b+ · · · + αr−1b

r−1. Then any x ∈ J has b-adic expansion
x = αr−1b

−1 + αr−2b
−2 + · · · + α0b

−r + ξr+1b
−(r+1) + · · · for some digits

0 ≤ ξi ≤ b− 1 for i ≥ r + 1, and hence

walk(x) = ω
κ0αr−1+κ1αr−2+···+κr−1α0

b = walk(a/b
r).

We summarize this result in the following proposition.

Proposition 6.2. (Walsh functions are step functions) Let k ∈ N sat-
isfy br−1 ≤ k < br for some r ∈ N. Then the kth Walsh function walk is con-
stant on elementary b-adic intervals of order r of the form [a/br, (a+1)/br)
with value walk(a/b

r). Further, wal0 ≡ 1.
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Now we generalize the definition of Walsh functions to higher dimensions.

Definition 6.3. (Walsh functions in s dimension) For dimension s ≥
2, and k1, . . . , ks ∈ N0 we define the s-dimensional b-adic Walsh function
walk1,...,ks : R

s → C by

walk1,...,ks(x1, . . . , xs) :=

s∏

j=1

walkj(xj).

For vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈ [0, 1)s we write,

with some abuse of notation,

walk(x) := walk1,...,ks(x1, . . . , xs).

The system {walk : k ∈ Ns
0} is called the s-dimensional b-adic Walsh func-

tion system.

Since any s-dimensional Walsh function is a product of one-dimensional
Walsh functions, it is clear that s-dimensional Walsh functions are step
functions too.

Let P = {t0, t1, . . . , tbm−1} be a digital (t,m, s)-net constructed over Zb

as introduced in Subsection 2.6. The set P is an additive group whose dual
group of characters is given by the Walsh functions in the same base b, that
is, we have the following character property:

1

bm

bm−1∑

i=0

walk(ti) =

{
1 if C⊤

1
~k1 + · · ·+ C⊤

s
~ks = ~0,

0 otherwise,
(6.1)

where for a vector k ∈ N0 with b-adic expansion k = κ0 + κ1b + · · · +
κm−1b

m−1 we write ~k = (κ0, κ1, . . . , κm−1)
⊤. This leads to a similar result

to Theorems 5.1 and 5.2 for lattice rules.

Theorem 6.4. (Integration error for digital net) Assume we are given
a Walsh series

f(x) =
∑

k∈Ns
0

f̂(k)walk(x),

where the Walsh coefficients f̂(k) are given by

f̂(k) =

∫

[0,1]s
f(x)walk(x) dx.

The integration error of approximating the integral of f using a QMC rule
Qbm,s based on a digital net with bm points is given by

Qbm,s(f)− Is(f) =
∑

k∈D\{0}

f̂(k),
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where

D := {k ∈ Ns
0 : C

⊤
1
~k1 + · · ·+ C⊤

s
~ks = ~0}. (6.2)

is the dual net associated with the digital net.

Proof. We have

1

bm

bm−1∑

i=0

f(ti)−
∫

[0,1]s
f(x)dx =

∑

k∈Ns
0

f̂(k)
1

bm

bm−1∑

i=0

walk(ti)− f̂(0),

The result then follows immediately from the character property (6.1).

We consider now the case where the Walsh coefficients f̂(k) decay with a
certain rate. For k ∈ N0 let

µ1(k) :=

{
0 if k = 0,

a if k = κ0 + · · ·+ κa−1b
a−1, κa−1 6= 0.

(6.3)

(Later in Subsection 6.6 we generalize the function µ1 to µα.) For vectors
k = (k1, . . . , ks) ∈ Ns

0 let

µ1(k) := µ1(k1) + · · · + µ1(ks).

Let

Eϑ,s(c) :=
{
f : [0, 1]s → R : |f̂(k)| ≤ c b−ϑµ1(k) for all k ∈ Ns

0

}
,

for some ϑ > 1 and c > 0. Then we obtain

|Qbm,s(f)− Is(f)| ≤ c
∑

k∈D\{0}

b−ϑµ1(k) for all f ∈ Eϑ,s(c).

The quantity

Tϑ :=
∑

k∈D\{0}

b−ϑµ1(k), ϑ > 1, (6.4)

depends only on the function class Eϑ,s(1) and the digital net and can be
understood as the “worst case error” for this function class. Thus, for the
function class Eϑ,s(1) one aims at finding digital nets for which Tϑ is small.
Thus the quantity Tϑ plays a similar role as the quantity Pα for lattice rules,
see (5.3).

We briefly describe the connection between the quantity Tϑ and the qual-
ity parameter t of the digital net. Lemma 2.14 implies that if k ∈ D \ {0},
then µ1(k) > m − t. If the digital net is a strict (t,m, s)-net, then there
exists a k ∈ D\{0} such that µ1(k) = m−t+1. Thus, the largest summand
in (6.4) is of the form b−ϑ(m−t+1). On the other hand it can also be shown
that the quantity Tϑ is dominated by its largest term, that is, there is a
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constant c̃ > 0 such that

Tϑ ≤ c̃
(m− t)s−1

bϑ(m−t+1)
.

Thus digital nets for which m− t is large yield a small value of Tϑ and are
therefore useful for numerical integration of Walsh series.

6.2. Digitally shift-averaged worst case error

In this subsection we discuss the general strategy for the error analysis of
randomly digitally shifted QMC rules not specific to digital nets (similar to
Subsection 5.2), and then focus on digital nets in the next subsection.

For any QMC point set P = {t0, . . . , tn−1} and any digital shift ∆ ∈
[0, 1]s, let

P ⊕∆ = {ti ⊕∆ : i = 0, 1, . . . , n− 1}
denote the digitally shifted QMC point set, and let Qn,s(⊕∆; f) denote
the corresponding digitally shifted QMC rule, where ⊕ denotes digit-wise
addition modulo b already defined in Subsection 2.9. Then, for any integrand
f belonging to some normed space H, it follows from the definition of the
worst case error that

|Is(f)−Qn,s(⊕∆, f)| ≤ en,s(P ⊕∆;H) ‖f‖H .
We consider the root-mean-square error

√
E |Is(f)−Qn,s(⊕∆, f)|2 ≤ edshn,s (P ;H) ‖f‖H ,

where the expectation E is taken over the random digital shift ∆ which is
uniformly distributed over [0, 1]s, and where the quantity

edshn,s (P ;H) :=

√∫

[0,1]s
e2n,s(P ⊕∆;H) d∆ (6.5)

is referred to as the digitally shift-averaged worst case error.
The digitally shift-averaged worst case error (5.8) will be used as our

quality measure for randomly digitally shifted QMC rules. The averaging
argument guarantees the existence of at least one digital shift ∆ for which
en,s(P ⊕∆;H) ≤ edshn,s (P ;H).

Analogously to Theorem 5.3, the following theorem gives an explicit for-
mula for the digitally shift-averaged worst case error when the function space
is an RKHS.

Theorem 6.5. (Formula for the digitally shift-averaged worst case error)
The digitally shift-averaged worst case error (6.5) for a QMC point set P in
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an RKHS Hs(K) satisfies

[edshn,s (P ;Hs(K))]2

= −
∫

[0,1]s

∫

[0,1]s
K(x,y) dxdy +

1

n2

n−1∑

i=0

n−1∑

k=0

Kdsh(ti, tk),

where

Kdsh(x,y) :=

∫

[0,1]s
K(x⊕∆,y ⊕∆) d∆ for all x,y ∈ [0, 1]s. (6.6)

The proof follows along the same lines as the proof of Theorem 5.3.
The function Kdsh defined by (6.6) is actually a reproducing kernel with

the digitally shift-invariant property

Kdsh(x,y) = Kdsh(x⊕∆,y ⊕∆) for all x,y,∆ ∈ [0, 1]s,

or equivalently,

Kdsh(x,y) = Kdsh(x⊖ y,0) for all x,y ∈ [0, 1]s,

where ⊖ denotes digit-wise subtraction modulo b already defined in Sub-
section 2.9. As in Subsection 5.2, it can be verified that the digitally shift-
averaged worst case error edshn,s (P ;Hs(K)) is precisely the worst case error

of the QMC point set P in the RKHS with Kdsh as the reproducing kernel,
i.e., ∫

[0,1]s
e2n,s(P ⊕∆;Hs(K)) d∆ = e2n,s(P ;Hs(K

dsh)).

This important connection provides a powerful tool for analyzing randomly
digitally shifted QMC rules. We refer to the kernel Kdsh as the digital shift-
invariant kernel associated with K.

6.3. Randomly digitally shifted digital nets in weighted Sobolev spaces

The digital shift-invariant kernel Kdsh in the previous subsection has Walsh
series expansion

Kdsh(x,y) =
∑

k∈Ns
0

K̂dsh(k)walk(x⊖ y)

for some coefficients K̂dsh(k) ≥ 0. If K is the unanchored Sobolev space,
then it can be shown that the Walsh coefficients of the digital shift-invariant
kernel satisfy

|K̂dsh(k)| = b−2µ1(k)
s∏

j=1

υb(kj),
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for some function υb(k), see (6.9) below. This leads to an expression of the
digitally shift-averaged worst case error for the unanchored Sobolev space
using a QMC rule based on a digital net.

Theorem 6.6. (Digitally shift-averaged worst case error for digital nets)
The digitally shift-averaged worst case error for a digital net P in the
weighted unanchored Sobolev space H(Ks,γ) satisfies

[edshbm,s(P ;H(Ks,γ))]
2 =

∑

∅6=u⊆{1:s}

γu
∑

ku∈D∗
u

b−2µ1(ku)
∏

j∈u

υb(kj), (6.7)

where

D∗
u
= {ku ∈ N|u| :

∑

j∈u

C⊤
j
~kj ≡ ~0}, (6.8)

and

υb(k) :=
1

2

(
1

sin2(κa−1π/b)
− 1

3

)
, (6.9)

where k = κa−1b
a−1 + κa−2b

a−2 + · · · + κ0 with κa−1 ∈ {1, 2, . . . , b− 1}. In
particular, if b = 2 we have κa−1 = 1 and υb(k) is a constant independent
of k.

For the weighted anchored Sobolev space H(Ks,γ) with anchor c we have

[edshbm,s(P ;H(Ks,γ))]
2 =

∑

∅6=v⊆{1:s}

γ̃s,v
∑

kv∈D∗
v

b−2µ1(kv)
∏

j∈v

υb(kj), (6.10)

where υb(k) is defined as in (6.9) and γ̃s,v are the auxiliary weights defined
in (5.22).

Note that (6.7) and (6.10) are essentially weighted versions of the quantity
Tϑ in (6.4), with some additional factors υb(k) and a change of weights for
the anchored Sobolev space.

The proof of Theorem 6.6 is somewhat intricate and was shown by Dick
and Pillichshammer (2005) for the unanchored Sobolev space and by Dick,
Kuo, Pillichshammer and Sloan (2005) for the anchored Sobolev space. In-
stead of giving the proof, we provide an example to show how the decay rate
of the Walsh coefficients is connected to the smoothness of the integrand.

Example 6.7. To illustrate how to prove a bound on the decay rate of
the Walsh coefficients we consider the simplest possible example. Let f :
[0, 1] → R be absolutely continuous with

f(x) = f(1)−
∫ 1

0
f ′(t)1[x,1](t) dt.

In this example let b = 2, and let k = 2a−1 + κa−22
a−2 + · · · + κ0 ∈ N,

for some a ≥ 1. Then walk(x) ∈ {−1, 1} for all x ∈ [0, 1). Note that walk



High dimensional integration – the Quasi-Monte Carlo way 103

changes sign on intervals of the form [ℓ2−a+1, (ℓ+1)2−a+1) for 0 ≤ ℓ < 2a−1,
i.e., it has the opposite sign on the interval [ℓ2−a+1, ℓ2−a+1+2−a) compared
to the interval [ℓ2−a+1 + 2−a, (ℓ+ 1)2−a+1). Thus

|f̂(k)| =
∣∣∣∣
∫ 1

0
f(x)walk(x) dx

∣∣∣∣ ≤
2a−1−1∑

ℓ=0

∫ ℓ2−a+1+2−a

ℓ2−a+1

|f(x)− f(x+ 2−a)|dx

≤
∫ 1−2−a

0
|f(x)− f(x+ 2−a)|dx

≤
∫ 1

0
|f ′(t)|

∫ 1−2−a

0
1[x,x+2−a)(t) dxdt

≤ 2−a

∫ 1

0
|f ′(t)|dt < k−1

(∫ 1

0
|f ′(t)|2dt

)1/2

.

Thus for any k ∈ N0 we have

|f̂(k)| ≤ 1

max(1, k)
‖f‖H ,

where ‖ · ‖H denotes the norm in the unanchored Sobolev space. This can
be generalized to arbitrary base b and dimensions s > 1.

In particular, if K : [0, 1]2 → R is the reproducing kernel for the unan-

chored Sobolev space, then K has Walsh coefficients K̂(k, ℓ) which satisfy

|K̂(k, ℓ)| ≤ Cb−µ1(k)−µ1(ℓ).

For the corresponding digital shift-invariant kernel defined by (6.6), it can

be shown that K̂dsh(k) = K̂(k, k). We therefore obtain

|K̂dsh(k)| = |K̂(k, k)| ≤ Cb−2µ1(k).

6.4. CBC construction of polynomial lattice rules

Analogous to lattice rules, no optimal explicit construction of polynomial
lattice rules is known beyond dimension 2. On the other hand, a CBC
approach is also possible for polynomial lattice rules. An essential ingredient
of the CBC algorithm is an easily computable quality criterion. We now
show that the digitally shift-averaged worst case error (6.7) can be computed
efficiently.

Lemma 6.8. The digitally shift-averaged worst case error for a digital net
P = {t0, . . . , tbm−1} in the weighted unanchored Sobolev space H(Ks,γ)
satisfies

[edshbm,s(P ;H(Ks,γ))]
2 =

1

bm

bm−1∑

i=0

∑

∅6=u⊆{1:s}

γu
∏

j∈u

φb(ti,j), (6.11)
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with

φb(t) :=

{
6−1 − τa0 (b−τa0 )

ba0+1 if 0 < t < 1,

6−1 if t = 0,

where, for t ∈ (0, 1) with b-adic expansion t = τ1b
−1 + τ2b

−2 + · · · (unique
in the sense that infinitely many τr are different from b− 1), a0 = −⌊logb t⌋
is the smallest positive integer such that τ1 = τ2 = · · · = τa0−1 = 0 and
τa0 6= 0.

Proof. We can write from (6.7) that

[edshbm,s(P ;H(Ks,γ)))]
2

=
∑

∅6=u⊆{1:s}

γub
−m

bm−1∑

i=0

∑

ku∈N|u|

b−2µ1(ku)
∏

j∈u

υb(kj)walkj (ti,j)

= b−m
bm−1∑

i=0

∑

∅6=u⊆{1:s}

γu
∏

j∈u

∞∑

k=1

b−2µ1(k)υb(k)walk(ti,j). (6.12)

To simplify the proof we only consider the case b = 2 in the following.
Then υb(k) = 1/3 for all k ∈ N. Let ω2 = e2πi/2 = −1. Then we have

2a−1∑

k=2a−1

walk(t) =

a−1∏

r=1

1∑

κr−1=0

ω
κr−1τr
2

1∑

κa−1=1

ω
κa−1τa
2

=





2a−1 if τ1 = τ2 = · · · = τa = 0

−2a−1 if τ1 = τ2 = · · · = τa−1 = 0, τa 6= 0,

0 otherwise.

Thus

∞∑

k=1

2−2µ1(k)walk(t) =

∞∑

a=1

2−2a
2a−1∑

k=2a−1

walk(t)

=

a0−1∑

a=1

2−2a2a−1 − 2−2a02a0−1 = 2−1 − 2−a0(1 + 2−1).

For t = 0 we have
∞∑

k=1

2−2µ1(k)walk(0) =
∞∑

a=1

2−2a2a−1 =
1

2
.

The result now follows from (6.12).

The expression (6.11) can be easily evaluated by a computer. Thus we
can use the following CBC algorithm to construct polynomial lattice rules.
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In the following we write

[edshbm,s(P ;H(Ks,γ))]
2 = [edshbm,s(q)]

2 = [edshbm,s(q1, . . . , qs)]
2

if the digital net is a polynomial lattice rule with generating vector q =
(q1, . . . , qs) ∈ (G∗

b,m)s, where G∗
b,m = {q ∈ Zb[x] \ {0} : deg(q) < m}.

Algorithm 6.9. (CBC construction) Given m, smax, and weights γu.

1 Set q1 = 1.

2 For s = 2, 3, . . . , smax, choose qs in G
∗
b,m to minimize [edshbm,s(q1, . . . , qs)]

2.

The next theorem states that the CBC algorithm yields a convergence
rate close to O(b−m).

Theorem 6.10. (Optimal CBC error bound) The generating vector
q constructed by the CBC algorithm, minimizing the shift averaged worst-
case error for the unanchored Sobolev space edshbm,s(q) in each step, satisfies

[edshbm,s(q)]
2 ≤


 1

bm − 1

∑

∅6=u⊆{1:s}

γλ
u
(ρb(λ))

|u|




1/λ

for any 1/2 < λ ≤ 1, where

ρb(λ) :=





1

3λ(22λ − 2)
for b = 2,

(b− 1)(4b2 − 9)λ

54λ(b2λ − b)
for b > 2.

Proof. Since the algorithm constructs the polynomial lattice rule induc-
tively with respect to the dimension, the proof also uses induction. The ar-
gument follows along the same lines as for the lattice rule case. To simplify
the proof we only consider b = 2 in the following. In this case υ2(k) = 1/3
for all k ∈ N in (6.7).

First note that we have for 1/2 < λ ≤ 1 that

∞∑

k=1

2−2λµ1(k) =

∞∑

a=1

2−2λa2a−1 =
1

22λ − 2

and
∞∑

k=1
2m|k

2−2λµ1(k) =
∞∑

ℓ=1

2−2λµ1(bmℓ) =
∞∑

ℓ=1

2−2λm2−2λµ1(ℓ) = 2−2λm 1

22λ − 2
.

For a polynomial lattice rule with generating vector (q1, . . . , qs) and mod-
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ulus p, the set D∗
u
in (6.8) is given by

D∗
u
=



ku ∈ N|u| :

∑

j∈u

trm(kj)qj ≡ 0 (mod p)



 ,

where for kj = κj,0 + κj,12 + · · · ∈ N0 we set trm(kj) = κj,0 + κj,1x + · · · +
κj,m−1x

m−1.
In dimension one we have

[edsh2m,s(q1)]
2 =γ{1}3

−1
∞∑

k=1
2m|k

2−2µ1(k) = 2−2mγ{1}3
−1

∞∑

ℓ=1

2−2µ1(ℓ) = 3−12−2m−1γ{1}.

Thus the result holds for dimension 1.
Suppose, for some 1 ≤ d < s, we have (q1, . . . , qd) ∈ (G∗

2,m)d and

[edsh2m,d(q1, . . . , qd)]
2 ≤


 1

2m − 1

∑

∅6=u⊆{1:d}

γλ
u

(
1

3λ(22λ − 2)

)|u|



1/λ

, (6.13)

for all 1/2 < λ ≤ 1. Now we consider (q1, . . . , qd, qd+1). We have

[edsh2m,d+1(q1, . . . , qd, qd+1)]
2

=
∑

∅6=u⊆{1:d}

γu3
−|u|

∑

ku∈D∗
u

2−2µ1(ku) +
∑

{d+1}⊆u⊆{1:d+1}

γu3
−|u|

∑

ku∈D∗
u

2−2µ1(ku)

= [edsh2m,d(q1, . . . , qd)]
2 + θ(qd+1), (6.14)

where

θ(qd+1) =
∑

{d+1}⊆u⊆{1:d+1}

γu
∑

ku∈D∗
u

b−2µ1(ku).

According to the algorithm, qd+1 is chosen such that the mean square
worst case error [edsh2m,d+1(q1, . . . , qd, qd+1)]

2 is minimized. Since the only

dependency on qd+1 is in θ(qd+1), we have θ(qd+1) ≤ θ(q) for all q ∈ G∗
2,m,

which implies that for any 1/2 < λ ≤ 1 we have θ(qd+1)
λ ≤ θ(q)λ for all

q ∈ G∗
2,m. This leads to

θ(qd+1) ≤


 1

2m − 1

∑

q∈G∗
2,m

θ(q)λ




1/λ

.

We obtain a bound on θ(qd+1) through this last inequality.
For λ satisfying 1/2 < λ ≤ 1 it follows from Jensen’s inequality that

θ(q)λ ≤
∑

{d+1}⊆u⊆{1:d+1}

γλ
u
3−λ|u|

∑

ku∈D∗
u

2−2λµ1(ku)
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The condition ku ∈ D∗
u
is equivalent to the equation

trm(k1)q1 + · · ·+ trm(kd)qd ≡ −trm(kd+1)q (mod p).

If kd+1 is a multiple of 2m, then trm(kd+1) = 0 and the corresponding term in
the sum is independent of q. If kd+1 is not a multiple of 2m, then trm(kd+1)
can be any polynomial in G∗

2,m. Moreover, since q 6= 0 and p is irreducible,
trm(kd+1)q is never a multiple of p.

By averaging over all q ∈ G∗
2,m, with the above discussion in mind, we

obtain

1

2m − 1

∑

q∈G∗
2,m

θ(q)λ

≤
∞∑

kd+1=1
2m|kd+1

2−2λµ1(kd+1)
∑

∅6=u⊆{1:d}

γλ
u∪{d+1}3

−λ(|u|+1)
∑

ku∈N|u|

trm(ku)·qu
≡0 (mod p)

2−2λµ1(ku)

+

∞∑

kd+1=1
2m∤kd+1

2−2λµ1(kd+1)

2m − 1

∑

∅6=u⊆{1:d}

γλ
u∪{d+1}3

−λ(|u|+1)
∑

ku∈N|u|

trm(ku)·qu
6≡0 (mod p)

2−2λµ1(ku)

≤ 2−2λm 1

3λ(|u|+1)(22λ − 2)

∑

∅6=u⊆{1:d}

γλ
u∪{d+1}

∑

ku∈N|u|

trm(ku)·qu
≡0 (mod p)

2−2λµ1(ku)

+
1

2m − 1

1− 2−2λm

3λ(|u|+1)(22λ − 2)

∑

∅6=u⊆{1:d}

γλ
u∪{d+1}

∑

ku∈N|u|

trm(ku)·qu
6≡0 (mod p)

2−2λµ1(ku)

≤ 1

2m − 1

1

3λ(|u|+1)(22λ − 2)

∑

∅6=u⊆{1:d}

γλ
u∪{d+1}

∑

ku∈N|u|

2−2λµ1(ku)

=
1

2m − 1

∑

{d+1}⊆u⊆{1:d+1}

γλ
u

(
1

3λ(22λ − 2)

)|u|

.

Thus we conclude that

θ(qd+1) ≤


 1

2m − 1

∑

{d+1}⊆u⊆{1:d+1}

γλ
u

(
1

3λ(22λ − 2)

)|u|



1/λ
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which, together with (6.13) and (6.14), yields

[edsh2m,d+1(q1, . . . , qd, qd+1)]
2λ = [edshbm,d(q1, . . . , qd)]

2λ + θ(qd+1)
λ

≤ 1

2m − 1

∑

∅6=u⊆{1:d+1}

γλ
u

(
1

3λ(22λ − 2)

)|u|

.

Hence the result follows by induction.

The choice of qd at each step is independent of λ and therefore the error
bound holds for all values of λ ∈ (1/2, 1]. The optimal convergence rate
close to O(b−m) is obtained with λ→ 1/2.

6.5. Fast CBC construction of polynomial lattice rules

In the previous subsection we showed how to construct, for a given modulus
p, a generating vector q which yields a polynomial lattice rule which achieves
a small integration error using a CBC algorithm. We have seen in Subsec-
tion 5.5 that FFT can be used to reduce the construction cost of the CBC
construction of lattice rules. We now show that the same technique can be
used for polynomial lattice rules by outlining the key differences from lattice
rules. For product weights, it is possible to construct, for a given polyno-
mial p with deg(p) = m, an s-dimensional generating vector q in O(sm bm)
operations, compared to O(s2 b2m) operations for a naive implementation of
the CBC algorithm.

Let b be a prime. Throughout this subsection we consider the polynomial
p ∈ Zb[x] with deg(p) = m to be irreducible. We restrict ourselves to
product weights γu =

∏
j∈u γj , for a sequence of positive real numbers γj .

The extension to POD weights can be done as in the lattice rule case, see
Subsection 5.6.

Using Algorithm 6.9 we construct, component by component, a generating
vector q = (q1, . . . , qs) ∈ (G∗

b,m)s such that for all 1 ≤ d ≤ s the quantity

e2d(qd) := [edshbm,d(q1, . . . , qd−1, qd)]
2 is minimized with respect to qd for fixed

q1, . . . , qd−1. Assume that q1, . . . , qd−1 are already constructed. Then we
have to find q ∈ G∗

b,m which minimizes

e2d(q) = [edshbm,d−1(q1, . . . , qd−1)]
2 + γdφb(0)

∏d−1
j=1(1 + γjφb(0))

bm

+
γd
bm

bm−1∑

i=1

ηd−1(i)φb

(
υm

(
q(x)i(x)

p(x)

))
,

where we used Theorem 2.21, separated out the i = 0 term and introduced
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the column vector ηd−1 = (ηd−1(1), . . . , ηd−1(b
m − 1))⊤, where

ηd−1(i) =
d−1∏

j=1

(1 + γjφb (ti,j)), i = 1, . . . , bm − 1.

Note that the vector ηd−1 remains fixed for fixed d regardless of the choice
of polynomial q. We set η0 = (1, . . . , 1) ∈ Rbm−1. The vector ηd−1 can be
computed as part of the CBC algorithm with the update formula ηd−1(i) =
ηd−2(i)(1 + γd−1φb(ti,d−1)).

For short we write ω := φb ◦ υm from now on. We define the (bm − 1) ×
(bm − 1) matrix

Ωp :=

(
ω

(
q(x)i(x)

p(x)

))

q=1,...,bm−1
i=1,...,bm−1

.

Further let e2d = (e2d(1), . . . , e
2
d(b

m − 1))⊤ be the column vector collecting
the quantities e2d(q) and 1 be the (bm−1)-dimensional column-vector whose
components are all 1. Then we have

e2d = e2d−1 +

∏d
j=1(1 + γjφb(0))

bm
1+

γd
bm

Ωpηd−1.

As we are only interested in which q minimizes e2d(q), but not the value of
e2d(q) itself, we only need to compute Ωpηd−1.

The entries of the matrix Ωp are of the form ω
(
q(x)i(x)
p(x)

)
, where the prod-

uct of the nonzero polynomials q and i has to be evaluated in the field
Zb[x]/(p), and thus modulo p. Since the multiplicative group of every finite
field is cyclic, we can find a primitive element g which generates all elements
of the multiplicative group (Zb[x]/(p))

∗ (= (Zb[x]/(p)) \{0}). That is, there
is a g ∈ (Zb[x]/(p))

∗ such that (Zb[x]/(p))
∗ = {g0, g1, g2, . . . , gbm−1}. Thus,

we can write the product of any nonzero polynomials q, i ∈ Zb[x]/(p) as
a power of the polynomial g. Nuyens and Cools (2006a) and Nuyens and
Cools (2006b) suggest now to permute the rows of Ωp by the positive powers
of the primitive polynomial g and the columns by the negative powers of the
same primitive polynomial. This procedure is often called Rader transform,
since it goes back to an idea of Rader (1968).

We describe the Rader transform now in detail. Let g(x) be a primitive
element in (Zb[x]/(p))

∗. We define a (bm − 1) × (bm − 1) matrix Π(g) =
(πk,ℓ(g))1≤k,ℓ<bm where

πk,ℓ(g) =

{
1 if k(x) ≡ g(x)ℓ (mod p(x)),

0 otherwise.

Here k(x) denotes the polynomial which is associated with the integer k.
Since g is a primitive element it follows that each row and each column
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of Π(g) has exactly one entry which is 1 and the remaining entries are 0.
Further, Π(g)Π(g)⊤ = I, the identity matrix. In fact, the matrix Π(g) is a
permutation matrix. That is, for any (bm − 1)× (bm − 1) matrix C, Π(g)C
just changes the order of the rows of C and CΠ(g) only changes the order
of the columns of C.

Let C = (ck,ℓ)1≤k,ℓ<bm and

C = (Π(g))⊤ΩpΠ(g
−1).

Then

ck,ℓ =
bm−1∑

u,v=1

πu,k(g)ω

(
u(x)v(x)

p(x)

)
πv,ℓ(g

−1) = ω

(
g(x)kg(x)−ℓ

p(x)

)
.

Let cr = ω
(
g(x)r

p(x)

)
. Note that cr = cr′ for all r, r

′ ∈ Z with r ≡ r′ (mod bm−
1), since g(x)b

m−1 = 1. Then we have ck,ℓ = ck−ℓ and therefore C is circulant
(cf. Subsection 5.5).

Note that the circulant matrix C is fully determined by its first column
c = (c0, c1, c2, . . . , cbm−2)

⊤. Such matrices have a similarity transform which
has the Fourier matrix as its eigenvectors. For n ∈ N let Fn := (fk,ℓ)

n−1
k,ℓ=0 be

the Fourier matrix of order n given by fk,ℓ = ω−kℓ
n , where ωn = e2πi/n. Note

that Fn is symmetric and 1
nFnFn = I, the identity matrix. Furthermore, let

diag(a1, . . . , an) be the n× n diagonal matrix A = (Ai,j)
n
i,j=1 with Ai,i = ai

for 1 ≤ i ≤ n and Ai,j = 0 for i 6= j. Then we have (cf. Subsection 5.5)

Ωp =
1

bm − 1
Π(g)F bm−1DFbm−1Π(g

−1)⊤,

where Π(g),Π(g−1)⊤ are permutation matrices, Fbm−1 is a Fourier ma-
trix, F bm−1 its complex conjugate, and D is the diagonal matrix D =
diag(F bm−1 c).

For any vector x = (x1, . . . , xbm−1)
⊤ ∈ (Cbm−1)⊤ the matrix-vector mul-

tiplications Π(g)x, Dx, and Π(g−1)⊤x can be done in O(bm) operations (in
fact, in the implementation of the algorithm the permutations using Π(g)
and Π(g−1) can be avoided altogether, see Subsection 5.5). Further, Fbm−1x

and F bm−1x can be computed in O(mbm) operations using the fast Fourier
transform.

Therefore a fast CBC algorithm requires only O(sm bm) operations by
using O(bm) memory space. This is a significant speedup compared to a
straightforward implementation. Only through this reduction of the con-
struction cost does the CBC algorithm become applicable for the generation
of polynomial lattice point sets with reasonably large cardinality.
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6.6. Integration of smooth functions

It is well understood that the convergence rate for numerical integration
depends on the smoothness of the integrand. In the following we consider the
weighted unanchored Sobolev space of smoothness α > 1, H(Ks,γ,α), already
encountered in Subsection 5.9, see also Example 3.8 for the 1-dimensional
case. The reproducing kernel is given by (5.34), and the inner product is

〈f, g〉s,γ,α =
∑

u⊆{1:s}

γ−1
u

∑

v⊆u

∑

rv∈{1:α−1}|v|

∫

[0,1]|u\v|

(∫

[0,1]|{1:s}\u|

∫

[0,1]|v|

∂|rv|1+α|u\v|f

∂x(0,r,α)
dxv dx{1:s}\u

)

·
(∫

[0,1]|{1:s}\u|

∫

[0,1]|v|

∂|rv|1+α|u\v|g

∂x(0,r,α)
dxv dx{1:s}\u

)
dxu\v,

where |rv|1 :=
∑

j∈v |rj |, and

∂|rv|1+α|u\v|f

∂x(0,r,α)

stands for the partial derivatives of f of order rj for j ∈ v, of order α for
j ∈ u \ v and order 0 otherwise, where rv = (rj)j∈v. Let the corresponding

norm be denoted by ‖f‖s,γ,α =
√

〈f, f〉s,γ,α.
For functions in H(Ks,γ,α) it is known that a convergence rate of order

n−α+δ for any δ > 0 can be achieved with a suitable algorithm. In the previ-
ous subsections we have used the decay of the Walsh coefficients for functions
in H(Ks,γ,1) to show a convergence rate of order n−1+δ. To generalize this
approach to higher order we need to investigate how the Walsh coefficients
of smooth functions decay. Since the proof is involved we describe the main
idea leaving out technical details.

To simplify the notation we restrict ourselves to base b = 2. Let k ∈ N
be given by k = 2a1−1 + 2a2−1 + · · ·+ 2aν−1 for a1 > a2 > · · · > aν > 0. We
define for α ≥ 2 an integer

µα(k) :=

{
a1 + a2 + · · ·+ amin{α,ν} if k ∈ N,
0 if k = 0.

This generalizes the definition of µ1(k) given by (6.3). Note that the Walsh
functions in base b = 2 only take on the values 1 or −1. Thus in the following
we write walk instead of walk.
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Let f ∈ H(Ks,γ,α) and Jk(x) :=
∫ x
0 walk(t) dt. Then

f̂(k) =

∫ 1

0
f(x)walk(x) dx = [f(x)Jk(x)]

1
x=0 −

∫ 1

0
f ′(x)Jk(x) dx

= −
∫ 1

0
f ′(x)Jk(x) dx, (6.15)

as
∫ 1
0 walk(x) dx = 0.

We would now like to relate the Walsh coefficient f̂(k) to some Walsh
coefficient of f ′. This is done by using the Walsh series expansion of Jk.

Let k′ := k− 2a1−1, and hence 0 ≤ k′ < 2a1−1. Then it can be shown that

Jk(x) = 2−a1−1

(
walk′(x)−

∞∑

c=1

2−cwal2a1+c−1+k(x)

)
.

Substituting this into (6.15) we obtain approximately

f̂(k) ≈ −2−a1

∫ 1

0
f ′(x)walk′(x) dx = −2−a1 f̂ ′(k′).

In actuality we obtain an infinite sum on the right hand side, but the main
term is the first one, the remaining terms can be bounded by a suitable
expression.

The above step can be repeated. To do so, let k′′ := k′ − 2a2−1, k′′′ :=
k′′ − 2a3−1 and so on, where k(ν) = 0 and k(τ) = 0 for τ ≥ ν. We can
repeat the last step τ times until either f (τ) is not differentiable anymore,
or k(τ) = 0, that is, we can repeat it min(α, ν) times. Hence

f̂(k) ≈ 2−a1 f̂ ′(k(1)) ≈ 2−a1−a2 f̂ ′′(k(2))

...

≈ 2−a1−···−amin(α,ν) f̂ (min(α,ν))(k(min(α,ν))).

Taking the absolute value and using some estimation we obtain

|f̂(k)| / 2−a1−···−amin(α,ν) |f̂ (min(α,ν))(k(min(α,ν)))|

≤ 2−µα(k)|f̂ (min(α,ν))(k(min(α,ν)))| ≤ 2−µα(k)

∫ 1

0

∣∣∣f (min(α,ν))(x)
∣∣∣ dx,
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where we used

|f̂ (min(α,ν))(k(min(α,ν)))| =
∣∣∣∣
∫ 1

0
f (min(α,ν))(x)walk(min(α,ν))(x) dx

∣∣∣∣

≤
∫ 1

0

∣∣∣f (min(α,ν))(x)
∣∣∣ |walk(min(α,ν))(x)|dx

=

∫ 1

0

∣∣∣f (min(α,ν))(x)
∣∣∣ dx.

Thus if f is α times differentiable, we obtain

|f̂(k)| / Cf2
−µα(k),

where Cf > 0 is a constant which depends only on f and α. By some
modification of the above approach it can be shown that the constant Cf

can be replaced by a constant which depends only on α (but not on f) and
the norm of f , i.e., we have

|f̂(k)| ≤ Cα‖f‖1,(1),α2−µα(k).

The same holds for dimension s > 1 and integer base b > 2, where the
constant additionally depends on s and b, i.e.

|f̂(k)| ≤ Cα,b,s‖f‖s,1,αb−µα(k),

where µα(k) = µα(k1) + · · ·+ µα(ks) for k = (k1, . . . , ks) and 1 is the set of
weights which are 1 for each projection. For some values of b, this constant
Cα,b,s goes to 0 exponentially as s increases.

We can now begin to investigate numerical integration of functions in
H(Ks,γ,α) using digital nets. From Theorem 6.4 we conclude that the inte-
gration error for a digital net P = {t0, . . . , tbm−1} satisfies

∣∣∣∣∣

∫

[0,1]s
f(x) dx− 1

bm

bm−1∑

i=0

f(ti)

∣∣∣∣∣ ≤ Cα,b,s‖f‖s,1,α
∑

k∈D\{0}

b−µα(k),

where D is the dual net defined by (6.2).
The last inequality separates the contribution of the function from the

contribution of the QMC rule, i.e., ‖f‖s,1,α depends only on the function f

but not on the digital net, whereas
∑

k∈D\{0} b
−µα(k) depends only on the

generating matrices of the digital net and not on the function itself (only
on the smoothness of f ; i.e., it is the same for all functions which have
smoothness α). Therefore, when considering the integration error we can
now focus on the term

∑
k∈D\{0} b

−µα(k).
It is possible to also introduce weights in the approach above. A precise

result for the unanchored weighted Sobolev space H(Ks,γ,α) for α > 1 is the
following.
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Theorem 6.11. The square worst case error for multivariate integration
in the weighted unanchored Sobolev space H(Ks,γ,α) of smoothness α > 1
using a QMC rule based on a digital net P can be bounded by

[e(P,H(Ks,γ,α))]
2 ≤

∑

∅6=u⊆{1:s}

γu(Dα,b)
|u|

( ∑

ku∈D∗
u

b−µα(ku)

)2

,

where D∗
u
is defined by (6.8) and where

Dα,b = max
1≤ν≤α

(
α∑

τ=ν

((
1 +

1

b
+

1

b(b+ 1)

)(τ−2)+

(2 sin(π/b))−τ

)2

b−(τ−ν)

+ 2

(
1 +

1

b
+

1

b(b+ 1)

)2α−2

(2 sin(π/b))−2αb−2(α−ν)

)
.

Baldeaux and Dick (2009) investigated the value of the constant Dα,b and
showed that for b = 2 and 3 and 2 ≤ α ≤ 8 the constant Dα,b < 1.

Theorem 6.11 holds for any digital net, i.e., any point set obtained via
the digital construction scheme as described in Subsection 2.6, including the
higher order digital nets to be introduced in the next subsection.

6.7. Higher order digital nets

The aim is now to find digital nets, i.e., generating matrices C1, . . . , Cs ∈
Zw×m
b such that

∑
k∈D\{0} b

−µα(k) = O(n−α(log n)αs), where the number of
cubature points is n = bm. Note that we now use generating matrices with
w rows, and we usually choose w ≈ αm as explained below.

Roughly speaking, the sum
∑

k∈D\{0} b
−µα(k) is dominated by its largest

term. To find this largest term, define

µ∗α(C1, . . . , Cs) = min
k∈D\{0}

µα(k).

The dependence on the generating matrices C1, . . . , Cs on the right hand
side of the above equation is via the dual net D = D(C1, . . . , Cs). The
largest term in

∑
k∈D\{0} b

−µα(k) is then b−µ∗
α(C1,...,Cs).

In order to achieve a convergence of almost n−α = b−αm we must have
that the largest term in

∑
k∈D\{0} b

−µα(k) is also of this order, that is, we

must have µ∗α(C1, . . . , Cs) ≈ αm (or say µ∗α(C1, . . . , Cs) > αm− t for some
constant t independent of m). That this condition is also sufficient is quite
technical and was shown in Dick (2008, Lemma 5.2).

We can use some analogy to find matrices C1, . . . , Cs ∈ Zw×m
b which

achieve µ∗α(C1, . . . , Cs) ≈ αm. Let Cj = (~c⊤j,1, . . . ,~c
⊤
j,w)

⊤, i.e., ~cj,ℓ ∈ Zm
b is

the ℓth row of Cj. Then the matrices C1, . . . , Cs generate a classical digital
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(t,m, s)-net if for all i1, . . . , is ≥ 0 with i1 + · · · + is ≤ m− t, the vectors

~c1,1, . . . ,~c1,i1 , . . . ,~cs,1, . . . ,~cs,is

are linearly independent over Zb.
Now assume C1, . . . , Cs generate a classical digital (t,m, s)-net and that

we are given a k ∈ Ns
0 \ {0} with µ1(k) ≤ m − t. Let ij = µ1(kj) for

j = 1, . . . , s, then C⊤
1
~k1 + · · ·+ C⊤

s
~ks is a linear combination of the vectors

~c1,1, . . . ,~c1,i1 , . . . ,~cs,1, . . . ,~cs,is . As k 6= 0 and i1 + · · · + is ≤ m − t, which
implies that ~c1,1, . . . ,~c1,i1 , . . . ,~cs,1, . . . ,~cs,is are linearly independent, it fol-

lows that C⊤
1
~k1 + · · · + C⊤

s
~ks 6= 0 ∈ Zm

b . Thus k /∈ D. This shows that
if C1, . . . , Cs generate a classical digital (t,m, s)-net and k ∈ D \ {0}, then
µ1(k) > m − t. This is precisely the type of result described above which
we also want to have for α > 1.

We now want to generalize this linear independence condition to α > 1,
i.e., we want to have that if k ∈ Ns

0 \ {0} with µα(k) ≤ αm − t, then
the generating matrices should have linearly independent rows such that
C⊤
1
~k1+ · · ·+C⊤

s
~ks 6= 0 ∈ Zm

b . Let k = (k1, . . . , ks), where kj = κj,1b
aj,1−1+

· · ·+κj,νjbaj,νj−1, with aj,1 > · · · > aj,νj > 0 and 0 < κj,1, . . . , κj,νj < b. First
note that if w < αm− t, then k = (bw, 0, . . . , 0) ∈ D, but µα(k) = w + 1 ≤
αm− t. In order to avoid this problem we may choose w = αm. Hence we
may now assume that aj,1 ≤ w = αm for j = 1, . . . , s, as otherwise µα(k) >
αm already and no independence condition on the generating matrices is
required in this case.

Now C⊤
1
~k1 + · · ·+ C⊤

s
~ks is a linear combination of the rows

~c1,a1,1 , . . . ,~c1,a1,ν1 , . . . ,~cs,as,1 , . . . ,~cs,as,νs .

Thus, if these rows are linearly independent, then C⊤
1
~k1 + · · ·+C⊤

s
~ks 6= 0 ∈

Zm
b , and therefore k /∈ D.
Therefore, if C1, . . . , Cs ∈ Zαm×m

b are such that for all choices of aj,1 >
· · · > aj,νj > 0 for j = 1, . . . , s, with

a1,1 + · · · + a1,min(α,ν1) + · · ·+ as,1 + · · ·+ as,min(α,νs) ≤ αm− t,

the rows

~c1,a1,1 , . . . ,~c1,a1,ν1 , . . . ,~cs,as,1 , . . . ,~cs,as,νs

are linearly independent, then k ∈ D \ {0} implies that µα(k) > αm − t.
(Note that we also include the case where some νj = 0, in which case we
just set aj,1 + · · ·+ aj,min(α,νj) = 0.)

We can now formally define such digital nets for which the generating
matrices satisfy such a property. The following definition is a special case
of Dick (2008, Definition 4.3).

Definition 6.12. (Digital (t, α,m, s)-nets) Let m,α ≥ 1, and 0 ≤ t ≤
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αm be natural numbers. Let Zb be the finite field of prime order b and let
C1, . . . , Cs ∈ Zαm×m

b with Cj = (~c⊤j,1, . . . ,~c
⊤
j,αm)⊤. If for all 0 < aj,νj < · · · <

aj,1, where 0 ≤ νj for all j = 1, . . . , s, with

s∑

j=1

min(νj ,α)∑

ℓ=1

aj,ℓ ≤ αm− t

the vectors

~c1,a1,ν1 , . . . ,~c1,a1,1 , . . . ,~cs,as,νs , . . . ,~cs,as,1

are linearly independent over Zb, then the digital net with generating ma-
trices C1, . . . , Cs is called a digital (t, α,m, s)-net over Zb.

The need for a more general definition in Dick (2008) arises as we assume
therein that the smoothness α of the integrand is not known, so one cannot
choose w = αm in this case.

We have the following result.

Theorem 6.13. (Worst case error bound for digital (t, α,m, s)-nets)
Let α ≥ 2 be an integer, b ≥ 2 be a prime number. Then the worst case
error of multivariate integration in the weighted unanchored Sobolev space
H(Ks,γ,α) of smoothness α > 1, using a QMC rule with a digital (t, α,m, s)-
net P over Zb as cubature points, is bounded by

e(P,H(Ks,γ,α)) ≤ b−(αm−t)


 ∑

∅6=u⊆{1:s}

γu(D
′′
|u|,α,b)

2(αm− t+ α+ 2)2|u|α




1
2

,

where D′′
|u|,α,b = (Dα,b)

|u|
2 b|u|α(b−1 + (1− b1/α−1)−|u|α).

We conclude from this theorem that a digital (t, α,m, s)-net used as cuba-
ture points in a QMC rule will yield a convergence of the integration error of
order n−α(log n)αs for integrands with ‖f‖s,γ,α < ∞. The remaining ques-
tion now is: do digital (t, α,m, s)-nets exist for all given α, s ≥ 1 and some
fixed t (which may depend on α and s but not on m) for all m ∈ N? An
affirmative answer to this question will be given in the next subsection.

6.8. Construction of higher order digital nets

We now present explicit constructions of digital (t, α,m, s)-nets. Central to
this method is the digit interlacing function.

Definition 6.14. (Digit interlacing function) The digit interlacing func-
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tion with interlacing factor α ∈ N is given by

Dα : [0, 1)α → [0, 1)

(x1, . . . , xα) 7→
∞∑

a=1

α∑

r=1

ξr,ab
−r−(a−1)α,

where xr = ξr,1b
−1+ξr,2b

−2+ · · · for 1 ≤ r ≤ α. We also define this function
for vectors by setting

Dα : [0, 1)αs → [0, 1)s

(x1, . . . , xαs) 7→ (Dα(x1, . . . , xα), . . . ,Dα(x(s−1)α+1, . . . , xsα)).

Example 6.15. (Construction of higher order digital nets using point set)
Let t0, t1, . . . , tbm−1 ∈ [0, 1)sα be a digital (t′,m, sα)-net in base b. Then the
point set

Dα(t0),Dα(t1), . . . ,Dα(tbm−1)

is a digital (t, α,m, s)-net in base b, where t is given by Theorem 6.17.

Higher order digital sequences can be constructed in an analogous way.
For analyzing the properties of higher order digital nets, it is more con-

venient to describe the above construction using the generating matrices
rather than the point set.

Example 6.16. (Construction of higher order digital nets using generating matrices)
Let C1, . . . , Csα be the generating matrices of a digital (t′,m, sα)-net. Let
Cj = (~c⊤j,1, . . . ,~c

⊤
j,m)⊤ for j = 1, . . . , sα; i.e., ~cj,ℓ are the row vectors of

Cj . Now let the matrix C
(α)
j be made of the first rows of the matrices

C(j−1)α+1, . . . , Cjα, then the second rows of C(j−1)α+1, . . . , Cjα, and so on.

The matrix C
(α)
j is then an αm×m matrix; i.e.,

C
(α)
j = (~c

(α)
j,1 , . . . ,~c

(α)
j,αm)⊤,

where

~c
(α)
j,ℓ = ~cu,v,

with ℓ = (v − j)α+ u, 1 ≤ v ≤ m, and (j − 1)α < u ≤ jα for ℓ = 1, . . . , αm

and j = 1, . . . , s. Then the matrices C
(α)
1 , . . . , C

(α)
s are the generating ma-

trices of a digital (t, α,m, s)-net over Zb, where t is given by Theorem 6.17.

As we will see later, the choice of the underlying (t′,m, sα)-net has a
direct impact on the bound on the t-value of the digital (t, α,m, s)-net.

To give the idea why this construction works we may consider the case
s = 1. Let α > 1. To simplify the notation we drop the j (which denotes
the coordinate) from the notation for a moment. Let C(α) be constructed
from a classical digital (t′,m, α)-net with generating matrices C1, . . . , Cα
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as described above. Let αm ≥ a1 > a2 > · · · > aν ≥ 1. Then we need

to consider the row vectors ~c
(α)
a1 , . . . ,~c

(α)
aν . Now by the construction above,

the vector ~c
(α)
a1 may stem from any of the generating matrices C1, . . . , Cα.

Without loss of generality assume that ~c
(α)
a1 stems from C1, i.e., it is the i1th

row of C1, where i1 = ⌈a1/α⌉. Next consider ~c(α)a2 . This row vector may again

stem from any of the matrices C1, . . . , Cα. If ~c
(α)
a2 also stems from C1, then

⌈a2/α⌉ < i1. If not, we may w.l.o.g. assume that it stems from C2. Indeed,
it will be the i2th row of C2, where i2 = ⌈a2/α⌉. We continue in this fashion
and define numbers i3, i4, . . . , iℓ, where 1 ≤ ℓ ≤ α. Further we set iℓ+1 =
· · · = iα = 0. Then by the (t′,m, α)-net property of C1, . . . , Cα, it follows

that ~c
(α)
a1 , . . . ,~c

(α)
aν are linearly independent provided that i1+· · ·+iα ≤ m−t′.

Hence, if we choose t such that a1 + · · · + amin(α,ν) ≤ αm − t implies that
i1 + · · ·+ iα ≤ m− t′ for all admissible choices of a1, . . . , aν , then the digital
(t, α,m, 1)-net property of C(α) follows.

Note that i1 = ⌈a1/α⌉ and iℓ ≤ ⌈aℓ/α⌉ for ℓ = 2, . . . , α. Thus

i1 + · · · + iα ≤ ⌈a1/α⌉ + · · ·+ ⌈aα/α⌉ ≤ (a1 + · · · + aα + α(α − 1))/α

=
a1 + · · ·+ aα

α
+ α− 1 ≤ m− t/α+ α− 1.

Thus, if we choose t such that m − t/α + α − 1 ≤ m − t′, then the result
follows. Simple algebra then shows that

t = αt′ + α(α − 1)

will suffice.
A more general and improved result is given in the following.

Theorem 6.17. Let α ≥ 1 be a natural number and let C1, . . . , Csα be
the generating matrices of a digital (t′,m, sα)-net over the finite field Zb of

prime order b. Let C
(α)
1 , . . . , C

(α)
s be defined as in Example 6.16. Then the

matrices C
(α)
1 , . . . , C

(α)
s are the generating matrices of a digital (t, α,m, s)-

net over Zb with

t = αmin

(
m, t′ +

⌊
s(α− 1)

2

⌋)
.

This shows that digital (t, α,m, s)-nets can be explicitly constructed for all
α,m, s ≥ 1 with t bounded independently ofm. Indeed, also the dependence
of t on α and s is known from Dick and Baldeaux (2009): namely, there are
constants c, C > 0 independent of α and s such that cα2s ≤ t ≤ Cα2s.

Using Theorem 6.17 we therefore obtain explicit constructions of higher
order quasi-Monte Carlo rules which satisfy Theorem 6.13.
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6.9. Geometric properties of higher order digital nets

Figures 6.7–6.10 illustrate the properties of a digital (2, 2, 4, 2)-net in base 2.
Figure 6.8 shows a partition of the square for which each union of the shaded
rectangles contains exactly two points. Figures 6.9 and 6.10 show that also
other partitions of the unit square are possible where each union of shaded
rectangles contains the ‘fair’ number of points. Many other partitions of
the square are possible where the point set always contains the fair number
of points in each union of rectangles, see Dick and Baldeaux (2009), but
there are too many of them to show them all here. Even in the simple
case considered here there are 12 partitions possible, for each of which the
point set is fair – this is quite remarkable since the point set itself has
only 16 points (we exclude all those partitions for which the fairness would
follow already from some other partition, otherwise there would be 34 of
them). In the classical case we have 4 such partitions, all of which are
shown in Figure 6.7. (The partitions from the classical case are included in
the generalized case; so out of the 12 partitions 4 are shown in Figure 6.7,
one is shown in Figure 6.8, one is shown in Figure 6.10 and one is indicated
in Figure 6.9.)

The subsets of [0, 1)s which form a partition and which each has the fair
number of points are of the form:

J(~a~ν , ~d~ν)

=
s∏

j=1

b−1⋃

dj,ℓ=0

ℓ∈{1,...,αm}\
{
aj,1,...,aj,νj

}

[
dj,1
b

+ · · ·+ dj,n
bαm

,
dj,1
b

+ · · ·+ dj,n
bαm

+
1

bαm

)
,

where b ≥ 2 is the base and where
∑s

j=1

∑νj
ℓ=1 aj,ℓ ≤ αm − t. For j =

1, . . . , s we again assume 1 ≤ aj,νj < · · · < aj,1 ≤ αm in case νj > 0 and
{aj,1, . . . , aj,νj} = ∅ in case νj = 0. Further, we also use the following nota-
tion: ~ν = (ν1, . . . , νs), |~ν|1 =

∑s
j=1 νj , ~a~ν = (a1,1, . . . , a1,ν1 , . . . , as,1, . . . , as,νs),

~d~ν ∈ {0, . . . , b− 1}|~ν|1 , and ~d~ν = (d1,i1,1 , . . . , d1,i1,ν1 , . . . , ds,is,1 , . . . , ds,is,νs ),
where the components aj,ℓ and dj,ℓ, ℓ = 1, . . . , νj , do not appear in the

vectors ~a~ν and ~d~ν in case νj = 0.
Figures 6.7–6.10 give only a few examples of unions of intervals for which

each subset of the partition contains the right number of points. As the
subsets J(~a~ν , ~d~ν) for fixed ~ν and ~a~ν (with ~d~ν running through all possibil-
ities) form a partition of [0, 1)s, it is clear that the right number of points

in J(~a~ν , ~d~ν) has to be bmVol(J(~a~ν , ~d~ν)). For example, the digital net in
Figure 6.8 has 16 points and the partition consists of 8 different subsets
J(~a~ν , ~d~ν), hence each J(~a~ν , ~d~ν) contains exactly 16/8 = 2 points. (In general,

the volume of J(~a~ν , ~d~ν) is given by b−|~ν|1 , see Dick and Baldeaux (2009).)
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Figure 6.7. Higher order Sobol′ points: these 16 points are from a Sobol′ point set
in dimension 4 with interlacing factor 2 (which yields a 2-dimensional point set).
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Figure 6.8. Higher order Sobol′ points: the shaded area in each square contains
exactly 2 points.

6.10. Scrambled digital nets and sequences

We now discuss properties of Owen’s scrambling algorithm, which was intro-
duced in Subsection 2.10. First we show that a point x which is scrambled
using Owen’s algorithm, is uniformly distributed in [0, 1)s.

Proposition 6.18. Let x ∈ [0, 1)s and let Π be a uniformly and i.i.d. set
of permutations. Then Π(x) is uniformly distributed in [0, 1)s, that is, for
any Lebesgue measurable set G ⊆ [0, 1)s, the probability that Π(x) ∈ G,
denoted by P[Π(x) ∈ G], satisfies P[Π(x) ∈ G] = λs(G), where λs denotes
the s-dimensional Lebesgue measure.

Proof. We follow Owen (1995, Proof of Proposition 2) in our exposition.
We use the notation from above and set y := Π(x). Consider the case s = 1
first and let

E =

[
a

bℓ
,
a+ 1

bℓ

)

be an elementary interval where ℓ ≥ 0 and 0 ≤ a < bℓ. A technical problem
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Figure 6.9. Higher order Sobol′ points: the shaded area contains exactly 2 points.
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Figure 6.10. Higher order Sobol′ points: the shaded area contains exactly half of
the points.

which can arise in the proof below is when y is of the form y1 = y1,1b
−1 +

· · · + y1,ℓb
−ℓ + (b − 1)b−ℓ−1 + (b − 1)b−ℓ−1 + · · · , since then we have y1 =

y1,1b
−1+ · · ·+(y1,ℓ+1)b−ℓ. We show that this only happens with probability

0.
The probability that there are u ≥ j0 ≥ 1 such that y1,j0 = y1,j0+1 =

· · · = y1,u = b − 1 is given by ((b − 1)!)−(u−j0). Hence the probability that
y1,j0 = y1,j0+1 = · · · = b − 1, i.e., all digits of y1 are b − 1 from some index
j0 onwards, is 0.

Let ab−ℓ = a1b
−1 + a2b

−2 + · · · + aℓb
−ℓ. Then y1 ∈ E if and only if

y1 = a1, y2 = a2, . . . , yℓ = aℓ. Using (2.8), this is equivalent to

π1,x1,1,...,x1,k−1
(x1,k) = ak for 1 ≤ k ≤ ℓ. (6.16)

For each 1 ≤ k ≤ ℓ, the probability that (6.16) holds is b−1. Hence the
probability that y1 ∈ E is b−ℓ. The result therefore holds for all elementary
intervals of [0, 1).

We now extend the result to the general case. First notice that the result
also holds for all subintervals [ub−ℓ, vb−ℓ), where ℓ ≥ 0 and 0 ≤ u < v ≤ b−ℓ.
The endpoints of these intervals are dense in [0, 1). A corollary of Chung
(1974, p. 28) extends the result P[y1 ∈ B] = λ1(B) to all Borel measurable
subsets B ⊆ [0, 1). The equality P[y1 ∈ B] = λ1(B) extends to Lebesgue
measurable sets B since subsets of sets of measure zero have probability zero
of containing y1.

Consider now s > 1. Let B1, . . . , Bs be measurable subsets of [0, 1).
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Because the components y1, . . . , ys of y are independent, it follows that

P[yi ∈ Bi, 1 ≤ i ≤ s] =
s∏

i=1

λ1(Bi). (6.17)

Finally, λs is the unique measure on [0, 1)s which satisfies (6.17).

Consider a (t,m, s)-net in base b consisting of points t0, . . . , tbm−1, where
ti = (ti,1, . . . , ti,s) and ti,j = ti,j,1b

−1 + ti,j,2b
−2 + · · · . We shall denote the

scrambled points by y0, . . . ,ybm−1, where yi = (yi,1, . . . , yi,s) and yi,j =
yi,j,1b

−1 + yi,j,2b
−2 + · · · . Specifically, the scrambled points are given by

yi,j,k = πj,ti,j,1,...,ti,j,k−1
(ti,j,k), for 0 ≤ i < bm, 1 ≤ j ≤ s, and k ≥ 1.

Similarly, if (t0, t1, . . . ) is a (t, s)-sequence, then the scrambled sequence
shall be denoted by (y0,y1, . . . ), where, using the same notation as above,
again yi,j,k = πj,ti,j,1,...,ti,j,k−1

(ti,j,k), for all i ≥ 0, 1 ≤ j ≤ s, and k ≥ 1.

We consider now the expected value of 1
n

∑n−1
i=0 f(yi). For any measurable

function f we have

E

[
1

n

n−1∑

i=0

f(yi)

]
=

1

n

n−1∑

i=0

E[f(yi)] =

∫

[0,1]s
f(y)dy,

since each point yi is uniformly distributed in [0, 1)s and hence E[f(yi)] =∫
[0,1]s f(y)dy for 0 ≤ i < n. In other words, this means that a scram-

bled point set (note that the above applies even if the underlying point set
t0, . . . , tn−1 is not a digital net) used in a QMC rule yields an unbiased
estimator.

The second important property of the randomization algorithm which
we require is that the (t,m, s)-net structure of the points t0, . . . , tbm−1 is
retained after applying the scrambling algorithm. For some technical reason
this does not quite hold, but it holds with probability one, which is still
sufficient. The following proposition was first shown by Owen (1995).

Proposition 6.19. If t0, . . . , tbm−1 form a (t,m, s)-net in base b, then
y0, . . . ,ybm−1 is a (t,m, s)-net in base b with probability one. If t0, t1, . . .
are obtained from a (t, s)-sequence, then the scrambled points y0,y1, . . .
form a (t, s)-sequence with probability one.

Proof. The probability that, for some 0 ≤ i < bm, 1 ≤ j ≤ s, and ℓ ∈ N, all
yi,j,k = b− 1 for all k ≥ ℓ is 0. Equivalently, with probability one, infinitely
many digits in the b-adic expansion of yi,j are different from b−1. Therefore,
the probability that yi,j has infinitely many digits in the b-adic expansion
of yi,j are different from b − 1 for all 0 ≤ i < bm and 1 ≤ j ≤ s is 0, since
the union of a finite number of zero probability events has probability zero.
Hence this holds for each component of each point of a (t,m, s)-net.

For a (t, s)-sequence the same applies, since a countable union of proba-
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bility zero events has itself probability zero. Hence this also holds for each
component of each point of a (t, s)-sequence.

Therefore we may, in the following, assume that infinitely many digits in
the b-adic expansion of yi,j differ from b− 1 for all i ∈ N0 and 1 ≤ j ≤ s.

Assume we are given an elementary interval J =
∏s

j=1[ajb
−dj , (aj+1)b−dj )

where 0 ≤ aj < bdj , dj ∈ N0, and d1 + · · · + ds ≤ m − t. Let ajb
−dj =

aj,1b
−1 + aj,2b

−2 + · · ·+ aj,djb
−dj .

Then yi ∈ J if and only if yi,j,k = aj,k for all 1 ≤ k ≤ dj and all 1 ≤
j ≤ s. Further yi,j,k = aj,k if and only if xi,j,k = π−1

j,ti,j,1,...,ti,j,k−1
(aj,k).

Let a′j,k = π−1
j,ti,j,1,...,ti,j,k−1

(aj,k). Then yi ∈ J if and only if ti ∈ J ′ =∏s
j=1[a

′
jb

−dj , (a′j + 1)b−dj ) where a′jb
−dj = a′j,1b

−1 + · · · + a′j,djb
−dj . As the

points t0, . . . , tbm−1 form a (t,m, s)-net, it follows that there are exactly
bm−t points of this net in J ′ and hence there are exactly bm−t points of
y0, . . . ,ybm−1 in J . Thus y0, . . . ,ybm−1 form a (t,m, s)-net with probability
one.

For a (t, s)-sequence t0, t1, . . . for all k ∈ N0 and m ≥ t the point set con-
sisting of tkbm , . . . , tkbm+bm−1 forms a (t,m, s)-net which is again a (t,m, s)-
net after scrambling with probability one. Since the union of countably many
zero probability events has probability zero the result for (t, s)-sequences fol-
lows as well.

6.11. Error analysis of scrambled digital nets

In this subsection we study upper bounds on the variance of scrambled
digital nets. To explain the result for scrambled digital nets, we introduce
the so-called nested ANOVA decomposition.

Theorem 6.20. (Nested ANOVA decomposition) Consider a function
f ∈ L2([0, 1]) with Walsh series expansion

f(x) ∼
∞∑

k=0

f̂(k)walk(x), (6.18)

where

f̂(k) =

∫ 1

0
f(x)walk(x) dx.

Define β0 :=
∫ 1
0 f(y) dy, and for ℓ ≥ 1,

βℓ(x) :=

bℓ−1∑

k=bℓ−1

f̂(k)walk(x) and σ2ℓ (f) := Var[βℓ].



124 Acta Numerica

Then we have the nested ANOVA decomposition of f

Var[f ] =

∞∑

ℓ=1

σ2ℓ (f).

Notice that we do not necessarily have equality in (6.18) since the function
f is only assumed to be in L2([0, 1]) (and hence may for example be changed

arbitrarily on a set of measure zero without changing f̂(k) for any k ≥ 0).

Proof. Consider the bℓ-term approximation of f given by

bℓ−1∑

k=0

f̂(k)walk(x) =

bℓ−1∑

k=0

∫ 1

0
f(y)walk(x⊖ y) dy =

∫ 1

0
f(y)Dℓ(x⊖ y) dy,

where Dℓ is the Walsh-Dirichlet kernel given by

Dℓ(z) =

bℓ−1∑

k=0

walk(z) =

{
bℓ if z ∈ [0, b−ℓ),

0 otherwise.

Hence we have

bℓ−1∑

k=0

f̂(k)walk(x) = bℓ
∫

⌊ybℓ⌋=⌊xbℓ⌋
f(y) dy,

where the integration is over all y such that ⌊ybℓ⌋ = ⌊xbℓ⌋, i.e., the first ℓ
digits of x and y coincide. Therefore for ℓ ≥ 1 we have

βℓ(x) = bℓ
∫

⌊ybℓ⌋=⌊xbℓ⌋
f(y) dy − bℓ−1

∫

⌊ybℓ−1⌋=⌊xbℓ−1⌋
f(y) dy.

(In Owen (1997b) this function was defined using Haar wavelets.) Notice
that βℓ is constant on intervals of the form [ub−ℓ, (u+1)b−ℓ), hence βℓ(x) =
βℓ(⌊bℓx⌋b−ℓ).

Then because of the orthogonality of the Walsh functions we obtain

σ2ℓ (f) =

∫ 1

0
|βℓ(x)|2dx =

bℓ−1∑

k=bℓ−1

|f̂(k)|2

and also ∫ 1

0
βℓ(x)βℓ′(x)dx = 0 for ℓ 6= ℓ′.

Since f ∈ L2([0, 1]) and the Walsh function system is complete, we can
use Plancherel’s identity to obtain

Var[f ] =

∫ 1

0
|f(y)− E(f)|2dy =

∞∑

k=1

|f̂(k)|2 =

∞∑

ℓ=1

σ2ℓ (f).
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Therefore we obtained a decomposition of the variance of f in terms of the
variances of βℓ.

Notice that
∑∞

k=1 |f̂(k)|2 = Var
[∑∞

k=0 f̂(k)walk

]
. Hence, as a by-product,

we obtain that for any f ∈ L2([0, 1]), the variance of f and the variance of
its Walsh series coincide, that is,

Var[f ] = Var

[
∞∑

k=0

f̂(k)walk

]
.

For functions f : [0, 1]s → R the nested ANOVA decomposition can be
applied component-wise. Let f ∈ L2([0, 1]

s) have the following Walsh series
expansion

f(x) ∼
∑

k∈Ns
0

f̂(k)walk(x) =: S(x, f).

Let ℓ = (ℓ1, . . . , ℓs) ∈ Ns
0 and Lℓ = {k = (k1, . . . , ks) ∈ Ns

0 : ⌊bℓj−1⌋ ≤ kj <
bℓj for 1 ≤ j ≤ s}. Then let

βℓ(x) =
∑

k∈Lℓ

f̂(k)walk(x)

and

σ2ℓ(f) := Var[βℓ] =

∫

[0,1]s
|βℓ(x)|2dx =

∑

k∈Lℓ

|f̂(k)|2.

For ℓ = (ℓ1, . . . , ℓs) ∈ Ns
0 \ {0} let

Gℓ =
1

N2

n−1∑

i,i′=0

s∏

j=1

(
b

b− 1
1
⌊bℓj ti,j⌋=⌊bℓj ti′,j⌋

− 1

b− 1
1
⌊bℓj−1ti,j⌋=⌊bℓj−1ti′,j⌋

)
,

where ti = (ti,1, . . . , ti,s) for 0 ≤ i ≤ n − 1 and where 1A=B is 1 if A = B
and 0 otherwise.

If k ∈ Lℓ, then

1

n2

n−1∑

i,i′=0

E [walk(yi ⊖ yi′)] = Gℓ,

since the coordinates are randomized independently from each other. Owen
(1997b) called the numbers Γℓ := nGℓ gain coefficients, since, as we see
below, they determine how much one gains compared to the classical Monte
Carlo algorithm.

We now estimate the variance of the estimator

Q̂n,s(f) =
1

n

n−1∑

i=0

f(yi) (6.19)
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for integrands f ∈ L2([0, 1]
s) when the points y0, . . . ,yn−1 are obtained by

applying Owen’s scrambling to a (digital) (t,m, s)-net over Zb. (To empha-

size that (6.19) is a random variable, we use the notation Q̂n,s rather than
Qn,s.)

For the following results see Owen (1997a), Owen (1997b) and Owen
(1998).

Theorem 6.21. (Variance of the integral estimator using scrambled nets)

Let f ∈ L2([0, 1]
s) and Q̂n,s(f) be given by (6.19). Let the point set

{y0, . . . ,yn−1} ⊆ [0, 1)s be obtained by applying Owen’s scrambling al-
gorithm to the point set {t0, . . . , tn−1} ⊆ [0, 1)s. Then the variance of the

estimator Q̂n,s(f) is given by

Var[Q̂n,s(f)] =
1

n

∑

ℓ∈Ns
0\{0}

Γℓσ
2
ℓ(f).

Theorem 6.22. (A bound on the variance in terms of gain coefficients)

Let f ∈ L2([0, 1]
s) and Q̂n,s(f) be given by (6.19). Let the points {t0, . . . , tbm−1}

be a digital (t,m, s)-net over Zb. Then

Var[Q̂n,s(f)] ≤ b−m+t

(
b+ 1

b− 1

)s ∑

ℓ∈Ns
0

|ℓ|1>m−t

σ2ℓ(f).

For MC one obtains a variance Var[Q̂n,s(f)] =
1
n

∑
ℓ∈Ns

0\{0}
σ2ℓ(f). Hence

the gain of scrambled digital nets lies in the fact that we only sum over σ2ℓ(f)
for which |ℓ|1 > m− t, although one incurs a penalty factor of bt((b+1)/(b−
1))s using scrambled digital (t,m, s)-nets. Notice that the gain coefficients
Γℓ are 0 for ℓ ∈ Ns

0 with |ℓ|1 ≤ m− t and Γℓ = bt((b+1)/(b−1))s for ℓ ∈ Ns
0

with |ℓ|1 > m− t.

Theorem 6.22 shows that Var[Q̂n,s(f)] for a scrambled (0,m, s)-net is
always at most by a factor of ((b + 1)/(b − 1))s larger than the variance
for a plain MC algorithm (see also Owen (1997a, Theorem 1) who shows
that the gain coefficients are always bounded by e in this case). Further, for
scrambled (t,m, s)-nets we have

bmVar[Q̂n,s(f)] = bt
(
b+ 1

b− 1

)s ∑

ℓ∈Ns
0

|ℓ|1>m−t

σ2ℓ(f) → 0 as m→ ∞.

Therefore, scrambled (t,m, s)-nets outperformMC with respect to Var[Q̂n,s(f)]

asymptotically, as for MC we have nVar[Q̂n,s(f)] =
∑

ℓ∈Ns
0\{0}

σ2ℓ(f) for all

n ∈ N.
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If the integrand f has smoothness 0 < α ≤ 1, then one can show that
|σℓ(f)| ≤ Cfb

−αµ1(ℓ). Scrambled (t,m, s)-nets can take advantage now,
since Γℓ = 0 for all ℓ ∈ Ns

0 with µ1(ℓ) ≤ m− t and Γℓ is bounded otherwise.
Thus, asymptotically one obtains an improved rate of convergence in this
case. If the integrand is only in L2([0, 1]

s), then one still gets the MC rate
of convergence of n−1/2.

Definition 6.23. (Generalized Vitali variation) We define the gener-
alized variation in the sense of Vitali of order 0 < α ≤ 1 by

V (s)
α (f) = sup

P

(∑

J∈P

Vol(J)

∣∣∣∣
∆(f, J)

Vol(J)α

∣∣∣∣
2
)1/2

,

where the supremum is extended over all partitions P of [0, 1]s into subin-
tervals and Vol(J) denotes the volume of the subinterval J .

For α = 1 and if the partial derivatives of f are continuous on [0, 1]s we
also have the formula

V
(s)
1 (f) =

(∫

[0,1]s

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(x)

∣∣∣∣
2

dx

)1/2

.

Indeed we have

|∆(f, J)| =
∣∣∣∣
∫

J

∂sf

∂x1 · · · ∂xs
(x)dx

∣∣∣∣ = Vol(J)

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(ζJ)

∣∣∣∣

for some ζJ ∈ J , which follows by applying the mean value theorem to the
inequality

min
x∈J

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(x)

∣∣∣∣ ≤ Vol(J)−1

∣∣∣∣
∫

J

∂sf

∂x1 · · · ∂xs
(x)dx

∣∣∣∣ ≤ max
x∈J

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(x)

∣∣∣∣ .

Therefore we have

∑

J∈P

Vol(J)

∣∣∣∣
∆(f, J)

Vol(J)

∣∣∣∣
2

=
∑

J∈P

Vol(J)

∣∣∣∣
∂sf

∂x1 · · · ∂xs
(ζJ)

∣∣∣∣
2

,

which is just a Riemann sum for the integral
∫
[0,1]s

∣∣ ∂sf
∂x1···∂xs

∣∣2dx, and thus

the equality follows.
Until now we did not take projections to lower-dimensional faces into

account.

Definition 6.24. (Generalized Hardy and Krause variation) For ∅ 6=
u ⊆ {1 : s}, let V (|u|)

α (fu; u) be the generalized Vitali variation with coeffi-
cient 0 < α ≤ 1 of the |u|-dimensional function

fu(xu) =

∫

[0,1]s−|u|

f(x)dx{1:s}\u.
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For u = ∅ we have f∅ =
∫
[0,1]s f(x)dx{1:s} and we define V

(|∅|)
α (f∅; ∅) = |f∅|.

Then

Vα(f) =


 ∑

u⊆{1:s}

(
V (|u|)
α (fu; u)

)2



1/2

is called the generalized Hardy and Krause variation of f on [0, 1]s.

A function f for which Vα(f) < ∞ is said to be of finite variation of
order α.

Theorem 6.25. (A bound on the variance in terms of variation) Let
f : [0, 1]s → R have bounded variation Vα(f) <∞ of order 0 < α ≤ 1. Then

the variance of the estimator Var[Q̂n,s(f)] using a randomly scrambled dig-
ital (t,m, s)-net over Zb is bounded by

Var[Q̂n,s(f)] ≤ V 2
α (f)b

−(1+2α)(m−t) (b− 1)(2α−1)+sb2s

b2α(b− 1)s

(
m− t+ s

s− 1

)
,

where again (2α− 1)+ = max(2α − 1, 0).

6.12. Simplifications of the scrambling scheme: affine matrix scrambling

The scrambling algorithm as introduced by Owen requires one to generate
and store all the necessary permutations used for the scrambling scheme.
Since the number of permutations needed is very large, this is not practical
and therefore simplifications of this algorithm have been found for which
the main result still holds.

One version of such a simplified scrambling is the following: Let xj =
xj,1b

−1 + xj,2b
−2 + · · · denote the base b expansion of the jth coordinate

of x = (x1, . . . , xs) ∈ [0, 1)s. Let y ∈ [0, 1)s denote the point which is
obtained after scrambling x. Assume that the jth coordinate has base b
expansion yj = yj,1b

−1 + yj,2b
−2 + · · · . To obtain a simplified scrambling,

choose mj,k,ℓ, σj,k ∈ Zb for 1 ≤ ℓ < k and mj,k,k ∈ Zb \ {0} for 1 ≤ j ≤ s
independently and uniformly distributed over their ranges. Then we set

yj,k =
k∑

ℓ=1

mj,k,ℓxj,ℓ + σj,k (mod b) for 1 ≤ j ≤ s.

This can also be written in matrix form. SetMj = (mj,k,ℓ)k,ℓ, wheremj,k,ℓ =
0 for ℓ > k and ~σj = (σj,k)

⊤
k . Note that Mj is a lower triangular matrix.

Further let ~xj = (xj,1, xj,2, . . .) and ~yj = (yj,1, yj,2, . . .)
⊤. Then we have

~yj =M~xj + ~σ.

This method reduces the number of permutations significantly while still pre-
serving the main properties of Owen’s scrambling. This scrambling scheme
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is called affine matrix scrambling. The results for Owen’s scrambling pre-
sented above still hold for the affine matrix scrambling.

6.13. Higher order scrambling

We have seen that scrambling can improve the convergence rate of the vari-
ance to n−3/2+δ, for any δ > 0 for instance for functions whose generalized
variation is bounded. Since there are higher order nets which yield deter-
ministic QMC rules with convergence rates of n−α+δ for arbitrary δ > 0 for
functions with smoothness α ≥ 1, the question also arises how to generalize
Owen’s scrambling and its simplifications to achieve higher order conver-
gence. We briefly describe this in the following.

Let t0, . . . , tbm−1 ∈ [0, 1)ds be a randomly scrambled digital (t,m, ds) net
over the finite field Zb of prime order b (here scrambling can mean Owen’s
original scrambling or any of the simplifications for which the same results
hold as for Owen’s scrambling). Then one simply uses the sample points

yi = Dα(xi) ∈ [0, 1)s for 0 ≤ i < bm,

where Dα is the digit interlacing function of order α ≥ 1. The integral is
then estimated using

Q̂n,s(f) =
1

bm

bm−1∑

n=0

f(yn).

This method yields again an unbiased estimator, i.e.,

E(Q̂n,s(f)) =

∫

[0,1]s
f(x)dx.

If the integrand has square integrable partial mixed derivatives up to order
α ≥ 1 in each variable, then the variance of Q̂n,s(f) satisfies

Var[Q̂n,s(f)] = O(n−2min(d,α)−1+δ)

for any δ > 0, where n = bm is the number of sample points.

6.14. Notes

Subsection 6.1 is partly from Dick and Pillichshammer (2010). Subsec-
tions 6.4 and 6.5 are adapted from Dick and Pillichshammer (2010, Chap-
ter 10). Subsection 6.6 is based on Dick and Baldeaux (2009). Subsec-
tions 6.7 and 6.8 are based on Dick (2009b). Subsections 6.10 and 6.11 are
based on Dick and Pillichshammer (2010, Chapter13).

The monographs by Niederreiter (1992a) and by Dick and Pillichsham-
mer (2010) give a comprehensive introduction to (digital) nets and (digital)
sequences, discrepancy theory and QMC rules based on such point sets and
sequences. More references can be found therein.
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Walsh functions were introduced by Walsh (1923), see also Chrestenson
(1955) and Fine (1949). For information on Walsh functions in the context
of QMC integration see Dick and Pillichshammer (2010).

Numerical integration of Walsh series using QMC rules based on digital
nets was studied, for instance, by Larcher and Traunfellner (1994), Larcher,
Schmid and Wolf (1994) and Larcher, Schmid and Wolf (1996), whereas
numerical integration in Haar wavelet spaces was studied by Sobol′ (1969)
and Heinrich, Hickernell and Yue (2004). Numerical integration in anchored
and unanchored Sobolev spaces using QMC rules based on digital nets was
first studied by Dick and Pillichshammer (2005).

Polynomial lattice rules have been introduced by Niederreiter (1992b).
Shift nets are a subclass of digital nets which were introduced by Schmid
(1996) and further studied by Pillichshammer (2002). The so-called Salzburg
tables provide a table of digital nets found by computer search with small
t-value. These computations are described by Hansen, Mullen and Nieder-
reiter (1993), Larcher, Lauß, Niederreiter and Schmid (1996) and Schmid
(2000). An improvement of the method for computing the t-value of digital
nets has been studied in Pirsic and Schmid (2001). A table with many of
the currently best known t-values for (t,m, s)-nets and (t, s)-sequences for
many values of m and s can be found at http://mint.sbg.ac.at/.

The CBC construction of polynomial lattice rules was introduced by
Dick et al. (2005) for anchored and unanchored Sobolev spaces and by
Dick, Kritzer, Leobacher and Pillichshammer (2007) for the weighted star-
discrepancy. The case where the modulus is not necessarily irreducible was
considered by Kritzer and Pillichshammer (2007).

The fast CBC algorithm was introduced by Nuyens and Cools (2006a)
using FFT methods for the construction of classical lattice point sets. Due
to the similarities between ordinary and polynomial lattice point sets it
turned out that their methods can also be carried over to the polynomial
case, see Nuyens and Cools (2006b). Implementations of the fast algorithm
using Matlab can be found in Nuyens and Cools (2006c).

Cyclic nets are another subclass of digital nets of size bm which were in-
troduced by Niederreiter (2004). Hyperplane nets are a subclass of digital
nets of size bms which where introduced by Pirsic, Dick, Pillichshammer
(2006). The discrepancy of cyclic and hyperplane nets was considered in
Pillichshammer and Pirsic (2009). Extensible polynomial lattice rules were
studied by Niederreiter (2003) and a construction algorithm was introduced
by Dick (2007b). Extensible hyperplane nets were studied by Pirsic and Pil-
lichshammer (2011). Constructions of (digital) nets and (digital) sequences
based on existing constructions are called propagation rules, see Dick and
Pillichshammer (2010, Chapter 9) for a summary.

The basic construction principle of higher order digital nets and sequences
appeared first in Dick (2007a) and was slightly modified in Dick (2008). A
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bound on the decay of the Walsh coefficients has been studied in more detail
in Dick (2009a). Theorem 6.17 is a special case of Dick (2008, Theorem 4.11),
with an improvement for some cases from Dick and Baldeaux (2009) (a proof
of this result can be found in Dick and Baldeaux (2009), Dick (2007a) and
Dick and Kritzer (2010)). The CBC construction of higher order polynomial
lattice rules was studied by Baldeaux, Dick, Greslehner and Pillichshammer
(2011) and Baldeaux, Dick, Leobacher, Nuyens and Pillichshammer (2012).
A CBC construction of higher order scrambled polynomial lattice rules was
studied by Goda and Dick (2013). Propagation rules for higher order digital
nets were studied by Dick and Kritzer (2010). Tractability of higher order
polynomial lattice rules were studied by Dick and Pillichshammer (2007)
and the existence of higher order polynomial lattice rules with small t-value
were studied by Dick, Kritzer, Pillichshammer and Schmid (2007). Recently
Matsumoto, Saito and Matoba (2013) and Matsumoto and Yoshiki (2013)
constructed QMC rules which achieve higher order convergence for function
classes of very high smoothness.

Scrambling was introduced by Owen (1995) and further studied by Owen
(1997a) and Owen (1997b). Scrambled Niederreiter and Xing sequences were
studied by Owen (1998). The mean square discrepancy of scrambled nets
was studied by Hickernell and Yue (2000), whereas integration and approxi-
mation using scrambled nets was studied by Yue and Hickernell (2001). The
gain coefficients of digital nets were further investigated by Yue and Hick-
ernell (2002). Strong tractability of scrambled Niederreiter sequences was
studied by Yue and Hickernell (2005), whereas strong tractability in Banach
spaces was studied by Yue and Hickernell (2006). Of particular interest in
the context of scrambled nets is also the result by Loh (2003), who shows

that a central limit theorem holds for the estimate Q̂n,s(f) for which the
cubature points are based on a scrambled (0,m, s)-net. This allows one to
obtain an approximate confidence interval from the variance estimates of
Q̂n,s(f).

Simplifications of Owen’s scrambling algorithm were studied by Hickernell
(1996b), Matoušek (1998) and Tezuka and Faure (2003). In particular, the
affine matrix scrambling is from Matoušek (1998) and is implemented in
Matlab. Higher order scrambling has been studied in Dick (2011a). A
construction of randomly scrambled polynomial lattice rules which have a
better dependence on the dimension has been studied in Baldeaux and Dick
(2011) for functions of smoothness at most 1.

7. Infinite dimensional integration

In this section we consider briefly numerical integration for problems with
an infinite number of dimensions. We do not try to be definitive, because
the subject is developing and changing rapidly. Rather, we introduce some
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themes likely to be of continuing importance. We concentrate here on “an-
chored” function spaces, because anchoring is a natural idea for functions
that depend on an infinite number of variables. The section concludes with
a brief discussion of an application that is driving much recent interest in
infinite dimensional problems.

7.1. The infinite dimensional problem

The problem is to integrate real-valued functions f that have a countably
infinite number of variables,

f(x1, x2, . . .),

with each component lying on the unit interval, xj ∈ [0, 1], j ∈ N. Equiv-
alently we write f(x) with x = (xj)j∈N ∈ [0, 1]N :=

∏∞
j=1[0, 1]. To avoid

formal problems associated with functions of an infinite number of variables,
we choose an “anchor” c ∈ [0, 1], and in our algorithms only allow function
evaluation when at most a finite number of components of x have values
different from the anchor value c. Often c = 0 is the most natural choice
for the anchor, but in some applications it is better to take the midpoint
c = 1/2 as anchor. The components xj that have the value c are considered
to be “inactive variables” for the particular function evaluation, in contrast
to the “active variables” xj 6= c.

If the set of active variables is xu, we write the value of f as f(xu; c).
In this section we shall assume that f(xu; c) is a continuous function of xu

on [0, 1]|u| for every finite subset u of the natural numbers. The infinite
dimensional integral may now be defined as

I∞(f) := lim
s→∞

∫

[0,1]s
f(x{1:s}; c) dx{1:s}. (7.1)

In Subsection 7.4 we shall introduce a reproducing kernel Hilbert space
setting that ensures that this limit exists, and ensures also that f(x) is well
defined for all x ∈ [0, 1]N. For the present, however, we concentrate on
algorithms and costs.

Our algorithms for approximating this infinite dimensional integral all
have the form

Q(f) =

n−1∑

i=0

wif(t
(i)
ui
; c), (7.2)

where wi ∈ R, ui is a finite subset of N, and t
(i)
ui

∈ [0, 1]|ui |. There are
three kinds of algorithms which have been studied in the literature which
we introduce in the following subsection.
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7.2. Three kinds of algorithms

In this subsection we describe single-level (or fixed dimension), multi-level
and changing dimension algorithms.

Example 7.1. (Single-level or fixed dimension algorithm) The single-
level (SL) or fixed dimension algorithm approximates the infinite dimen-
sional integral by an s-dimensional QMC rule

QSL(f) :=
1

n

n−1∑

i=0

f(t
(i)
{1:s}; c), (7.3)

in which the active variables are the leading variables x1, x2, . . . , xs.

Example 7.2. (Multi-level algorithm) A different kind of algorithm
comes from adopting a multi-level (ML) approach (Heinrich 1998, Giles
2008). We define an infinite sequence of dimensions

0 = s0 < s1 < s2 < · · · <∞,

and write the function as a collapsing sum

f(x) =

∞∑

ℓ=1

(
f(x{1:sℓ}; c)− f(x{1:sℓ−1}; c)

)
+ f(c),

and similarly write the integral (7.1) also as a collapsing sum,

I∞(f) =

∞∑

ℓ=1

(
Isℓ(f)− Isℓ−1

(f)
)
+ f(c),

with I0(f) = f(c), and

Isℓ(f) :=

∫

[0,1]sℓ
f(x{1:sℓ}; c) dx{1:sℓ}.

We then approximate the collapsing sum up to level L > 0 by the cubature
formula

QML(f) :=

L∑

ℓ=1

Qnℓ,ℓ(ψℓ(f)− ψℓ−1(f)) + f(c), (7.4)

where ψℓ(f) := f(x{1:sℓ}; c), and

Qnℓ,ℓ(ψℓ(f)− ψℓ−1(f)) =
1

nℓ

nℓ−1∑

i=0

(
f(t

(i)
{1:sℓ}

; c)− f(t
(i)
{1:sℓ−1}

; c)
)
,

and where t
(i)
{1:sℓ}

∈ [0, 1]sℓ , and t
(i)
{1:sℓ−1}

contains the first sℓ−1 components

of t
(i)
{1:sℓ}

. For nℓ = 0 we assume that Qnℓ,ℓ(ψℓ(f)− ψℓ−1(f)) = 0. The idea
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of a ML scheme is that the successive terms in the collapsing sum for the
integral should be smaller and smaller, and hence can be well approximated
by a smaller number of points nℓ as ℓ increases, leaving only relatively low
dimensional integrals needing a large number of points. We assumed in (7.4)
that the cubature rules Qnℓ,ℓ are QMC rules, but other choices are clearly
possible.

Roughly speaking, ML algorithms are of particular advantage if for a
particular f the important subsets u involve only a small number of leading
variables (that is, in the language of Caflisch et al. (1997), if the “truncation
dimension” is small).

Example 7.3. (Changing dimension algorithm) A third kind of al-
gorithm is the changing dimension (CD) algorithm (Kuo, Sloan, Wasilkowski
and Woźniakowski 2010b). In this approach a different cubature rule is ap-
plied to each term fu of the so-called “anchored” decomposition of f . The
anchored decomposition has the form

f =
∑

|u|<∞

fu, (7.5)

where for a finite set u the function fu depends only on the set xu of ac-
tive variables xj , j ∈ u, and vanishes if any of those active variables has
the value c. The anchored decomposition has appeared under many differ-
ent guises, see for example Sobol′ (1969), Li, Schoendorf, Ho and Rabitz
(2004) and Griebel (2006). The terms in the anchored decomposition may
be defined recursively by

fu(xu) = f(xu; c)−
∑

v⊂u

fv(xv), (7.6)

where the sum is over the strict subsets of u. An explicit formula for fu in
terms of f is given by

fu(xu) =
∑

v⊆u

(−1)|u|−|v|f(xv; c), (7.7)

where now the sum is over all subsets of u. The formula is established,
for example, in Theorem 1 of Kuo, Sloan, Wasilkowski and Woźniakowski
(2010a).

The CD algorithms then take the form

QCD(f) :=
∑

|u|<∞

Qnu,u(fu), (7.8)

where, for a finite subset u,

Qnu,u(fu) =
1

nu

nu−1∑

i=0

fu(t
(i)
u ),
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with t
(i)
u ∈ [0, 1]|u|, and we use the convention that Qnu,u(fu) vanishes if

nu = 0. Thus in the CD algorithm a different cubature rule is applied to
each component of the anchored decomposition. We assumed for simplicity
that the cubature rule Qnu,u is a QMC rule, but other choices are clearly
possible. Roughly speaking, this algorithm has a significant advantage if for
a particular f the important subsets u all have small cardinality (that is,
in the language of Caflisch et al. (1997), if the “superposition dimension” is
small).

7.3. Cost models and the choice of algorithms

In earlier sections we implicitly assumed that the cost of a single function
evaluation is always the same, since in assessing cost we only counted the
number of function evaluations. Now that the number of variables is un-
bounded, it seems reasonable to allow the cost of evaluating f(xu; c) to
depend on the set u. We consider two different cost models:

• Model A – the cost depends on the highest index of the active variables

costA(u) = $(max u).

• Model B – the cost depends on the number of active variables

costB(u) = $(|u|)

Here the “dollar” function $ : N0 → R+ is assumed to be positive and non-
decreasing. For example, $(k) = [max(1, k)]σ for some σ > 0. We note
that Model A is a simplification of a model introduced in Creutzig, Dereich,
Müller-Gronbach and Ritter (2009) and Model B was introduced in Kuo et
al. (2010b).

Whereas in previous sections we assumed that the cost of an algorithm is
simply the number of function evaluations, we now assume that the cost of
the algorithm given by (7.2) is

costX(Q) :=

n−1∑

i=0

costX(ui), X ∈ {A,B}. (7.9)

The aim now is to approximate the integral with accuracy ε > 0 by an algo-
rithm with small cost (rather than a small number of function evaluations).

The costs of the SL and ML algorithms under both cost models are,
respectively,

costX(QSL) = n $(s) and costX(QML) =

L∑

ℓ=1

nℓ ($(sℓ) + $(sℓ−1)) ,
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while the cost of the CD algorithm under each cost model is

costA(Q
CD) =

∑

|u|<∞

nu
∑

v⊆u

$(max v) ≤
∑

|u|<∞

nu $(max u) 2|u|,

costB(Q
CD) =

∑

|u|<∞

nu
∑

v⊆u

$(|v|) ≤
∑

|u|<∞

nu $(|u|) 2|u|,

where the sum over v appears due to the need to compute fu using (7.7).
One cost model may be more appropriate than the other, depending on

the integrand for the application at hand. The choice of algorithm should
therefore also depend on the cost model for the given application.

7.4. A reproducing kernel Hilbert space setting

Now we restrict the function class further. Just as in the finite dimensional
case, we restrict our considerations to functions that lie in a certain repro-
ducing Hilbert space (RKHS), because it is then possible to compute worst
case errors, and to study tractability of the integration problem.

Let η : [0, 1]2 → R be a reproducing kernel on the interval [0, 1] such that
there exists a c ∈ [0, 1] with η(c, c) = 0. Examples of reproducing kernels
satisfying this condition are min(x, y) (see (4.1) with c = 0) or 1−max(x, y)
(see (4.1) with c = 1). Let the RKHS be denoted by H(η), the inner product
by 〈·, ·〉 and the corresponding norm by ‖ · ‖. Assume that

M := sup
x∈[0,1]

|η(x, x)| <∞.

Then since

|η(x, y)| = |〈η(·, x), η(·, y)〉| ≤ ‖η(·, x)‖‖η(·, y)‖ =
√
η(x, x)η(y, y) (7.10)

for all x, y ∈ [0, 1], we have |η(x, c)| ≤
√
Mη(c, c) = 0. Thus

η(x, c) = 0 ∀x ∈ [0, 1], (7.11)

and we have

f(c) = 〈f, η(·, c)〉 = 〈f, 0〉 = 0 ∀f ∈ H(η).

Thus all functions f ∈ H(η) vanish at c, in particular, the only constant
function in H(η) is f ≡ 0. Moreover, the kernel 1 + η defines a RKHS
which is the direct sum of constant functions and functions in H(η). This
implies that the space of constant functions H(1), defined by the kernel 1,
is orthogonal to H(η) in the space H(1 + η).

To define the infinite dimensional RKHS, for each set u ⊂ N with |u| <∞
let γu be a non-negative real number and for points x,y ∈ [0, 1]N let

Ku(xu,yu
) :=

∏

j∈u

η(xj , yj) and Kγ(x,y) :=
∑

|u|<∞

γuKu(xu,yu
), (7.12)
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where again the empty product is defined to be 1. In the following we assume
that

∑

|u|<∞

γuM
|u| <∞. (7.13)

Condition (7.13) ensures that the series expression for Kγ(x,y) converges
absolutely and uniformly, since from (7.10) we have |η(x, y)| ≤ M . The
kernel Ku defines a RKHS H(Ku) on [0, 1]|u|, and the kernel Kγ defines a
RKHS H(Kγ) on [0, 1]N. The inner products in H(Kγ) and H(Ku) will be
denoted by 〈·, ·〉γ and 〈·, ·〉u respectively, and the corresponding norms by
‖ · ‖γ and ‖ · ‖u.

Note that a condition significantly weaker than (7.13) would be sufficient
to define infinite dimensional integration, but to avoid some technicalities
we shall be content with (7.13). In particular, our assumptions imply that
function evaluation is continuous at every point x ∈ [0, 1]N. The idea for
weakening the conditions is to impose conditions such that infinite dimen-
sional integration and function evaluation at finite dimensional projections
are continuous linear functionals. See the work by Gnewuch, Mayer, Ritter
(2013) for even weaker conditions.

A function f ∈ H(Kγ) can be decomposed into a sum of functions fu ∈
H(Ku) by setting

fu(xu) := 〈f, γuKu(·,xu)〉γ , (7.14)

which implies

∑

|u|<∞

fu(xu) =
∑

|u|<∞

〈f, γuKu(·,xu)〉γ =

〈
f,
∑

|u|<∞

γuKu(·,xu)

〉

γ

= f(x).

(7.15)
The decomposition f =

∑
|u|<∞ fu is orthogonal in H(Kγ), since H(η) is

orthogonal to the space of constant functions and for u 6= v either there exists
j ∈ u, j /∈ v or there exists j ∈ v, j /∈ u, implying that 〈Ku(·,xu),Kv(·,yv

)〉γ =
0 and hence by (7.14) we have 〈fu,Kv(·,yv

)〉γ = 0.
By orthogonality, the norm in H(Kγ) is related to the norm of the pro-

jections by the formula

‖f‖2γ =
∑

|u|<∞

‖fu‖2γ =
∑

|u|<∞

γ−1
u

‖fu‖2u.

We now study integration of functions defined on H(Kγ). Let

hu(yu
) :=

∫

[0,1]u|
Ku(yu

,xu) dxu =
∏

j∈u

∫ 1

0
η(yj , xj) dxj,
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and

h(y) :=
∑

|u|<∞

γuhu(yu
).

From (7.13) we conclude that this series converges absolutely and uniformly.
The functions hu are orthogonal in H(Kγ) (since hu ∈ H(Ku)), from which
it follows that

‖h‖2γ =
∑

|u|<∞

γ2
u
‖hu‖2γ =

∑

|u|<∞

γ2
u
γ−1
u

‖hu‖2u (7.16)

=
∑

|u|<∞

γ2
u
γ−1
u

∫

[0,1]|u|

∫

[0,1]|u|
〈Ku(·,x),Ku(·,y)〉u dxdy

=
∑

|u|<∞

γu
∏

j∈u

∫ 1

0

∫ 1

0
η(xj , yj) dxj dyj <

∑

|u|<∞

γuM
|u| <∞,

and thus h ∈ H(Kγ). Note that this decomposition of h differs from the
decomposition (7.15) (which holds for all functions in H(Kγ)) by a scaling
factor γu for each term hu.

For f ∈ H(Kγ) it follows from (7.1) and (7.12) that
∫

[0,1]N
f(x) dx = lim

s→∞

∫

[0,1]s
f(x{1:s}; c) dx

= lim
s→∞

∫

[0,1]s

〈
f,

∑

u⊆{1:s}

γuKu(xu, ·)
〉

γ

dx

= lim
s→∞

〈
f,

∑

u⊆{1:s}

γuhu

〉

γ

= 〈f, h〉γ . (7.17)

Since ‖I∞‖ = ‖h‖γ < ∞, it follows that I∞ is a bounded linear functional
on H(Kγ).

7.5. Error analysis in RKHS

The analysis of the worst case error is based on the orthogonal decomposition
in the space H(Kγ). The representer (see (3.11)) of the integration error is
given by

ξ(x) =

∫

[0,1]N
Kγ(y,x) dy −Q(Kγ(·,x)),

where, in general, Q is a cubature algorithm of the form (7.2) which is
applied to the first variable of Kγ (later we will consider only the SL, ML,
CD algorithms). As explained in Subsection 3.3, the worst case integration
error is given by

e(Q;H(Kγ)) = ‖ξ‖γ .
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(In this subsection we use the notation e(Q;H(Kγ)) instead of e(P ;H(Kγ))
as in Subsection 3.3, since we now allow unequal cubature weights in the
algorithm.) Analogously to (7.16), we can obtain an orthogonal decomposi-
tion of the worst case error

e2(Q;H(Kγ)) = ‖ξ‖2γ =
∑

|u|<∞

γ2
u
‖ξu‖2γ =

∑

|u|<∞

γu‖ξu‖2u

=
∑

|u|<∞

γu e
2(Qu;H(Ku)),

where e(Qu;H(Ku)) is the worst case error in the space H(Ku) using the
cubature rule

Qu(f) =
n−1∑

i=0

wifu(t
(i)
ui∩u; c).

The relationship between f and its projection fu is given by (7.6) and (7.7).
Note that if for u 6= ∅ there does not exist at least one 0 ≤ i < n such that u ⊆
ui, then Qu(f) = 0 since fu(tv; c) = 0 for v ⊆ u and v 6= u. This orthogonal
decomposition of the worst case error is an essential tool in analyzing the
integration error. We consider now the orthogonal decompositions of the
worst case error for the SL, ML and CD algorithms in more detail.

For the SL algorithm we obtain

e2(QSL;H(Kγ)) =
∑

u⊆{1:s}

γu e
2(Qu;H(Ku)) +

∑

|u|<∞
u6⊆{1:s}

γu e
2(0;H(Ku))

= e2(QSL;H(Ks,γ)) +
∑

|u|<∞
u6⊆{1:s}

γum
|u|,

where e2(0;H(Ku)) is the squared initial error (see (3.10))

e2(0;H(Ku)) = m|u|, m :=

∫ 1

0

∫ 1

0
η(x, y) dxdy ≤M,

and e2(QSL;H(Ks,γ)) is the squared worst case error of the cubature rule
for the finite dimensional weighted space H(Ks,γ) with reproducing kernel

Ks,γ(x,y) =
∑

u⊆{1:s}

γuKu(xu,yu
), x,y ∈ [0, 1]s.

We can then apply any estimate for e2(QSL;H(Ks,γ)) based on lattice rules
or digital nets from the previous sections. We can also use general cubature
rules other than QMC rules.

The ML algorithm approximates each level ℓ using a cubature rule with
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nℓ points. To bound the ML cubature error, note that from (7.15) we have

f(x{1:sℓ}; c)− f(x{1:sℓ−1}; c) =
∑

u⊆{1:sℓ}

fu(xu)−
∑

u⊆{1:sℓ−1}

fu(xu).

Thus the error for the ML algorithm satisfies

e2(QML;H(Kγ))

=

L∑

ℓ=1

∑

u⊆{1:sℓ}
u*{1:sℓ−1}

γue
2(QML

u
;H(Ku)) +

∑

|u|<∞
u6⊆{1:sL}

γu e
2(0;H(Ku))

=

L∑

ℓ=1

e2(Qnℓ,ℓ;H(Ksℓ,γ −Ksℓ−1,γ)) +
∑

|u|<∞
u6⊆{1:sL}

γum
|u|

≤
L∑

ℓ=1

e2(Qnℓ,ℓ;H(Ksℓ,γ)) +
∑

|u|<∞
u6⊆{1:sL}

γum
|u|.

We then apply previous results for e2(Qnℓ,ℓ;H(Ksℓ,γ − Ksℓ−1,γ)) or simply

e2(Qnℓ,ℓ;H(Ksℓ,γ)).

For the CD algorithm we have

e2(QCD;H(Kγ)) =
∑

|u|<∞

γu e
2(Qnu,u;H(Ku))

=
∑

|u|<∞
nu>0

γu e
2(Qnu,u;H(Ku)) +

∑

|u|<∞
nu=0

γum
|u|.

Again, we then apply known estimates for e2(Qnu,u;H(Ku)).

The idea now is to choose the number of cubature points (n for SL, nℓ for
ML, nu for CD) and the dimensions or sets of variables (s for SL, sℓ for ML,
active sets u for CD), such that the error is small for a given cost, or con-
versely, the cost is small for a given required level of accuracy. One needs
to balance the error obtained by truncating the infinite dimensional inte-
gral against the integration error. This leads to a constrained optimization
problem which in some cases can be solved using the technique of Lagrange
multipliers. For a given application, one would also need to determine suit-
able weights γu so that the integrand not only belongs to the RKHS setting
but also has small norm ‖ · ‖γ .
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7.6. An infinite dimensional application

Do infinite dimensional problems arise in practice? A class of infinite dimen-
sional problems arises from partial differential equations with random fields
as coefficients, with one problem being the flow of a liquid (oil or water)
through a porous medium (such as rock). For a given pressure gradient, the
rate of flow at a particular location depends on the local “permeability” of
the medium, which can vary rapidly from point to point. Engineers studying
the overall flow properties then have two choices: either to model the true
permeability as a rapidly varying function over the region, or (as is often
done in practice) to model the permeability as a “random field” whose gen-
eral characteristics match those of the physical problem. A random field over
a two or three-dimensional region may require a countably infinite number
of independent random variables for its complete description, hence the infi-
nite dimensionality of the problem. Such problems are presently tackled by
a variety of methods, beginning with Norbert Wiener’s “polynomial chaos”,
and continuing to “generalized polynomial chaos”, “stochastic Galerkin”
and “stochastic collocation” methods. In all those methods the probabilis-
tic aspect of the problem is parameterized by a continuous variable x with
a large (possibly infinite) number of components. The solution is approxi-
mated by truncation to a manageable number of components of x, and an
approximate solution depending on both the truncated x and the physical
variables is then sought in a finite-dimensional function space. All such
methods face great challenges when the effective dimension is large (where
the effective dimension may be loosely defined as the number of components
of x needed to obtain a reliable approximation). For hard problems of this
type MC or QMC methods may be the engineer’s only choice (Ghanem and
Spanos 1991).

In a recent paper (Kuo et al. 2012) a QMC method (randomly shifted
lattice rule) was applied to a simple (but infinite dimensional) model of a
partial differential equation with a random coefficient, using the methodol-
ogy of Section 5, after truncation to a finite dimension s. An interesting
feature of this work was the appearance for the first time of POD (product
and order dependent) weights, see (4.4), obtained by minimizing a certain
upper bound on the error of some functional (for example, the overall ef-
fective permeability) of the solution. A ML version of the same problem
was studied in Kuo, Schwab and Sloan (2013), using a ML scheme more
complicated than that above, in that a different spatial discretization was
employed at each level ℓ.

7.7. Notes

Early studies of numerical integration for infinite dimensional problems (and
ML methods) include the following: Wasilkowski and Woźniakowski (1995)
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considered Feynman-Kac path integration, Wasilkowski and Woźniakowski
(1996) considered path integration, Heinrich (1998) studied ML in the con-
text of integral equations, Heinrich and Sindambiwe (1999) studied ML in
the context of parametric integration, Hickernell and Wang (2002) studied
QMC algorithms for infinite dimensional integration. Giles (2008) consid-
ered ML MC schemes for stochastic partial differential equations.

Creutzig et al. (2009) introduced the variable subspace sampling model
(which generalizes cost model A) and obtained optimality results for ML
algorithms for this model, which apply in particular to infinite dimensional
integration of stochastic differential equations. Infinite dimensional inte-
gration using randomized MC algorithms in a hierarchy of finite dimen-
sional subspaces was studied by Hickernell, Müller-Gronbach, Niu and Ritter
(2010). Niu, Hickernell, Müller-Gronbach and Ritter (2011) studied deter-
ministic ML algorithms. Niu and Hickernell (2009) studied MC simulation
of infinite dimensional stochastic integrals arising in financial applications.
The CD algorithm combined with QMC methods was introduced in Kuo et
al. (2010b). The above results for ML and CD algorithms were improved
by Gnewuch (2012). Plaskota and Wasilkowski (2011) considered the CD
algorithm combined with Smolyak algorithms and studied tractability in the
worst case and randomized setting. Higher order convergence using higher
order polynomial lattice rules in infinite dimensional anchored spaces was
studied by Dick and Gnewuch (2013). Baldeaux (2012) and Baldeaux and
Gnewuch (2013) studied randomly scrambled polynomial lattice rules for
infinite dimensional integration, the latter in unanchored Sobolev spaces.
Lower bounds were considered by Gnewuch (2013). A probabilistic ML al-
gorithm which yields an unbiased estimator was introduced by Rhee and
Glynn (2012).

The mathematics of random fields is well described in the book Adler
(1981). For engineering applications of the MC method to problems of
porous flow, see for instance Ghanem and Spanos (1991). ML MC approach
has recently been developed for elliptic problems with random input data
in Barth, Schwab and Zollinger (2011), Charrier, Scheichl and Teckentrup
(2011), Cliffe, Giles, Scheichl and Teckentrup (2011), Schwab and Gittelson
(2011), and Teckentrup, Scheichl, Giles and Ullmann (2012). Application of
QMC methods for these PDE problems have been considered in Graham et
al. (2011), Kuo et al. (2012), Kuo et al. (2013), and Graham, Kuo, Nichols,
Scheichl, Schwab and Sloan (2013).

8. Concluding remarks

In this survey we have tried to capture key concepts and methods in the
rapidly developing field of high dimensional numerical integration. We have
concentrated on equal weight rules, not because they will always be the best
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rules for a particular problem (indeed, in low dimensions we know that this
is certainly not the case), but because they can be used in practice for very
high dimensional problems. We have not covered sparse grid methods, re-
viewed in a previous Acta Numerica article by Bungartz and Griebel (2004),
which also provide a well understood approach to integration in moderately
high dimensions, and which are especially attractive for the related topic of
approximation of functions.

In this rapidly developing subject it is almost certain that future research
will give a different emphasis to the material covered in this survey, but we
think it likely that topics such as reproducing kernels, weighted function
spaces, component-by-component constructions, and discrepancy in all its
forms, will continue to play starring roles in the science of high dimensional
numerical integration.
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J. Matoušek (1999), Geometric discrepancy. An illustrated guide, Algorithms and
Combinatorics, 18. Springer, Berlin.

M. Matsumoto, M. Saito, K. Matoba (2013), ‘A computable figure of merit for
quasi-Monte Carlo point sets’, Math. Comp. to appear.

M. Matsumoto and T. Yoshiki (2013), ‘Existence of higher order convergent quasi-
Monte Carlo rules via Walsh figure of merit’, inMonte Carlo and Quasi-Monte
Carlo Methods 2012 (J. Dick, F. Y. Kuo, G. W. Peters, I. H. Sloan, eds.),
Springer, to appear.

H. Niederreiter (1978), ‘Quasi-Monte Carlo methods and pseudo-random numbers’,
Bull. Amer. Math. Soc. 84, 957–1041.

H. Niederreiter (1987), ‘Point sets and sequences with small discrepancy’, Monatsh.
Math. 104, 273–337.

H. Niederreiter (1992a), Random Number Generation and Quasi-Monte Carlo
Methods, SIAM, Philadelphia.

H. Niederreiter (1992b), ‘Low-discrepancy point sets obtained by digital construc-
tions over finite fields’, Czechoslovak Math. J. 42, 143–166.

H. Niederreiter (2003), ‘The existence of good extensible polynomial lattice rules’,
Monatsh. Math. 139, 295–307.

H. Niederreiter (2004), ‘Digital nets and coding theory’, in Coding, Cryptogra-
phy and Combinatorics (K. Q. Feng, H. Niederreiter, and C. P. Xing, eds.),
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of integrals’ (in Russian), Ž. Vyčisl. Mat. i Mat. Fiz. 7, 784–802.

I. M. Sobol′ (1969), Multidimensional Quadrature Formulas and Haar Functions
(in Russian), Nauka, Moscow.

S. Smolyak (1963), Quadrature and interpolation formulas for tensor products of
certain classes of functions, Soviet Math. Dokl. 4, 240–243. Russian original
in Dokl. Akad. Nauk SSSR 148 (1963), 1042–1045.

A. H. Stroud (1971), Approximate Calculation of Multiple Integrals, Prentice-Hall,
Englewood Cliffs, New Jersey.

A. L. Teckentrup, R. Scheichl, M. B. Giles and E. Ullmann (2012), Further analysis
of multilevel Monte Carlo methods for elliptic PDEs with random coefficient,
Technical Report, University of Bath.

S. Tezuka (2013), On the discrepancy of generalized Niederreiter sequences, J.
Complexity, to appear.

S. Tezuka and H. Faure (2003), ‘I-binomial scrambling of digital nets and sequences’,
J. Complexity 19, 744–757.

C. Thomas-Agnan (1996), ‘Computing a family of reproducing kernels for statistical
applications’, Numer. Algorithms 13, 21–32.

J. F. Traub, G. W. Wasilkowski and H. Woźniakowski (2008), Information-Based
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